首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
程飞飞  杨智  钱程 《生物工程学报》2014,30(10):1515-1521
去分化脂肪(Dedifferentiated fat,DFAT)细胞是由人体内含量最丰富的成熟脂肪细胞经体外天花板法培养去分化而来。研究发现:DFAT细胞具有均一性高、对供者年龄要求较低等脂肪来源干细胞(Adipose-derived stem cells,ASCs)和骨髓间充质干细胞(Bone marrow mesenchymal stem cells,BMSCs)所不具有的优势。此外,它还具有体内外成脂、成软骨、成骨、成肌、成神经等多向分化能力以及免疫调节能力。作为具有潜力的组织工程及同种异体干细胞移植的优秀种子细胞,DFAT细胞在治疗骨缺损、神经性疾病、局部缺血性心脏病及肾脏疾病等方面均具有较好的应用前景,对其开展深入的研究具有重要的理论和实践意义。文中从免疫学性质、多向分化能力及临床应用潜力等方面对DFAT细胞的研究进展作一综述。  相似文献   

2.
When mature adipocytes are subjected to an in vitro dedifferentiation strategy referred to as ceiling culture, these mature adipocytes can revert to a more primitive phenotype and gain cell proliferative ability. We refer to these cells as dedifferentiated fat (DFAT) cells. In the present study, we examined the multilineage differentiation potential of DFAT cells. DFAT cells obtained from adipose tissues of 18 donors exhibited a fibroblast-like morphology and sustained high proliferative activity. Flow cytometric analysis revealed that DFAT cells comprised a highly homogeneous cell population compared with that of adipose-derived stem/stromal cells (ASCs), although the cell-surface antigen profile of DFAT cells was very similar to that of ASCs. DFAT cells lost expression of mature adipocytes marker genes but retained or gained expression of mesenchymal lineage-committed marker genes such as peroxisome proliferator-activated receptor gamma (PPARgamma), RUNX2, and SOX9. In vitro differentiation analysis revealed that DFAT cells could differentiate into adipocytes, chondrocytes, and osteoblasts under appropriate culture conditions. DFAT cells also formed osteoid matrix when implanted subcutaneously into nude mice. In addition, clonally expanded porcine DFAT cells showed the ability to differentiate into multiple mesenchymal cell lineages. These results indicate that DFAT cells represent a type of multipotent progenitor cell. The accessibility and ease of culture of DFAT cells support their potential application for cell-based therapies.  相似文献   

3.
Dedifferentiated fat (DFAT) cells, which are isolated from mature adipocytes using the ceiling culture method, exhibit similar characteristics to mesenchymal stem cells, and possess adipogenic, osteogenic, chondrogenic, and myogenic potentials. Bone morphogenetic protein (BMP)-2 and -9, members of the transforming growth factor-β superfamily, exhibit the most potent osteogenic activity of this growth factor family. However, the effects of BMP-2 and BMP-9 on the osteogenic differentiation of DFAT remain unknown. Here, we examined the effects of BMP-2 and BMP-9 on osteoblastic differentiation of rat DFAT (rDFAT) cells in the presence or absence of FK506, an immunosuppressive agent. Co-stimulation with BMP-9 and FK506 induced gene expression of runx2, osterix, and bone sialoprotein, and ALP activity compared with BMP-9 alone, BMP-2 alone and BMP-2 + FK506 in rDFAT cells. Furthermore, it caused mineralization of cultures and phosphorylation of smad1/5/8, compared with BMP-9 alone. The ALP activity induced by BMP-9 + FK506 was not influenced by addition of noggin, a BMP antagonist. Our data suggest that the combination of BMP-9 and FK506 potently induces osteoblastic differentiation of rDFAT cells.  相似文献   

4.
We have previously reported the establishment of preadipocyte cell lines, termed dedifferentiated fat (DFAT) cells, from mature adipocytes of various animals. DFAT cells possess long-term viability and can redifferentiate into adipocytes both in vivo and in vitro. Furthermore, DFAT cells can transdifferentiate into osteoblasts and chondrocytes under appropriate culture conditions. However, it is unclear whether DFAT cells are capable of transdifferentiating into skeletal myocytes, which is common in the mesodermal lineage. Here, we show that DFAT cells can be induced to transdifferentiate into skeletal myocytes in vitro. Myogenic induction of DFAT cells resulted in the expression of MyoD and myogenin, followed by cell fusion and formation of multinucleated cells expressing sarcomeric myosin heavy chain. These results indicate that DFAT cells derived from mature adipocytes can transdifferentiate into skeletal myocytes in vitro.  相似文献   

5.
Dendritic cells (DCs) are professional antigen-presenting cells that are required for the initiation of the immune response. DCs have been shown to be generated from CD34+pluripotent hematopoietic progenitor cells in the bone marrow and cord blood (CB), but relatively little is known about the effect of cryopreservation on functional maturation of DCs from hematopoietic stem cells. In this work we report the generation of DCs from cryopreserved CB CD34+cells. CB CD34+cells were cryopreserved at −80°C for 2 days. Cryopreserved CB CD34+cells as well as freshly isolated CB CD34+cells cultured with granulocyte—macrophage colony-stimulating factor (GM-CSF)/stem cell factor (SCF)/tumor necrosis factor-α (TNF-α) for 14 days gave rise to CD1a+/CD4+/CD11c+/CD14/CD40+/CD80+/CD83+/CD86+/HLA-DR+cells with dendritic morphology. DCs derived from cryopreserved CB CD34+cells showed a similar endocytic capacity for fluorescein isothiocyanate-labeled dextran and lucifer yellow when compared with DCs derived from freshly isolated CB CD34+cells. Flow cytometric analysis revealed that two CC chemokine receptors (CCRs), CCR-1 and CCR-3, were expressed on the cell surface of DCs derived from both cryopreserved and freshly isolated CB CD34+cells, and these DCs exhibited similar chemotactic migratory capacities in response to regulated on activation normal T-cell expressed and secreted. DCs derived from cryopreserved as well as freshly isolated CB CD34+cells were more efficient than peripheral blood mononuclear cells in the primary allogeneic T-cell response. These results indicate that frozen CB CD34+cells cultured with GM-CSF/TNF-α/SCF gave rise to dendritic cells which were morphologically, phenotypically and functionally similar to DCs derived from fresh CB CD34+cells.  相似文献   

6.
Mature adipocytes can revert to a more primitive phenotype and gain cell proliferative ability under the condition of ceiling method, named dedifferentiated fat cells (DFAT cells). These cells exhibit multilineage potential as adipose tissue-derived stromal cells (ADSCs). However, the stem molecular signature of DFAT cells and the difference distinct from ADSCs are still not sure. To study the molecular signature of DFAT cells better, highly purified mature adipocytes were obtained from rats and the purity was more than 98%, and about 98.6% were monocytes. These mature adipocytes dedifferentiated into fibroblast-like cells spontaneously by the ceiling culture method, these cells proliferated rapidly in vitro, grew in the same direction and formed vertex, and expressed extensively embryonic stem cell markers such as Oct4, Sox2, c-Myc, and Nanog, surface antigen SSEA-1, CD105, and CD31, moreover, these cells possessed ALP and telomerase activity. The expression level was Oct4 1.3%, Sox2 1.3%, c-Myc 1.2%, Nanog 1.2%, CD105 0.6%, CD31 0.6% and SSEA-1 0.4%, respectively, which was lower than that in ADSCs, but the purity of DFAT cells was much higher than that of ADSCs. In conclusion, DFAT cells is a highly purified stem cell population, and expressed some embryonic stem cell markers like ADSCs, which seems to be a good candidate source of adult stem cells for the future cell replacement therapy.  相似文献   

7.
The utilization of neural stem cells and their progeny in applications such as disease modelling, drug screening or safety assessment will require the development of robust methods for consistent, high quality uniform cell production. Previously, we described the generation of adherent, homogeneous, non-immortalized mouse and human neural stem cells derived from both brain tissue and pluripotent embryonic stem cells ( [Conti et al., 2005] and [Sun et al., 2008]). In this study, we report the isolation or derivation of stable neurogenic human NS (hNS) lines from different regions of the 8-9 gestational week fetal human central nervous system (CNS) using new serum-free media formulations including animal component-free conditions. We generated more than 20 adherent hNS lines from whole brain, cortex, lobe, midbrain, hindbrain and spinal cord. We also compared the adherent hNS to some aspects of the human CNS-stem cells grown as neurospheres (hCNS-SCns), which were derived from prospectively isolated CD133+CD24−/lo cells from 16 to 20 gestational week fetal brain. We found, by RT-PCR and Taqman low-density array, that some of the regionally isolated lines maintained their regional identity along the anteroposterior axis. These NS cells exhibit the signature marker profile of neurogenic radial glia and maintain neurogenic and multipotential differentiation ability after extensive long-term expansion. Similarly, hCNS-SC can be expanded either as neurospheres or in extended adherent monolayer with a morphology and marker expression profile consistent with radial glia NS cells. We demonstrate that these lines can be efficiently genetically modified with standard nucleofection protocols for both protein overexpression and siRNA knockdown of exogenously expressed and endogenous genes exemplified with GFP and Nestin. To investigate the functional maturation of neuronal progeny derived from hNS we (a) performed Agilent whole genome microarray gene expression analysis from cultures undergoing neuronal differentiation for up to 32 days and found increased expression over time for a number of drugable target genes including neurotransmitter receptors and ion channels and (b) conducted a neuropharmacology study utilizing Fura-2 Ca2+ imaging which revealed a clear shift from an initial glial reaction to carbachol to mature neuron-specific responses to glutamate and potassium after prolonged neuronal differentiation. Fully automated culture and scale-up of select hNS was achieved; cells supplied by the robot maintained the molecular profile of multipotent NS cells and performed faithfully in neuronal differentiation experiments. Here, we present validation and utility of a human neural lineage-restricted stem cell-based assay platform, including scale-up and automation, genetic engineering and functional characterization of differentiated progeny.  相似文献   

8.

Background

It is increasingly evident that CD8+ T cells are involved in atherosclerosis but the specific subtypes have yet to be defined. CD8+CD25+ T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8+CD25+ T cells in experimental atherosclerosis were investigated in this study.

Methods and results

CD8+CD25+ T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8+CD25+ T cells from apoE(−/−) mice. Depletion of CD8+CD25+ from total CD8+ T cells rendered higher cytolytic activity of the remaining CD8+CD25 T cells. Adoptive transfer of CD8+CD25+ T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4+ T cells and significantly reduced atherosclerosis in recipient mice.

Conclusions

Our study has identified an athero-protective role for CD8+CD25+ T cells in experimental atherosclerosis.  相似文献   

9.
Immature dendritic cells (DCs) appear to be involved in peripheral immune tolerance via induction of IL-10-producing CD4+ T cells. We examined the role of TNF-α in generation of the IL-10-producing CD4+ T cells by immature DCs. Immature bone marrow-derived DCs from wild type (WT) or TNF-α−/− mice were cocultured with CD4+ T cells from OVA specific TCR transgenic mice (OT-II) in the presence of OVA323-339 peptide. The WT DCs efficiently induced the antigen-specific IL-10-producing CD4+ T cells, while the ability of the TNF-α−/− DCs to induce these CD4+ T cells was considerably depressed. Addition of exogenous TNF-α recovered the impaired ability of the TNF-α−/− DCs to induce IL-10-producing T cells. However, no difference in this ability was observed between TNF-α−/− and WT DCs after their maturation by LPS. Thus, TNF-α appears to be critical for the generation of IL-10-producing CD4+ T cells during the antigen presentation by immature DCs.  相似文献   

10.
11.
The phenotypic diversity of breast carcinoma may be explained by the existence of a sub-population of breast cancer cells, endowed with stem cell-like properties and gene expression profiles, able to differentiate along different pathways. A stem cell-like population of CD44+CD24−/low breast cancer cells was originally identified using cells from metastatic pleural effusions of breast carcinoma patients. We have previously reported that upon in vitro culture as mammospheres under stem cell-like conditions, human MA-11 breast carcinoma cells acquired increased tumorigenicity and lost CD24 expression compared with the parental cell line. We now report that upon passage of MA-11 mammospheres into serum-supplemented cultures, CD24 expression was restored; the rapid increase in CD24 expression was consistent with up-regulation of the antigen, and not with in vitro selection of CD24+ cells. In tumors derived from subcutaneous injection of MA-11 mammospheres in athymic nude mice, 76.1 ± 9.7% of cells expressed CD24, vs. 0.5 ± 1% in MA-11 cells dissociated from mammospheres before injection. The tumorigenicity of sorted CD44+CD24 and CD44+CD24high MA-11 cells was equal. Single cell-sorted CD24 and CD24high MA-11 gave rise in vitro to cell populations with heterogeneous CD24 expression. Also, subcutaneous tumors derived from sorted CD24 sub-populations and single-cell clones had levels of CD24 expression similar to the unsorted cells. To investigate whether the high expression of CD24 contributed to the tumorigenic potential of MA-11 cells, we silenced CD24 by shRNA. CD24 silencing (95%) resulted in no difference in tumorigenicity upon s.c. injection in athymic nude mice compared with mock-transduced MA-11 cells. Since CD24 silencing was maintained in vivo, our data suggest that the level of expression of CD24 is associated with but does not contribute to tumorigenicity. We then compared the molecular profile of the mammospheres with the adherent cell fraction. Gene expression profiling revealed that the increased tumorigenicity of MA-11 mammospheres was associated with changes in 10 signal transduction pathways, including MAP kinase, Notch and Wnt, and increased expression of aldehyde dehydrogenase, a cancer-initiating cell-associated marker. Our data demonstrate that (i) the level of CD24 expression is neither a stable feature of mammosphere-forming cells nor confers tumorigenic potential to MA-11 cells; (ii) cancer-initiating cell-enriched MA-11 mammospheres have activated specific signal transduction pathways, potential targets for anti-breast cancer therapy.  相似文献   

12.
In this study, we investigate the potential of peritoneal macrophages to differentiate into dendritic cell (DCs) in response to preferential uptake of oligomannose-coated liposomes (OMLs). About 30% of peritoneal cells (PECs) preferentially took up OMLs that were administered into the peritoneal cavity. The OML-ingesting cells expressed CD11b and F4/80, but lacked CD11c expression, indicating that the OML-ingesting PECs with a CD11bhighCD11c phenotype are resident peritoneal macrophages. During in vitro cultivation, CD11c+ cells arose among the PECs with ingested OMLs. CD11c+ cells also developed among enriched peritoneal CD11bhighCD11 cells from OML-treated mice, and the resulting CD11c+ cells expressed co-stimulatory molecules and MHC class II. In addition, OML-ingesting CD11bhighCD11c+ cells were found in spleen after the enriched peritoneal macrophages with ingested OMLs were transplanted in the peritoneal cavity of mice. These results show that a fraction of peritoneal macrophages can differentiate into mature DCs following uptake of OMLs.  相似文献   

13.
Cytokine-induced killer (CIK) cells, which display both potent anti-tumor ability of T lymphocytes and non-major histocompatibility complex (MHC) restricted killing tumor cells capacity of natural killer (NK) cells are capable of recognizing and lysing a broad array of tumor targets. They have begun to be used in clinical care with good prospects for treatment success. CIK cells are a heterogeneous cell population that contain CD3+CD56+ cells, CD3CD56+ natural killer (NK) cells and CD3+CD56 T cells on which much attention has been focused. This review will summarize the connections and differences among CD3+CD56+CIK cells, CD3CD56+ NK cells and CD3+CD56 T cells in the following aspects: the main cell surface molecule, killing mechanism, and clinical applications so that treatment with CIK cells can be optimized and further to enhance the antitumor effect.  相似文献   

14.
Different fat depots contribute differently to disease and function. These differences may be due to the regional variation in cell types and inherent properties of fat cell progenitors. To address the differences of cell types in the adipose tissue from different depots, the phenotypes of freshly isolated adipose tissue‐derived cells (ATDCs) from subcutaneous (SC) and omental (OM) adipose tissues were compared using flow cytometry. Our results showed that CD31?CD34+CD45?CD90CD105?CD146+ population, containing vascular smooth muscle cells and pericytes, was specifically defined in the SC adipose tissue while no such population was observed in OM adipose tissue. On the other hand, CD31?CD34+CD45?CD90?CD105?CD146? population, which is an undefined cell population, were found solely in OM adipose tissue. Overall, the SC adipose tissue contained more ATDCs than OM adipose tissue, while OM adipose tissue contained more blood‐derived cells. Regarding to the inherent properties of fat cell progenitors from the two depots, adipose‐derived stem cells (ADSCs) from SC had higher capacity to differentiate into both adipogenic and osteogenic lineages than those from OM, regardless of that the proliferation rates of ADSCs from both depots were similar. The higher differentiation capacity of ADSCs from SC adipose tissue suggests that SC tissue is more suitable cell source for regenerative medicine than OM adipose tissue. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Self cells depend on surface complement regulators to protect them from autologous complement mediated attack. CD4+CD25+foxp3+ T regulatory (Treg) cells are critical in maintaining immune homeostasis, however, which complement regulators are expressed on them and how they are protected from autologous complement attack remains unknown. We report here that mouse Treg cells express virtually no DAF or CR1. Instead, all of them express Crry and approximately half of them express CD59. Both Crry−/− and CD59−/− Treg cells exhibit greater complement mediated injury than WT Treg cells. These results clarify the status of cell surface complement regulators on mouse Treg cells and indicate that both Crry and CD59 are required to protect Treg cells from autologous complement mediated injury. Additionally, these data also argue that different from previous assumption, at least in mice, CD4+CD25+foxp3+ Treg cells are not homogenous and could be further divided into subgroups based on CD59 expression.  相似文献   

16.
Despite their limited proliferation capacity, regulatory T cells (Tregs) constitute a population maintained over the entire lifetime of a human organism. The means by which Tregs sustain a stable pool in vivo are controversial. Using a mathematical model, we address this issue by evaluating several biological scenarios of the origins and the proliferation capacity of two subsets of Tregs: precursor CD4+CD25+CD45RO and mature CD4+CD25+CD45RO+ cells. The lifelong dynamics of Tregs are described by a set of ordinary differential equations, driven by a stochastic process representing the major immune reactions involving these cells. The model dynamics are validated using data from human donors of different ages. Analysis of the data led to the identification of two properties of the dynamics: (1) the equilibrium in the CD4+CD25+FoxP3+Tregs population is maintained over both precursor and mature Tregs pools together, and (2) the ratio between precursor and mature Tregs is inverted in the early years of adulthood. Then, using the model, we identified three biologically relevant scenarios that have the above properties: (1) the unique source of mature Tregs is the antigen-driven differentiation of precursors that acquire the mature profile in the periphery and the proliferation of Tregs is essential for the development and the maintenance of the pool; there exist other sources of mature Tregs, such as (2) a homeostatic density-dependent regulation or (3) thymus- or effector-derived Tregs, and in both cases, antigen-induced proliferation is not necessary for the development of a stable pool of Tregs. This is the first time that a mathematical model built to describe the in vivo dynamics of regulatory T cells is validated using human data. The application of this model provides an invaluable tool in estimating the amount of regulatory T cells as a function of time in the blood of patients that received a solid organ transplant or are suffering from an autoimmune disease.  相似文献   

17.
We previously reported an in vitro T-cell differentiation system in which the L4 lymphoid clone was cocultured with the St3 stromal line derived from the same murine thymic tumor, 15#4T. L4 cells in L4—St3 cocultures sequentially express Thy-1 and CD4 in a manner typical of normal thymocytes. In contrast, L4 cells grown in medium alone retain their Thy-1CD4 phenotype. We also isolated L4 subclones from the coculture with increasingly differentiated phenotypes with respect to Thy-1 and CD4. We now report induction of an additional thymocyte differentiation marker, terminal deoxynucleotidyl transferase (TdT) in 15#4T cells (and to a lesser extent subcloned L4 cells) upon coculture with St3 stroma. Coculture of 15#4T cells with St3 stroma resulted in expression of TdT as measured by ribonuclease protection for TdT RNA and Western immunoblotting for TdT protein. Cocultured L4 cells were induced for TdT expression to a lesser degree and for a shorter period of time. The magnitude of TdT RNA induction was maximal for cell lines with the least mature differentiation phenotype (15#4T and L4: Thy-1CD4) and decreased proportionally for subclones with increasingly mature phenotype, e.g., L4E cells (Thy-1+CD4+). TdT protein was undetectable by Western immunoblotting and immunofluorescent staining of the L4E subclone on or off stroma. Recombination-activating gene-1 (RAG-1), which is expressed in immature thymocytes during T-cell receptor rearrangement, but suppressed in mature thymocytes, was also examined using the ribonuclease protection assay. In contrast to TdT, RAG-1 expression was suppressed by coculture with St3 cells for 15#4T and also more mature subclones, indicating regulation by a mechanism independent from TdT. The ordered induction of TdT, Thy-1, and CD4, as well as regulation of RAG-1 in the 15#4T-St3 system, supports the conclusion that this in vitro system is a valuable model for characterizing regulation of these markers in normal thymocytes.  相似文献   

18.
There is a vast amount of molecular information regarding the differentiation of T lymphocytes, in particular regarding in vitro experimental treatments that modify their differentiation process. This publicly available information was used to infer the regulatory network that controls the differentiation of T lymphocytes into CD4+ and CD8+ cells. Hereby we present a network that consists of 50 nodes and 97 regulatory interactions, representing the main signaling circuits established among molecules and molecular complexes regulating the differentiation of T cells. The network was converted into a continuous dynamical system in the form of a set of coupled ordinary differential equations, and its dynamical behavior was studied. With the aid of numerical methods, nine fixed point attractors were found for the dynamical system. These attractors correspond to the activation patterns observed experimentally for the following cell types: CD4CD8, CD4+CD8+, CD4+ naive, Th1, Th2, Th17, Treg, CD8+ naive, and CTL. Furthermore, the model is able to describe the differentiation process from the precursor CD4CD8 to any of the effector types due to a specific series of extracellular signals.  相似文献   

19.
Endothelial progenitor cells (EPCs) play an important role in postnatal neovascularization. However, it is poorly understood whether EPCs contribute to lymphangiogenesis. Here, we assessed differentiation of a novel population of EPCs towards lymphatic endothelial cells and their lymphatic formation. CD34+VEGFR‐3+ EPCs were isolated from mononuclear cells of human cord blood by fluorescence‐activated cell sorting. These cells expressed CD133 and displayed the phenotype of the endothelial cells. Cell colonies appeared at 7–10 days after incubation. The cells of the colonies grew rapidly and could be repeatedly subcultured. After induction with VEGF‐C for 2 weeks, CD34+VEGFR‐3+ EPCs could differentiate into lymphatic endothelial cells expressing specific markers 5′‐nucleotidase, LYVE‐1 and Prox‐1. The cells also expressed hyaluronan receptor CD44. The differentiated cells had properties of proliferation, migration and formation of lymphatic capillary‐like structures in three‐dimensional collagen gel and Matrigel. VEGF‐C enhanced VEGFR‐3 mRNA expression. After interfering with VEGFR‐3 siRNA, the effects of VEGF‐C were diminished. These results demonstrate that there is a population of CD34+VEGFR‐3+ EPCs with lymphatic potential in human cord blood. VEGF‐C/VEGFR‐3 signalling pathway mediates differentiation of CD34+VEGFR‐3+ EPCs towards lymphatic endothelial cells and lymphangiogenesis. Cord blood‐derived CD34+VEGFR‐3+ EPCs may be a reliable source in transplantation therapy for lymphatic regenerative diseases.  相似文献   

20.
Abstract: Stable introduction of therapeutic genes into hematopoietic stem cells has the potential to reconstitute immunity in individuals with HIV infection. However, many important questions regarding the safety and efficacy of this approach remain unanswered and may be addressed in a non-human primate model. To facilitate evaluation of expression of foreign genes in T cells derived from transduced hematopoietic progenitor cells, we have established a culture system that supports the differentiation of rhesus macaque and human CD34+ bone marrow derived cells into mature T cells. Thymic stromal monolayers were prepared from the adherent cell fraction of collagenase digested fetal or neonatal thymus. After 10–14 days, purified rhesus CD34+ bone marrow-derived cells cultured on thymic stromal monolayers yielded CD3+CD4+CD8+, CD3+CD4+CD8?, and CD3+CD4?CD8+ cells. Following stimulation with mitogens, these T cells derived from CD34+ cells could be expanded over 1,000-fold and maintained in culture for up to 20 weeks. We next evaluated the ability of rhesus CD34+ cells transduced with a retroviral vector containing the marker gene neo to undergo in vitro T cell differentiation. CD34+ cells transduced in the presence of bone marrow stroma and then cultured on rhesus thymic stroma resulted in T cells containing the retroviral marker gene. These studies should facilitate both in vitro and in vivo studies of hematopoietic stem cell therapeutic strategies for AIDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号