首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective : Exposure to coal dust causes the development of coal worker's pneumoconiosis (CWP), which is associated with accumulating macrophages in the lower respiratory tract. This study was performed to investigate the effect of tumor necrosis factor-α (TNF-α)–tumor necrosis factor receptor (TNFR) signal pathway on autophagy and apoptosis of alveolar macrophages (AMs) in CWP. Methods: AMs from controls exposed to coal dust and CWP patients were collected, in which expressions of TNF-α and TNFR1 were determined. Autophagy was observed by transmission electron microscopy, and apoptosis by light microscope and using terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. AMs in CWP patients were treated with TNF-α or anti-TNF-α antibody. Besides, expressions of autophagy marker proteins, apoptosis-related factors, FAS, caspase-8, and receptor-interacting serine–threonine-protein kinase 3 (RIPK3) were determined by western Blot. Activities of caspase-3 and caspase-8 were determined by a fluorescence kit. Flow cytometry was applied to measure the expression of TNFR1 on the surface of the AM. Results: TNF-α expression and TNFR1 expression on the surface of AM, as well as autophagy and apoptotic index were significantly increased in AMs of CWP patients. In response to the treatment of TNF-α, TNF-α expression and TNFR1 expression on the surface of AM as well as LC3I expression were increased, autophagy was decreased, and LC3, LC3II, Beclin1 and B-cell lymphoma 2 expressions decreased, whereas FAS expression and activity and expression of caspase-3 and caspase-8 increased, and apoptotic index increased. Moreover, the situations were reversed with the treatment of anti-TNF-α antibody. Conclusion: TNF-α–TNFR signal pathway was involved in the occurrence and development of CWP by activating FAS–caspase-8 and thus inhibiting autophagy while promoting apoptosis of AM.  相似文献   

2.
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg) are involved in several autoimmune diseases, including rheumatoid arthritis. TNF-α blockers induce therapeutic benefits in rheumatoid arthritis via a variety of mechanisms. We aimed to characterize the impact on Treg of TNF-α overexpression in vivo and of TNF-α inhibiting treatments. We used human TNF-α transgenic mice as a model of strictly TNF-α-dependent arthritis. Our study showed that initial Treg frequency was lower in TNF-α transgenic mice than in wild-type mice. However, the course of arthritis was marked by elevation of Treg frequency and a dramatic increase in expression of TNFR2. Antagonizing TNF-α with either the anti-human TNF-α Ab (infliximab) or active immunotherapy (TNF-kinoid) increased the Treg frequency and upregulated CTLA-4, leading to enhancement of suppressor activity. Moreover, both anti-TNF-α strategies promoted the differentiation of a CD62L(-) Treg population. In conclusion, in an in vivo model of TNF-α-driven arthritis, Treg frequency increased with inflammation but failed to control the inflammatory process. Both passive and active TNF-α-inhibiting strategies restored the suppressor activity of Treg and induced the differentiation of a CD62L(-) Treg population.  相似文献   

3.
TNF-α has a multifunctional role in autoimmune diseases as reflected in the variable responses of different human diseases to anti-TNF-α therapy. Recent studies have suggested that TNF-α modulates autoimmunity partially via effects on regulatory T cells (Tregs) and that these effects are mediated through the type II TNFR (TNFR2). We have investigated the requirement for TNFR2-expression on murine natural Tregs (nTregs) and induced Tregs (iTregs) in mediating suppression of colitis. Surprisingly, we find that TNFR2-expression is required for both spleen- and thymus-derived nTreg-mediated suppression, but is not required for iTreg-mediated suppression. Abnormal TNFR2(-/-) nTreg function was not associated with an in vivo decrease in accumulation, stability, or expression of markers known to be relevant in Treg function. Because iTregs are generated in the presence of TGF-β, we investigated whether activation in the presence of TGF-β could overcome the functional defect in TNFR2(-/-) nTregs. Although preactivation alone did not restore suppressive function of nTregs, preactivation in the presence of TGF-β did. These results identify potentially critical differences in activation requirements for nTregs versus iTregs. Furthermore, our findings are consistent with reports suggesting that nTregs are activated in sites of inflammation while iTregs are activated in lymph nodes. Finally, by demonstrating that nTregs require TNF-α for optimal function whereas iTregs do not, our results suggest that the enigma of variable responses of different human diseases to anti-TNF-α therapy may relate to whether nTregs or iTregs have the predominant regulatory role in a given disease.  相似文献   

4.
Tumor necrosis factor-α (TNF-α) signaling through TNF receptor 2 (TNFR2) plays a complex immune regulatory role in allogeneic hematopoietic cell transplantation (HCT). TNF-α is rapidly released in the circulation after the conditioning regimen with chemotherapy and/or radiotherapy. It activates the function of donor alloreactive T cells and donor Natural Killer cells and promotes graft versus tumor effects. However, donor alloreactive T cells also attack host tissues and cause graft versus host disease (GVHD), a life-threatening complication of HCT. Indeed, anti-TNF-α therapy has been used to treat steroid-refractory GVHD. Recent studies have highlighted another role for TNFR2 signaling, as it enhances the function of immune cells with suppressive properties, in particular CD4+Foxp3+ regulatory T cells (Tregs). Various clinical trials are employing Treg-based treatments to prevent or treat GVHD. The present review will discuss the effects of TNFR2 signaling in the setting of allogeneic HCT, the implications for the use of anti-TNF-α therapy to treat GVHD and the clinical perspectives of strategies that specifically target this pathway.  相似文献   

5.
《Phytomedicine》2015,22(12):1125-1132
BackgroundSanguis draxonis (SD) is a kind of red resin obtained from the wood of Dracaena cochinchinensis (Lour.) S. C. Chen (D. cochinchinensis). The active components of total flavonoids from SD (SDF) have analgesic effect.AimThe aim of this study is to evaluate the analgesic effects and potential mechanism of SDF on mechanical hypersensitivity induced by spared nerve injury (SNI) model of neuropathic pain in the rat.MethodsSNI model in rats was established and then the rats were treated with SDF intragastric administration for 14 days. Paw withdrawal mechanical threshold (PMWT) in response to mechanical stimulation was measured by von Frey filaments on day 1 before operation and days 1, 3, 5, 7, 9, 11, 14 after operation, respectively. After 14 days, we measured the levels of nitric oxide (NO), nitric oxide synthase (NOS), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-10 (IL-10) in the spinal dorsal horn. In addition, the expression of fibroblast growth factor receptor 3 (FGFR3), phosphorylated cyclic AMP response element-binding protein (p-CREB) and glial fibrillary acidic protein (GFAP) of the spinal dorsal horn was evaluated by western blotting and an immunofluorescence histochemical method, respectively.ResultsIntragastric administration of SDF (100, 200, 400 mg/kg) alleviated significantly SNI-induced mechanical hypersensitivity, as PMWT increased in a dose-dependent manner. Moreover, SDF not only reduced the level of NO, NOS, TNF-α and IL-1β, but also upregulated the level of IL-10 in the spinal dorsal horn of SNI rats. At the same time, SDF (100, 200, 400 mg/kg) could inhibit the expression of FGFR3, GFAP and p-CREB in the spinal dorsal horn.ConclusionSDF has potentially reduced mechanical hypersensitivity induced by SNI model of neuropathic pain which may be attributed to inhibition of astrocytic function (like release pro-inflammatory cytokines) and NO release as well as p-CREB activation in the spinal dorsal horn.  相似文献   

6.
Our previous studies have shown that pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) in red nucleus (RN) are involved in the development of neuropathic pain and play facilitated roles on the mechanical allodynia induced by peripheral nerve injury. The current study was designed to evaluate the expression and effect of IL-10, an anti-inflammatory cytokine, in the RN of rats with spared nerve injury (SNI). Immunohistochemical staining results demonstrated when 3 weeks after SNI, the expression level of IL-10 in the contralateral RN of SNI rats was apparently higher than those of sham-operated and normal rats. To further study the effect of IL-10 in the development of neuropathic pain, different doses of IL-10 (1.0, 0.5 and 0.1 μg/μl) were microinjected respectively into the RN contralateral to the nerve injury side of SNI rats. Results demonstrated that higher doses of IL-10 (1.0 and 0.5 μg/μl) significantly attenuated the mechanical allodynia of neuropathic rats, while 0.1 μg/μl of IL-10 did not show any analgesic effect. These results suggest that IL-10 of RN participates in the development of neuropathic pain and plays inhibitory roles on the mechanical allodynia induced by SNI.  相似文献   

7.
Mitochondria play an important role in pathophysiology of inflammatory and neuropathic pain but the mechanism is unclear. So far no comprehensive study exists that evaluates the changes of mitochondrial dynamics following the pain. In this study, we detected the mitochondrial distribution and subcellular morphology by using intrathecal injection of mitochondrial marker, Mitotracker Red® CM-H2XRox (Mito-Red) and confocal microscopic analysis in models of formalin-induced acute inflammatory pain, Complete Freund's Adjuvant (CFA)-induced persistent pain and spared nerve injury (SNI)-induced neuropathic pain. The results demonstrated that subcutaneous formalin injection did not affect the number of Mito-Red cells within the spinal dorsal horn at both acute and tonic phases, but significantly increased the number of cluster type mitochondria in superficial spinal dorsal horn (laminas I–II) at tonic phase. Differently, the number of Mito-Red cells significantly increased in superficial and deep spinal dorsal horn (laminas III–V) following persistent CFA and SNI neuropathic pain. Moreover, both CFA and SNI remarkably increased the number of cluster type mitochondria and decreased the number of granule type mitochondria, in both superficial and deep spinal dorsal horn. So we concluded that abnormal mitochondrial distribution contributes to neuropathic and some forms of inflammatory pain.  相似文献   

8.
探讨骨质疏松发病过程中T淋巴细胞对骨髓间充质干细胞(bonemarrow-derived mesenchymalstem cells,BMMSC)增殖分化的影响。选用健康雌性小鼠行双侧卵巢切除术(ovariectomy,OVX),建立绝经后骨质疏松模型。选用同一批次健康小鼠行双侧卵巢脂肪组织部分切除,建立假手术组(sham),Micro-CT确立模型成功建立。将sham组、OVX组、sham+anti—TNFα组、OVX+anti—TNFα组中T淋巴细胞与BMMSC共培养.ELISA检测sham组与OVX组T'N-巴细胞上清液中TNF-α表达的差异,MTT法检测四组共培养体系中BMMSC生长曲线:成骨诱导后碱性磷酸酶和钙化结节茜素红染色法检测BMMsc成骨能力差异:ImPcR检测小鼠BMMSC成骨相关基因Runx2、碱性磷酸酶(alkaline phosphatase,ALP)的表达。结果显示,与sham组相比,OVX组中BMMsc的增殖受到了抑制,成骨分化减弱(P〈O.05),OVXanti—TNF-α刺激组较OVX组增殖显著升高沪〈0.05),成骨分化能力显著增强(P〈0.05)。以上结果证明,在雌激素缺乏下的T淋巴细胞能影响BMMSC增殖及成骨分化能力,这可能与T淋巴细胞表达TNF-α增强相关。  相似文献   

9.
The relevance of estrogen functions in lipid metabolism has been suggested in patients with estrogen-signaling deficiencies. Their importance was further implied by studies in estrogen-deficient mice (ArKO mice), which progressively developed hepatic steatosis. As circulating tumor necrosis factor (TNF)-α levels are known to positively correlate with disturbances in lipid metabolism, we investigated the impact of the loss of TNF-α signaling on carbohydrate and lipid metabolism in ArKO mice. Histological examinations of the livers of mice at 5 months of age revealed that ArKO male mice lacking the TNF-α receptor type 1 (TNFR1) gene (ArKO/TNFR1KO) or both the TNFR 1 and 2 genes (ArKO/TNFR1&2KO) developed more severe hepatic steatosis than ArKO or ArKO/TNFR2KO mice. Serum analyses demonstrated a clear increase in cholesterol and insulin levels in the ArKO/TNFR1KO mice compared with the ArKO mice. Glucose- and insulin-tolerance tests further revealed exacerbation of the systemic insulin resistant phenotype in the ArKO/TNFR1KO mice. Hepatic expression of lipogenic genes including fatty-acid synthase and stearoyl-Coenzyme A desaturase 1 were more markedly upregulated in the ArKO/TNFR1KO mice than the ArKO mice. These findings indicate that under estrogen-deficient physiological conditions, hepatic lipid metabolism would benefit from TNF-α mediated signaling via TNFR1.  相似文献   

10.
PK Chao  KT Lu  YL Lee  JC Chen  HL Wang  YL Yang  MY Cheng  MF Liao  LS Ro 《PloS one》2012,7(8):e43680
Recent studies have shown that opioid treatment can reduce pro-inflammatory cytokine production and counteract various neuropathic pain syndromes. Granulocyte colony-stimulating factor (G-CSF) can promote immune cell differentiation by increasing leukocytes (mainly opioid-containing polymorphonuclear (PMN) cells), suggesting a potential beneficial role in treating chronic pain. This study shows the effectiveness of exogenous G-CSF treatment (200 μg/kg) for alleviating thermal hyperalgesia and mechanical allodynia in rats with chronic constriction injury (CCI), during post-operative days 1-25, compared to that of vehicle treatment. G-CSF also increases the recruitment of opioid-containing PMN cells into the injured nerve. After CCI, single administration of G-CSF on days 0, 1, and 2, but not on day 3, relieved thermal hyperalgesia, which indicated that its effect on neuropathic pain had a therapeutic window of 0-48 h after nerve injury. CCI led to an increase in the levels of interleukin-6 (IL-6) mRNA and tumor necrosis factor-α (TNF-α) protein in the dorsal root ganglia (DRG). These high levels of IL-6 mRNA and TNF-α were suppressed by a single administration of G-CSF 48-144 h and 72-144 h after CCI, respectively. Furthermore, G-CSF administered 72-144 h after CCI suppressed the CCI-induced upregulation of microglial activation in the ipsilateral spinal dorsal horn, which is essential for sensing neuropathic pain. Moreover, the opioid receptor antagonist naloxone methiodide (NLXM) reversed G-CSF-induced antinociception 3 days after CCI, suggesting that G-CSF alleviates hyperalgesia via opioid/opioid receptor interactions. These results suggest that an early single systemic injection of G-CSF alleviates neuropathic pain via activation of PMN cell-derived endogenous opioid secretion to activate opioid receptors in the injured nerve, downregulate IL-6 and TNF-α inflammatory cytokines, and attenuate microglial activation in the spinal dorsal horn. This indicates that G-CSF treatment can suppress early inflammation and prevent the subsequent development of neuropathic pain.  相似文献   

11.
Tumor necrosis factor-α (TNF-α) is a cytokine that induces apoptosis in various cell systems by binding to the TNF receptor (TNFR). To study TNF-α-induced apoptosis, we isolated and characterized a novel TNF-α-resistant variant, U937/TNF clone UA, from human monocytic leukemia U937 cells. The UA cells resist apoptosis induced by TNF-α and anti-Fas antibody but not by anticancer drugs, such as VP-16 and Ara-C. Somatic cell hybridization between U937 and UA showed that apoptosis resistance to TNF-α in UA was genetically recessive. The hybridization analysis also showed that UA and another recessive mutant clone, UC, belong to different complementation groups in TNF-α-induced apoptosis signaling. In UA cells, TNF-α-induced disruption of mitochondrial membrane potential and CPP32 activation were abrogated. Expression of TNFR, Fas, and Bcl-2 family proteins was not changed in UA cells. These results suggest that the apoptosis resistant UA cells could have a functional defect in apoptosis signaling from the TNFR to mitochondria and interleukin-1β converting enzyme (ICE) family protease activation. UA cells could be used to study signaling linkage between cell death-inducing receptor and mitochondria. J. Cell. Physiol. 174:179–185, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
BackgroundCurrent therapies for neuropathic pain are generally symptomatic and possess several side effects, limiting their prolonged usage.Hypothesis/PurposeThus, it is urgent to develop novel and safe candidates for the management of this chronical condition. For this purpose, we investigated the analgesic effect of a standardized extract from Zingiber officinale Roscoe rhizomes (ZOE) obtained by CO2 supercritical extraction, in a mice model of peripheral neuropathy. We also explored the mechanism of action of ZOE and its main constituents using an in vitro model of neuroinflammation.MethodsPeripheral mono-neuropathy was induced in mice, by spared nerve injury (SNI). The analgesic effect of ZOE after oral administration was assessed by measuring mechanical and thermal allodynia in SNI mice. The mechanism of action of ZOE and its main constituents were investigated using spinal cords samples and in an in vitro model of neuroinflammation by ELISA, western blotting and immunofluorescence techniques.ResultsOral administration of ZOE 200 mg kg−1 ameliorated mechanical and thermal allodynia in SNI mice, with a rapid and a long-lasting effect. ZOE did not alter locomotor activity. In BV2 cells and spinal cord samples, ZOE, 6-gingerol and 6-shogaol reduced pERK levels, whereas ZOE and terpene fraction reduced HDAC1 protein levels, inhibited NF-κB signalling activation and decreased IL-1β, TNF-α and IL-6 release. ZOE and each tested constituent had a positive effect on inflammation-impaired SH-SY5Y cell viability.ConclusionsThe oral administration of ZOE attenuated SNI-induced neuropathic pain symptoms by reducing spinal neuroinflammation, suggesting ZOE as a novel and interesting candidate for the management of neuropathic pain.  相似文献   

13.
Cocaine binds with the dopamine transporter (DAT), an effect that has been extensively implicated in its reinforcing effects. However, persisting adaptations in DAT regulation after cocaine self-administration have not been extensively investigated. Here, we determined the changes in molecular mechanisms of DAT regulation in the caudate-putamen (CPu) and nucleus accumbens (NAcc) of rats with a history of cocaine self-administration, followed by 3 weeks of withdrawal under extinction conditions (i.e., no cocaine available). DA uptake was significantly higher in the CPu of cocaine-experienced animals as compared to saline-yoked controls. DAT Vmax was elevated in the CPu without changes in apparent affinity for DA. In spite of elevated CPu DAT activity, total and surface DAT density and DAT-PP2Ac (protein phosphatase 2A catalytic subunit) interaction remained unaltered, although p-Ser- DAT phosphorylation was elevated. In contrast to the CPu, there were no differences between cocaine and saline rats in the levels of DA uptake, DAT Vmax and Km values, total and surface DAT, p-Ser-DAT phosphorylation, or DAT-PP2Ac interactions in the NAcc. These results show that chronic cocaine self-administration leads to lasting, regionally specific alterations in striatal DA uptake and DAT-Ser phosphorylation. Such changes may be related to habitual patterns of cocaine-seeking observed during relapse.  相似文献   

14.
Lipocalin 2 (LCN2), which is also known as 24p3 and neutrophil gelatinase-associated lipocalin (NGAL), binds small, hydrophobic ligands and interacts with cell surface receptor 24p3R to regulate diverse cellular processes. In the present study, we examined the role of LCN2 in the pathogenesis of neuropathic pain using a mouse model of spared nerve injury (SNI). Lcn2 mRNA levels were significantly increased in the dorsal horn of the spinal cord after SNI, and LCN2 protein was mainly localized in neurons of the dorsal and ventral horns. LCN2 receptor 24p3R was expressed in spinal neurons and microglia after SNI. Lcn2-deficient mice exhibited significantly less mechanical pain hypersensitivity during the early phase after SNI, and an intrathecal injection of recombinant LCN2 protein elicited mechanical pain hypersensitivity in naive animals. Lcn2 deficiency, however, did not affect acute nociceptive pain. Lcn2-deficient mice showed significantly less microglial activation and proalgesic chemokine (CCL2 and CXCL1) production in the spinal cord after SNI than wild-type mice, and recombinant LCN2 protein induced the expression of these chemokines in cultured neurons. Furthermore, the expression of LCN2 and its receptor was detected in neutrophils and macrophages in the sciatic nerve following SNI, suggesting the potential role of peripheral LCN2 in neuropathic pain. Taken together, our results indicate that LCN2 plays a critical role in the development of pain hypersensitivity following peripheral nerve injury and suggest that LCN2 mediates neuropathic pain by inducing chemokine expression and subsequent microglial activation.  相似文献   

15.
16.
Peripheral nerve injury induces proliferation of microglia in the spinal cord, which can contribute to neuropathic pain conditions. However, candidate molecules for proliferation of spinal microglia after injury in rats remain unclear. We focused on the colony-stimulating factors (CSFs) and interleukin-34 (IL-34) that are involved in the proliferation of the mononuclear phagocyte lineage. We examined the expression of mRNAs for macrophage-CSF (M-CSF), granulocyte macrophage-CSF (GM-CSF), granulocyte-CSF (G-CSF) and IL-34 in the dorsal root ganglion (DRG) and spinal cord after spared nerve injury (SNI) in rats. RT-PCR and in situ hybridization revealed that M-CSF and IL-34, but not GM- or G-CSF, mRNAs were constitutively expressed in the DRG, and M-CSF robustly increased in injured-DRG neurons. M-CSF receptor mRNA was expressed in naive rats and increased in spinal microglia following SNI. Intrathecal injection of M-CSF receptor inhibitor partially but significantly reversed the proliferation of spinal microglia and in early phase of neuropathic pain induced by SNI. Furthermore, intrathecal injection of recombinant M-CSF induced microglial proliferation and mechanical allodynia. Here, we demonstrate that M-CSF is a candidate molecule derived from primary afferents that induces proliferation of microglia in the spinal cord and leads to induction of neuropathic pain after peripheral nerve injury in rats.  相似文献   

17.
Nerve injury and inflammation can both induce neuropathic pain via the production of pro-inflammatory cytokines. In the process, G protein-coupled receptors (GPCRs) were involved in pain signal transduction. GPCR kinase (GRK) 6 is a member of the GRK family that regulates agonist-induced desensitization and signaling of GPCRs. However, its expression and function in neuropathic pain have not been reported. In this study, we performed a chronic constriction injury (CCI) model in adult male rats and investigated the dynamic change of GRK6 expression in spinal cord. GRK6 was predominantly expressed in the superficial layers of the lumbar spinal cord dorsal horn neurons and its expression was decreased bilaterally following induction of CCI. The changes of GRK6 were mainly in IB4 and P substrate positive areas in spinal cord dorsal horn. And over-expression of GRK6 in spinal cord by lentivirus intrathecal injection attenuated the pain response induced by CCI. In addition, the level of TNF-α underwent the negative pattern of GRK6 in spinal cord. And neutralized TNF-α by antibody intrathecal injection up-regulated GRK6 expression and attenuated the mechanical allodynia and heat hyperalgesia in CCI model. All the data indicated that down-regulation of neuronal GRK6 expression induced by cytokine may be a potential mechanism that contributes to increasing neuronal signaling in neuropathic pain.  相似文献   

18.
目的:探讨大鼠慢性神经痛导致抑郁症状发生后,中脑腹侧被盖区多巴胺能神经元自发放电活动的改变情况。方法:24只健康成年大鼠进行随机分组(n=12):假手术组(Sham)大鼠仅进行坐骨神经分支暴露,坐骨神经损伤组(SNI)进行坐骨神经分支选择性损伤。在神经损伤后的第3、7、14、28、42、56天进行机械刺激计算缩足反射阈值,并进行糖水偏好、强迫游泳、旷场实验等行为学实验来评价大鼠是否发生抑郁症状;利用在体多通道电生理技术,对SNI组大鼠和假手术组大鼠中脑腹侧被盖区神经元分别进行记录分析。结果:与假手术组比较,SNI组大鼠的机械痛阈值明显降低(P<0.01);在旷场实验、糖水偏好、强迫游泳较对照组出现显著性差异(P<0.01);大鼠中脑腹侧被盖区多巴胺能神经元自发放电频率、簇状放电活动中动作电位的数量明显增加(P<0.01)。结论:慢性疼痛可以导致大鼠抑郁相关症状的发生,中脑腹侧被盖区多巴胺能神经元自发放电频率增加与疼痛后抑郁发生相关。  相似文献   

19.
We investigated the influence of prenatal amphetamine exposure (PAE) on dopamine (DA) receptors, and dopamine transporter (DAT) in various striatal and limbic subregions and locomotor activity induced by novel environmental conditions and amphetamine at two postnatal ages, 35 days old (prepubertal) and 60 days old (postpubertal). Experiments were carried out on pregnant female Sprague–Dawley rats, which were daily injected with either d-amphetamine sulfate (1 mg/kg) or saline solution (0.9%) for 11 days, from gestation day 11–21. In PAE rats compared to control we found the following: at pre-pubertal age, an enhancement of DA D1 in the dorsolateral area of the caudate-putamen (CPu), CPu-ventral and shell of the nucleus accumbens (NAcc) with a decrement of the DA D3 receptors in NAcc, olfactory tubercle (OT), and the islands of Calleja (IoC); whereas at postpubertal age, an increase in the levels of DAT in the NAcc and fundus of the CPu, and OT along with a decrease in the expression of DA D2 receptors only in the NAcc shell were found in PAE rats compared to control. In addition, amphetamine induces a marked decrease in locomotor activity at postpubertal age in rats with PAE. These results suggest a differential effect of amphetamines on the DAT mechanism of the nervous system during embryonic development of animals with implications in behavior and drug addictions at adulthood age.  相似文献   

20.
Despite advancements in renal replacement therapy, the mortality rate for acute kidney injury (AKI) remains unacceptably high, likely due to remote organ injury. Kidney ischemia-reperfusion injury (IRI) activates cellular and soluble mediators that incite a distinct pulmonary proinflammatory and proapoptotic response. Tumor necrosis factor receptor 1 (TNFR1) has been identified as a prominent death receptor activated in the lungs during ischemic AKI. We hypothesized that circulating TNF-α released from the postischemic kidney induces TNFR1-mediated pulmonary apoptosis, and we aimed to elucidate molecular pathways to programmed cell death. Using an established murine model of kidney IRI, we characterized the time course for increased circulatory and pulmonary TNF-α levels and measured concurrent upregulation of pulmonary TNFR1 expression. We then identified TNFR1-dependent pulmonary apoptosis after ischemic AKI using TNFR1-/- mice. Subsequent TNF-α signaling disruption with Etanercept implicated circulatory TNF-α as a key soluble mediator of pulmonary apoptosis and lung microvascular barrier dysfunction during ischemic AKI. We further elucidated pathways of TNFR1-mediated apoptosis with NF-κB (Complex I) and caspase-8 (Complex II) expression and discovered that TNFR1 proapoptotic signaling induces NF-κB activation. Additionally, inhibition of NF-κB (Complex I) resulted in a proapoptotic phenotype, lung barrier leak, and altered cellular flice inhibitory protein signaling independent of caspase-8 (Complex II) activation. Ischemic AKI activates soluble TNF-α and induces TNFR1-dependent pulmonary apoptosis through augmentation of the prosurvival and proapoptotic TNFR1 signaling pathway. Kidney-lung crosstalk after ischemic AKI represents a complex pathological process, yet focusing on specific biological pathways may yield potential future therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号