首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
赖氨酰氧化酶样蛋白4(lysyl oxidase like 4, LOXL4)是一种属于赖氨酰氧化酶(lysyl oxidase, LOX)蛋白质家族的分泌型铜依赖性胺氧化酶,参与细胞外基质(extracellular matrix, ECM)的组装和维持。LOXL4蛋白在人类肝癌、胃癌、乳腺癌、宫颈癌、头颈鳞癌、食管癌和结直肠癌中表达上调,而在人类膀胱癌和肺癌中表达下调并抑制肿瘤的生长,表明LOXL4蛋白在不同类型的人类恶性肿瘤中具有促癌或抑癌的双向作用。肿瘤细胞外泌体中的LOXL4蛋白通过催化作用产生过氧化氢,后者直接激活FAK/Src信号通路,并促进细胞基质粘附和细胞迁移。外泌体介导的LOXL4还可以通过激活PI3K/Akt信号通路来促进肿瘤细胞的增殖和免疫逃逸。肿瘤细胞中的 LOXL4可以经外泌体转运至巨噬细胞,进一步通过STAT1和STAT3介导的信号通路激活细胞免疫抑制功能和激活程序性死亡配体 1(programmed death ligand 1, PD-L1)表达,触发巨噬细胞的免疫抑制功能,促进肿瘤细胞的免疫逃逸。此外,LOXL4蛋白还能通过激活p53蛋白和抑制Ras/ERK信号转导通路发挥抑癌功能。本文主要总结了LOXL4蛋白的结构、功能及其在人类恶性肿瘤发生发展的作用机制,进一步探讨LOXL4蛋白在恶性肿瘤研究中的应用前景,为恶性肿瘤的临床诊断、治疗和筛选预后标志物提供理论基础和参考依据。  相似文献   

2.
LOXL2(lysyl oxidase like 2)是赖氨酰氧化酶(LOX)家族的一个重要成员,不仅可促进细胞外基质中胶原蛋白和弹性蛋白的交联,而且在转录调控、细胞信号转导以及细胞粘附等生物学过程中也有重要作用。多篇研究表明,LOXL2在多种肿瘤中高表达,且与多种肿瘤细胞的增殖迁移等生物学行为密切相关。LOXL2的表达调控机制目前仍不清楚。为了进一步研究LOXL2的转录调控机制,本研究克隆鉴定了LOXL2的启动子。首先通过数据库对LOXL2基因结构及潜在启动子区域进行了分析,进而以人的基因组DNA为模板,通过PCR定向克隆策略,构建了5个长度不同并覆盖LOXL2基因转录起始位点附近约1.7 kb的LOXL2基因启动子荧光素酶报告基因重组体。启动子活性分析结果表明,与对照组相比,5个重组体均具有启动子活性(P<0.05),提示LOXL2基因核心启动子定位于转录起始位点附近约185 bp的区域内。转录因子结合位点分析结果表明,LOXL2基因启动子缺乏典型的TATA盒,但含有GC盒以及Sp1、NFkB等潜在的转录因子结合位点。外源转染Sp1表达质粒能显著增强LOXL2基因启动子的活性(P<0.05),提示Sp1能直接激活LOXL2的转录。  相似文献   

3.
Transforming growth factor β1 (TGF-β1) is a pleiotropic factor involved in the regulation of extracellular matrix (ECM) synthesis and remodeling. In search for novel genes mediating the action of TGF-β1 on vascular ECM, we identified the member of the lysyl oxidase family of matrix-remodeling enzymes, lysyl oxidase-like 4 (LOXL4), as a direct target of TGF-β1 in aortic endothelial cells, and we dissected the molecular mechanism of its induction. Deletion mapping and mutagenesis analysis of the LOXL4 promoter demonstrated the absolute requirement of a distal enhancer containing an activator protein 1 (AP-1) site and a Smad binding element for TGF-β1 to induce LOXL4 expression. Functional cooperation between Smad proteins and the AP-1 complex composed of JunB/Fra2 accounted for the action of TGF-β1, which involved the extracellular signal-regulated kinase (ERK)-dependent phosphorylation of Fra2. We furthermore provide evidence that LOXL4 was extracellularly secreted and significantly contributed to ECM deposition and assembly. These results suggest that TGF-β1-dependent expression of LOXL4 plays a role in vascular ECM homeostasis, contributing to vascular processes associated with ECM remodeling and fibrosis.  相似文献   

4.
Lysyl oxidases are major actors of microenvironment and extracellular matrix (ECM) remodeling. These cross-linking enzymes are thus involved in many aspects of physiopathology, including tumor progression, fibrosis and cardiovascular diseases. We have already shown that Lysyl Oxidase-Like 2 (LOXL2) regulates collagen IV deposition by endothelial cells and angiogenesis. We here provide evidence that LOXL2 also affects deposition of other ECM components, including fibronectin, thus altering structural and mechanical properties of the matrix generated by endothelial cells. LOXL2 interacts intracellularly and directly with collagen IV and fibronectin before incorporation into ECM fibrillar structures upon exocytosis, as demonstrated by TIRF time-lapse microscopy. Furthermore, surface plasmon resonance experiments using recombinant scavenger receptor cysteine-rich (SRCR) domains truncated for the catalytic domain demonstrated their direct binding to collagen IV. We thus used directed mutagenesis to investigate the role of LOXL2 catalytic domain. Neither enzyme activity nor catalytic domain were necessary for collagen IV deposition and angiogenesis, whereas the SRCR domains were effective for these processes. Finally, surface coating with recombinant SRCR domains restored deposition of collagen IV by LOXL2-depleted cells. We thus propose that LOXL2 SRCR domains orchestrate scaffolding of the vascular basement membrane and angiogenesis through interactions with collagen IV and fibronectin, independently of the enzymatic cross-linking activity.  相似文献   

5.
6.
Aberrant concentrations of cardiac extracellular matrix (ECM) fibrillar collagen cross-linking have been proposed to be an underlying cause of cardiac diastolic dysfunction however the role of the adaptive immune system in this process has yet to be investigated. Fibrillar collagen cross-linking is a product of the enzymatic activities of lysyl oxidase (LOX and LOXL-3) released by the cardiac fibroblast and possibly cardiac myocytes. Our hypothesis is that stimulation of the TH1 lymphocytes activates lysyl oxidase mediated ECM cross-linking and thereby alters left ventricular function. Three-month old C57BL/J female mice were treated with selective TH1 lymphocyte inducers — T-cell receptor Vβ peptides (TCR). After 6 weeks, candidate gene expression, tissue enzymatic activity, ECM composition, and left ventricular mechanics were quantified. Lymphocyte gene expression and cytokine assay revealed TH1 immune polarization with TCR administration which was associated with a 2.6-fold and 3.1-fold increase of LOX and LOXL3 gene expression, respectively, and a 55% increase in cardiac LOX enzymatic activity. The ECM cross-linked fibrillar collagen increased by 95% when compared with the control. Concurrently, there was a 33% increased ventricular stiffness, decreased cardiac output, and normal ejection fraction. These data implicate the TH1 lymphocyte in the pathogenesis of diastolic dysfunction which has potential clinical application in the pathogenesis of diastolic heart failure.  相似文献   

7.
《Cellular signalling》2014,26(9):1765-1773
Lysyl oxidase-like 2 (LOXL2) is a member of the lysyl oxidase gene family that contributes to the invasiveness and metastasis in tumor progression. However, the role of LOXL2 in cellular signaling is incompletely understood. In this study, we investigated a possible mechanism of LOXL2 function in tumor metastases in vitro, using a human breast carcinoma cell line. Myristoylated alanine-rich C kinase substrate-like 1 (MARCKSL1), a modulator in the regulation of cellular homeostasis, was identified as a LOXL2 interacting protein. We examined the binding domains that are required for the interaction between LOXL2 and MARCKSL1. The scavenger-receptor domain of LOXL2 was shown to interact with the N-terminal domain of MARCKSL1. Luciferase activity was noticeably reduced by the transfection of MARCKSL1 in a dose-dependent manner. In addition, over-expression of LOXL2 activates cell growth by inhibiting MARCKSL1-induced apoptosis. The effect of LOXL2 on cell cycle and apoptosis-related components was also confirmed through the silencing of LOXL2 expression. LOXL2 activates the FAK/Akt/mTOR signaling pathways, and MARCKSL1 suppresses LOXL2-induced oncogenesis. These insights supply evidence that LOXL2 promotes cell proliferation and inhibits apoptotic cell death. Taken together, our results indicate an underlying mechanism for an increase of LOXL2-related activity in breast tumor cells.  相似文献   

8.
Herein, we found that salidroside suppressed hypoxia-inducible factor 1 alpha (HIF-1α) and lysyl oxidase-like protein 2 (LOXL2) within human pancreatic cancer BxPC-3 cells cultured both under normoxia and hypoxia condition. To investigate the effect of salidroside on tumorigenesis of BxPC-3 cells and whether HIF-1α and LXCL2 were involved in this process, cells transfected with or without LOXL2 overexpression vector, were treated with 50 μg/mL of salidroside or 50 μM of KC7F2 (a HIF-1α inhibitor) under hypoxia. Cell viability and invasion were assessed using CCK-8 and Transwell chamber assay, respectively. Expression of E-cadherin and matrix metalloproteinase 2/9 (MMP 2/9) was determined, by Western blot analysis, to assess cell mobility at molecular levels. We confirmed that hypoxia increased LOXL2 and induced tumorigenesis of BxPC-3 cells, as evidenced by promoted cell proliferation and invasion, enhanced MMP2/9 while reduced E-cadherin. Interestingly, hypoxia-induced carcinogenesis was significantly retarded by both salidroside and KC7F2, however, enhanced with LOXL2 overexpression. Besides, salidroside and KC7F2 reduced LOXL2, and reversed the tumorigenesis of BxPC-3 cells induced by LOXL2 overexpression. Given the inhibitory effect of salidroside on HIF-1α expression, our data suggested that: (1) LOXL2 was the mechanism, whereby salidroside and KC7F2 showed inhibitory effect on cancer progression of BxPC-3 cells; (2) salidroside exerted its anticancer effect, most likely, by a HIF-1α/LOXL2 pathway. In conclusion, salidroside was a novel therapeutic drug in pancreatic cancer, and downregulation of HIF-1α and LXCL2 was the underlying mechanism.  相似文献   

9.
A balance between production and degradation of reactive oxygen species (ROS) is critical for maintaining cellular homeostasis. Increased levels of ROS during oxidative stress are associated with disease conditions. Antioxidant enzymes, such as extracellular superoxide dismutase (EC-SOD), in the extracellular matrix (ECM) neutralize the toxicity of superoxide. Recent studies have emphasized the importance of EC-SOD in protecting the brain, lungs, and other tissues from oxidative stress. Therefore, EC-SOD would be an excellent therapeutic drug for treatment of diseases caused by oxidative stress. We cloned both the full length (residues 1–240) and truncated (residues 19–240) forms of human EC-SOD (hEC-SOD) into the donor plasmid pFastBacHTb. After transposition, the bacmid was transfected into the Sf9-baculovirus expression system and the expressed hEC-SOD purified using FLAG-tag. Western blot analysis revealed that hEC-SOD is present both as a monomer (33 kDa) and a dimer (66 kDa), as detected by the FLAG antibody. A water-soluble tetrazolium (WST-1) assay showed that both full length and truncated hEC-SOD proteins were enzymatically active. We showed that a potent superoxide dismutase inhibitor, diethyldithiocarbamate (DDC), inhibits hEC-SOD activity.  相似文献   

10.
Lysyl oxidase like-2 (LOXL2) belongs to the lysyl oxidase (LOX) family, which comprises Cu2+- and lysine tyrosylquinone (LTQ)-dependent amine oxidases. LOXL2 is proposed to function similarly to LOX in the extracellular matrix (ECM) by promoting crosslinking of collagen and elastin. LOXL2 has also been proposed to regulate extracellular and intracellular cell signaling pathways. Dysregulation of LOXL2 has been linked to many diseases, including cancer, pro-oncogenic angiogenesis, fibrosis and heart diseases. In this review, we will give an overview of the current understandings and hypotheses regarding the molecular functions of LOXL2.  相似文献   

11.
Exosomes are important mediators of intercellular communication. Additionally, they contain a variety of components capable of interacting with the extracellular matrix (ECM), including integrins, matrix metalloproteinases and members of the immunoglobin superfamily. Despite these observations, research on exosome‐ECM interactions is limited. Here, we investigate whether the exosome‐associated lysyl oxidase family member lysyl oxidase‐like 2 (LOXL2) is involved in ECM remodelling. We found that LOXL2 is present on the exterior of endothelial cell (EC)‐derived exosomes, placing it in direct vicinity of the ECM. It is up‐regulated twofold in EC‐derived exosomes cultured under hypoxic conditions. Intact exosomes from hypoxic EC and LOXL2 overexpressing EC show increased activity in a fluorometric lysyl oxidase enzymatic activity assay as well as in a collagen gel contraction assay. Concordantly, knockdown of LOXL2 in exosome‐producing EC in both normal and hypoxic conditions reduces activity of exosomes in both assays. Our findings show for the first time that ECM crosslinking by EC‐derived exosomes is mediated by LOXL2 under the regulation of hypoxia, and implicate a role for exosomes in hypoxia‐regulated focal ECM remodelling, a key process in both fibrosis and wound healing.  相似文献   

12.
Lysyl oxidase-like 2 (LOXL2) is involved in a wide range of physiological and pathological processes, including fibrosis and tumor progression, implicating intracellular and extracellular functions. To explore the specific in vivo role of LOXL2 in physiological and tumor contexts, we generated conditional gain- and loss-of-function mouse models. Germ-line deletion of Loxl2 promotes lethality in half of newborn mice mainly associated to congenital heart defects, while Loxl2 overexpression triggers male sterility due to epididymal dysfunction caused by epithelial disorganization, fibrosis and acute inflammation. Remarkably, when challenged to chemical skin carcinogenesis, Loxl2-overexpressing mice increased tumor burden and malignant progression, while Loxl2-deficient mice exhibit the opposite phenotypes. Loxl2 levels in premalignant tumors negatively correlate with expression of epidermal differentiation markers and components of the Notch1 pathway. We show that LOXL2 is a direct repressor of NOTCH1. Additionally, we identify an exclusive expression pattern between LOXL2 and members of the canonical NOTCH1 pathway in human HNSCC. Our data identify for the first time novel LOXL2 roles in tissue homeostasis and support it as a target for SCC therapy.  相似文献   

13.
The lysyl oxidase-like 2 (LOXL2) protein is a human paralogue of lysyl oxidase (LOX) that functions as an amine oxidase for formation of lysine-derived cross-links found in collagen and elastin. In addition to the C-terminal domains characteristic to the LOX family members, LOXL2 contains four scavenger receptor cysteine-rich (SRCR) domains in the N-terminus. In order to assess the amine oxidase activity of LOXL2, we expressed a series of recombinant LOXL2 proteins with deletions in the SRCR domains, using an Escherichia coli expression system. All of the purified recombinant LOXL2 proteins, with or without the SRCR domains in the N-terminus, showed significant amine oxidase activity toward several different types of collagen and elastin in in vitro amine oxidase assays, indicating deletion of the SRCR domains does not interfere with amine oxidase activity of LOXL2. Further, amine oxidase activity of LOXL2 was not susceptible to inhibition by β-aminopropionitrile, an irreversible inhibitor of LOX, suggesting a different enzymatic mechanism between these two paralogues.  相似文献   

14.
An intestine-on-chip has been developed to study intestinal physiology and pathophysiology as well as intestinal transport absorption and toxicity studies in a controlled and human similar environment. Here, we report that dynamic culture of an intestine-on-chip enhances extracellular matrix (ECM) remodeling of the stroma, basement membrane production and speeds up epithelial differentiation. We developed a three-dimensional human intestinal stromal equivalent composed of human intestinal subepithelial myofibroblasts embedded in their own ECM. Then, we cultured human colon carcinoma-derived cells in both static and dynamic conditions in the opportunely designed microfluidic system until the formation of a well-oriented epithelium. This low cost and handy microfluidic device allows to qualitatively and quantitatively detect epithelial polarization and mucus production as well as monitor barrier function and ECM remodeling after nutraceutical treatment.  相似文献   

15.
Covalent intermolecular cross-linking of collagen is initiated by the action of lysyl oxidase (LOX) on the telopeptidyl lysine and hydroxylysine residues. Recently, several LOX isoforms, i.e., LOX-like proteins 1-4 (LOXL1-4), have been identified but their specific tissue distribution and functions are still largely unknown. In this study, mRNA expression of LOX and LOXL1-4 in MC3T3-E1 osteoblastic cells was screened by RT-PCR and quantitatively analyzed by real-time PCR during cell differentiation and matrix mineralization. The results demonstrated that LOX and all LOXLs, except LOXL2, were expressed in this cell line and that the expression pattern during cell differentiation and matrix mineralization was distinct from one another. This indicates that the expression of LOX and its isoforms is highly regulated during osteoblast differentiation, suggesting their distinct roles in collagen matrix stabilization and subsequent mineralization.  相似文献   

16.
NO (nitric oxide) molecule is produced by various mammalian cell types and plays a significant role in inflammation, infection and wound healing processes. Recently, gNO (gaseous nitric oxide) therapy has been utilized for its potential clinical application as an antimicrobial agent, with special focus on skin infection. In a previous study, we demonstrated that 200 ppm gNO, 8 h/day for three consecutive days significantly reduced the number of bacteria in dermal wounds without compromising the viability and function of skin cells. To increase the feasibility and ease of its clinical use, we propose that different doses of gNO (5 to 10 K ppm) for 8 h and as short as 10 min be used, respectively. To achieve this, we set up in vitro experiments and asked whether (i) different doses of gNO have any toxic effect on immune cells and (ii) gNO has any modulating effect on key ECM (extracellular matrix) components in fibroblasts. To further investigate the effect of gNO, expression of more than 100 key ECM genes have been examined using gene array in human fibroblasts. As immune cells play an important role in wound healing, the effect of gNO on proliferation and viability of human and mouse lymphocytes was also examined. The findings showed that, the 5, 25, 75 and 200 ppm of gNO for 8 h slightly increased the expression of Col 5A3 (collagen type V alpha 3), and gNO at 5 ppm decreased the expression of MMP-1 (matrix metalloproteinase 1), while exposure of fibroblast to 10 K ppm of gNO for 10 min does not show any significant changes in ECM genes. Exposure to gNO resulted in inhibition of lymphocyte proliferation without affecting the cell viability. Taken together, our findings show that skin could be treated with gNO without compromising the role of ECM and immune cells in low concentrations with long time exposure or high concentrations for a shorter exposure time.  相似文献   

17.
The active form of vitamin D, 1,25(OH)2D3, has a broad range of effects on bone, however, its role in the quality of bone matrix is not well understood. In this study, using an osteoblastic cell (MC3T3-E1) culture system, the effects of 1,25(OH)2D3 on collagen cross-linking and related enzymes, i.e., lysyl hydroxylases (LH1-3) and lysyl oxidases (LOX, LOXL1-4), were examined and compared to controls where cells were treated with cholecalciferol or ethanol. When compared to the controls, gene expressions of LH1, LH2b and LOXL2 were significantly upregulated by 1,25(OH)2D3 up to 72 h of culture. In addition, hydroxylysine (Hyl), Hyl aldehyde (Hylald), Hylald-derived cross-links and a total number of cross-links of collagen were significantly higher and the cross-link maturation was accelerated in the 1,25(OH)2D3 treated group. These results demonstrate that 1,25(OH)2D3 directly regulates collagen cross-linking in this culture system likely by upregulating gene expression of specific LH and LOX enzymes.  相似文献   

18.
The human lysyl oxidase-like 3 (LOXL3) encodes a member of the emerging family of lysyl oxidase (LOX) that functions as a copper-dependent amine oxidase. The LOXL3 protein contains four scavenger receptor cysteine-rich domains in the N terminus in addition to the C-terminal characteristic domains of the LOX family, such as a copper binding domain, a cytokine receptor-like domain and residues for the lysyl-tyrosyl quinone cofactor. Using BLASTN searches, we identified a LOXL3 variant LOXL3-sv1 that lacked the sequences corresponding to exons 1, 2, 3, and 5 of LOXL3. LOXL3-sv1 showed an exon-intron structure distinct from LOXL3, additionally containing an 80-bp sequence corresponding to intron 3 of LOXL3 in the 5'-UTR and a 561-bp sequence corresponding to the 3'-flanking genomic region of exon 14 in the 3'-UTR. LOXL3-sv1 was predicted to encode a polypeptide of 392 amino acids that contains the C-terminal domains required for amine oxidase activity but lacks the N-terminal SRCR domains 1, 2, and 3. The recombinant LOXL3-sv1 protein showed a beta-aminopropionitrile-inhibitable amine oxidase activity toward elastin and collagen with substrate specificity. In RT-PCR assays with various human tissues, LOXL3-sv1 and LOXL3 showed distinct expression patterns. Further, luciferase reporter assays revealed a strong promoter element in intron 3 that probably functions as a regulatory region for the expression of LOXL3-sv1. These findings strongly indicate that LOXL3 encodes two variants, LOXL3 and LOXL3-sv1, both of which function as amine oxidases with distinct tissue and substrate specificities from one another.  相似文献   

19.
Alteration in the density and composition of extracellular matrix (ECM) occurs in tumors. The alterations toward both stiffness and degradation are contributed to tumor growth and progression. Cancer-associated fibroblasts (CAFs) are the main contributors to ECM stiffness and degradation. The cells interact with almost all cells within the tumor microenvironment (TME) that could enable them to modulate ECM components for tumorigenic purposes. Cross-talks between CAFs with cancer cells and macrophage type 2 (M2) cells are pivotal for ECM stiffness and degradation. CAFs induce hypoxia within the TME, which is one of the key inducers of both stiffness and degradation. Cancer cell modulatory roles in integrin receptors are key for adjusting ECM constituents to either fates. Cancer cell proliferation, migration, and invasion as well as angiogenesis are consequences of ECM stiffness and degradation. ECM stiffness in a transforming growth factor-β (TGF-β) related pathway could make a bridge in the basement membrane, and ECM degradation in a matrix metalloproteinase (MMP)-related pathway could make a path in the TME, both of which contribute to cancer cell invasion. ECM stiffness is also obstructive for drug penetration to the tumor site. Therefore, it would be a promising strategy to make a homeostasis in ECM for easy penetration of chemotherapeutic drugs and increasing the efficacy of antitumor approaches. MMP and TGF-β inhibitors, CAF and M2 reprogramming toward their normal counterparts, reduction of TME hypoxia and hampering integrin signaling are among the promising approaches for the modulation of ECM in favor of tumor regression.  相似文献   

20.
Invadopodia are subcellular organelles thought to be critical for extracellular matrix (ECM) degradation and the movement of cells through tissues. Here we examine invadopodia generation, turnover, and function in relation to two structural aspects of the ECM substrates they degrade: cross-linking and fiber density. We set up a cellular automaton computational model that simulates ECM penetration and degradation by invadopodia. Experiments with denatured collagen (gelatin) were used to calibrate the model and demonstrate the inhibitory effect of ECM cross-linking on invadopodia degradation and penetration. Incorporation of dynamic invadopodia behavior into the model amplified the effect of cross-linking on ECM degradation, and was used to model feedback from the ECM. When the model was parameterized with spatial fibrillar dimensions that closely matched the organization, in real life, of native ECM collagen into triple-helical monomers, microfibrils, and macrofibrils, little or no inhibition of invadopodia penetration was observed in simulations of sparse collagen gels, no matter how high the degree of cross-linking. Experimental validation, using live-cell imaging of invadopodia in cells plated on cross-linked gelatin, was consistent with simulations in which ECM cross-linking led to higher rates of both invadopodia retraction and formation. Analyses of invadopodia function from cells plated on cross-linked gelatin and collagen gels under standard concentrations were consistent with simulation results in which sparse collagen gels provided a weak barrier to invadopodia. These results suggest that the organization of collagen, as it may occur in stroma or in vitro collagen gels, forms gaps large enough so as to have little impact on invadopodia penetration/degradation. By contrast, dense ECM, such as gelatin or possibly basement membranes, is an effective obstacle to invadopodia penetration and degradation, particularly when cross-linked. These results provide a novel framework for further studies on ECM structure and modifications that affect invadopodia and tissue invasion by cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号