首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Plasma membrane (PM) Na+, K+-ATPase, plays crucial roles in numerous physiological processes. Cardiac steroids (CS), such as ouabain and bufalin, specifically bind to the Na+, K+-ATPase and affect ionic homeostasis, signal transduction, and endocytosed membrane traffic. CS-like compounds, synthesized in and released from the adrenal gland, are considered a new family of steroid hormones. Previous studies showed that ouabain induces slow Ca2+ oscillations in COS-7 cells by enhancing the interactions between Na+, K+-ATPase, inositol 1,4,5-trisphosphate receptor (IP3R) and Ankyrin B (Ank-B) to form a Ca2+ signaling micro-domain. The activation of this micro-domain, however, is independent of InsP3 generation. Thus, the mechanism underlying the induction of these slow Ca2+ oscillations remained largely unclear. We now show that other CS, such as bufalin, can also induce Ca2+ oscillations. These oscillations depend on extracellular Ca2+ concentrations [Ca2+]out and are inhibited by Ni2+. Furthermore, we found that these slow oscillations are Na+out dependent, abolished by Na+/Ca2+ exchanger1 (NCX1)-specific inhibitors and markedly attenuated by NCX1 siRNA knockdown. Based on these results, a model is presented for the CS-induced slow Ca2+ oscillations in COS-7 cells.  相似文献   

2.
Previous studies have shown that hypoxia induces nitric oxide synthase-mediated generation of nitric oxide free radicals leading to peroxynitrite production. The present study tests the hypothesis that hypoxia results in NO-mediated modification of Na+, K+-ATPase in the fetal brain. Studies were conducted in guinea pig fetuses of 58-days gestation. The mothers were exposed to FiO2 of 0.07% for 1 hour. Brain tissue hypoxia in the fetus was confirmed biochemically by decreased ATP and phosphocreatine levels. P2 membrane fractions were prepared from normoxic and hypoxic fetuses and divided into untreated and treated groups. The membranes were treated with 0.5 mM peroxynitrite at pH 7.6. The Na+, K+-ATPase activity was determined at 37°C for five minutes in a medium containing 100 mM NaCl, 20 mM KCl, 6.0 mM MgCl2, 50 mM Tris HCl buffer pH 7.4, 3.0 mM ATP with or without 10 mM ouabain. Ouabain sensitive activity was referred to as Na+, K+-ATPase activity. Following peroxynitrite exposure, the activity of Na+, K+-ATPase in guinea pig brain was reduced by 36% in normoxic membranes and further 29% in hypoxic membranes. Enzyme kinetics was determined at varying concentrations of ATP (0.5 mM-2.0 mM). The results indicate that peroxynitrite treatment alters the affinity of the active site of Na+, K+-ATPase for ATP and decreases the Vmax by 35% in hypoxic membranes. When compared to untreated normoxic membranes Vmax decreases by 35.6% in treated normoxic membranes and further to 52% in treated hypoxic membranes. The data show that peroxynitrite treatment induces modification of Na+, K+-ATPase. The results demonstrate that peroxynitrite decreased activity of Na+, K+-ATPase enzyme by altering the active sites as well as the microenvironment of the enzyme. We propose that nitric oxide synthase-mediated formation of peroxynitrite during hypoxia is a potential mechanism of hypoxia-induced decrease in Na+, K+-ATPase activity.  相似文献   

3.
A protein isolated from goat testis cytosol is found to inhibit Na+,K+-ATPase from rat brain microsomes. The inhibitor has been purified by ammonium sulphate precipitation followed by hydroxyapatite column chromatography. The purified fraction appears as a single polypeptide band on 10% SDS-PAGE of approximate molecular mass of 70 kDa. The concentration at which 50% inhibition (I50) occurs is in the nanomolar range. The inhibitor seems to bind Na+,K+-ATPase reversibly at ATP binding site in a competitive manner with ATP, but away from ouabain binding site. It does not affect p-nitrophenyl-phosphatase activity. The inhibitor is found to inhibit the phosphorylation step of the Na+,K+-ATPase. The enhancement of tryptophan fluorescence and changes in CD pattern suggest conformational changes of Na+,K+-ATPase on binding to the inhibitor. Amino acid sequence of the trypsinised fragments show some homology with aldehyde reductase.  相似文献   

4.
Summary The (Na++K+)-ATPase of garfish olfactory nerve axon plasma membrane was purified about sixfold by treatment of the membrane with sodium dodecyl sulfate followed by sucrose density gradient centrifugation. The estimated molecular weights of the two major polypeptide components of the enzyme preparation on sodium dodecyl sulfate gels were 110,000 and 42,000 daltons, which were different from those of the corresponding peptides of rabbit kidney (Na++K+)-ATPase. No carbohydrate was detected in the 42,000-dalton component either by the periodic acid-Schiff reagent or by the more sensitive concanavalin A-peroxidase staining procedure. The molecular properties of the garfish (Na++K+)-ATPase, such as theK m for ATP, pH optimum, energies of activation, Na and K ion dependence and vanadium inhibition, were, however, similar to those of the kidney enzyme.The partially purified garfish (Na++K+)-ATPase was reconstituted into phospholipid vesicles by a freeze-thaw-sonication procedure. The reconstituted enzyme was found to catalyze a time and ATP dependent22Na+ transport. The ratio of22Na+ pumped to ATP hydrolyzed was about 1; under the same reconstitution and assay conditions, eel electroplax (Na++K+)-ATPase, however, gave a22Na+ pumped to ATP hydrolyzed ratio of nearly 3.  相似文献   

5.
Internalization of the Na+/K+-ATPase (the Na+ pump) has been studied in the human lung carcinoma cell line H1299 that expresses YFP-tagged α1 from its normal genomic localization. Both real-time imaging and surface biotinylation have demonstrated internalization of α1 induced by ≥100 nm ouabain which occurs in a time scale of hours. Unlike previous studies in other systems, the ouabain-induced internalization was insensitive to Src or PI3K inhibitors. Accumulation of α1 in the cells could be augmented by inhibition of lysosomal degradation but not by proteosomal inhibitors. In agreement, the internalized α1 could be colocalized with the lysosomal marker LAMP1 but not with Golgi or nuclear markers. In principle, internalization could be triggered by a conformational change of the ouabain-bound Na+/K+-ATPase molecule or more generally by the disruption of cation homeostasis (Na+, K+, Ca2+) due to the partial inhibition of active Na+ and K+ transport. Overexpression of ouabain-insensitive rat α1 failed to inhibit internalization of human α1 expressed in the same cells. In addition, incubating cells in a K+-free medium did not induce internalization of the pump or affect the response to ouabain. Thus, internalization is not the result of changes in the cellular cation balance but is likely to be triggered by a conformational change of the protein itself. In physiological conditions, internalization may serve to eliminate pumps that have been blocked by endogenous ouabain or other cardiac glycosides. This mechanism may be required due to the very slow dissociation of the ouabain·Na+/K+-ATPase complex.  相似文献   

6.
(Na++K+)-ATPase is a target receptor of digitalis (cardiac glycoside) drugs. It has been demonstrated that the H1-H2 domain of the α-subunit of the (Na++K+)-ATPase is one of the digitalis drug interaction sites of the enzyme. Despite the extensive studies of the inhibitory effect of digitalis on the (Na++K+)-ATPase, the functional property of the H1-H2 domain of the enzyme and its role in regulating enzyme activity is not completely understood. Here we report a surprise finding: instead of inhibiting the enzyme, binding of a specific monoclonal antibody SSA78 to the H1-H2 domain of the (Na++K+)-ATPase elevates the catalytic activity of the enzyme. In the presence of low concentration of ouabain, monoclonal antibody SSA78 significantly protects enzyme function against ouabain-induced inhibition. However, higher concentration of ouabain completely inactivates the (Na++K+)-ATPase even in the presence of SSA78. These results suggest that the H1-H2 domain of the (Na++K+)-ATPase is capable of regulating enzyme function in two distinct ways for both ouabain-sensitive and -resistant forms of the enzyme: it increases the activity of the (Na++K+)-ATPase during its interaction with an activator; it also participates in the mechanism of digitalis or ouabain-induced inhibition of the enzyme. Understanding the dual activity of the H1-H2 domain will help better understand the structure-function relationships of the (Na++K+)-ATPase and the biological processes mediated by the enzyme.  相似文献   

7.
Summary The interaction of noradrenaline, various cation chelators and calcium on Na+, K+-ATPase from rat cerebral cortex plasma membranes was studied. It was shown that chelation of inhibitory cations by EGTA, EDTA and dipyridyl activated Na+, K+-ATPase to the same extent as noradrenaline but at higher concentrations; increasing concentrations of EGTA depressed the activation by noradrenaline; calcium in the form of a calcium-EGTA buffer depressed Na+, K+-ATPase at physiological concentrations; the inhibition of Na+, K+-ATPase by calcium is dependent on the magnesium concentration in the assay and the inhibition by calcium was partially reversed by noradrenaline.  相似文献   

8.
Two K+ ATP channel blockers, 5-hydroxydecanoate (5-HD) and glyburide, are often used to study cross-talk between Na+/K+-ATPase and these channels. The aim of this work was to characterize the effects of these blockers on purified Na+/K+-ATPase as an aid to appropriate use of these drugs in studies on this cross-talk. In contrast to known dual effects (activating and inhibitory) of other fatty acids on Na+/K+-ATPase, 5-HD only inhibited the enzyme at concentrations exceeding those that block mitochondrial K+ ATP channels. 5-HD did not affect the ouabain sensitivity of Na+/K+-ATPase. Glyburide had both activating and inhibitory effects on Na+/K+-ATPase at concentrations used to block plasma membrane K+ ATP channels. The findings justify the use of 5-HD as specific mitochondrial channel blocker in studies on the relation of this channel to Na+/K+-ATPase, but question the use of glyburide as a specific blocker of plasma membrane K+ ATP channels, when the relation of this channel to Na+/K+-ATPase is being studied.  相似文献   

9.
In previous papers, the isolation of brain soluble fractions able to modify neuronal Na+, K+-ATPase activity has been described. One of those fractions-peak I-stimulates membrane Na+, K+-ATPase while another-peak II-inhibits this enzyme activity, and has other ouabain-like properties. In the present study, synaptosomal membrane Na+, K+-ATPase was analyzed under several experimental conditions, using ATP orp-nitrophenylphosphate (p-NPP) as substrate, in the absence and presence of cerebral cortex peak II. Peak II inhibited K+-p-NPPase activity in a concentration dependent manner. Double reciprocal plots indicated that peak II uncompetitively inhibits K+-p-NPPase activity regarding substrate, Mg2+ and K+ concentration. Peak II failed to block the known K+-p-NPPase stimulation caused by ATP plus Na+. At various K+ concentrations, percentage K+-p-NPPase inhibition by peak II was similar regardless of the ATP plus Na+ presence, indicating lack of correlation with enzyme phosphorylation. Na+, K+-ATPase activity was decreased by peak II depending on K+ concentration. It is postulated that the inhibitory factor(s) present in peak II interfere(s) with enzyme activation by K+.  相似文献   

10.
Regulation of the Na+/K+-ATPase by insulin: Why and how?   总被引:4,自引:0,他引:4  
The sodium-potassium ATPase (Na+/K+-ATPase or Na+/K+-pump) is an enzyme present at the surface of all eukaryotic cells, which actively extrudes Na+ from cells in exchange for K+ at a ratio of 3:2, respectively. Its activity also provides the driving force for secondary active transport of solutes such as amino acids, phosphate, vitamins and, in epithelial cells, glucose. The enzyme consists of two subunits ( and ) each expressed in several isoforms. Many hormones regulate Na+/K+ -ATPase activity and in this review we will focus on the effects of insulin. The possible mechanisms whereby insulin controls Na+/K+-ATPase activity are discussed. These are tissue- and isoform-specific, and include reversible covalent modification of catalytic subunits, activation by a rise in intracellular Na+ concentration, altered Na+ sensitivity and changes in subunit gene or protein expression. Given the recent escalation in knowledge of insulin-stimulated signal transduction systems, it is pertinent to ask which intracellular signalling pathways are utilized by insulin in controlling Na+/K+-ATPase activity. Evidence for and against a role for the phosphatidylinositol-3-kinase and mitogen activated protein kinase arms of the insulin-stimulated intracellular signalling networks is suggested. Finally, the clinical relevance of Na+/K+-ATPase control by insulin in diabetes and related disorders is addressed.  相似文献   

11.
The arrival of the nerve impulse to the nerve endings leads to a series of events involving the entry of sodium and the exit of potassium. Restoration of ionic equilibria of sodium and potassium through the membrane is carried out by the sodium/potassium pump, that is the enzyme Na+,K+-ATPase. This is a particle-bound enzyme that concentrates in the nerve ending or synaptosomal membranes. The activity of Na+,K+-ATPase is essential for the maintenance of numerous reactions, as demonstrated in the isolated synaptosomes. This lends interest to the knowledge of the possible regulatory mechanisms of Na+,K+-ATPase activity in the synaptic region. The aim of this review is to summarize the results obtained in the author's laboratory, that refer to the effect of neurotransmitters and endogenous substances on Na+,K+-ATPase activity. Mention is also made of results in the field obtained in other laboratories. Evidence showing that brain Na+,K+-ATPase activity may be modified by certain neurotransmitters and insulin have been presented. The type of change produced by noradrenaline, dopamine, and serotonin on synaptosomal membrane Na+,K+-ATPase was found to depend on the presence or absence of a soluble brain fraction. The soluble brain fraction itself was able to stimulate or inhibit the enzyme, an effect that was dependent in turn on the time elapsed between preparation and use of the fraction. The filtration of soluble brain fraction through Sephadex G-50 allowed the separation of two active subfractions: peaks I and II. Peak I increased Na+,K+- and Mg2+-ATPases, and peak II inhibited Na+,K+-ATPase. Other membrane enzymes such as acetylcholinesterase and 5′-nucleotidase were unchanged by peaks I or II. In normotensive anesthetized rats, water and sodium excretion were not modified by peak I but were increased by peak II, thus resembling ouabain effects.3H-ouabain binding was unchanged by peak I but decreased by peak II in some areas of the CNS assayed by quantitative autoradiography and in synaptosomal membranes assayed by a filtration technique. The effects of peak I and II on Na+,K+-ATPase were reversed by catecholamines. The extent of Na+,K+-ATPase inhibition by peak II was dependent on K+ concentration, thus suggesting an interference with the K+ site of the enzyme. Peak II was able to induce the release of neurotransmitter stored in the synaptic vesicles in a way similar to ouabain. Taking into account that peak II inhibits only Na+,K+-ATPase, increases diuresis and natriuresis, blocks high affinity3H-ouabain binding, and induces neurotransmitter release, it is suggested that it contains an ouabain-like substance.  相似文献   

12.
The effect of an endogenous Na+, K+-ATPase inhibitor, termed endobain E, on phosphoinositide hydrolysis was studied in rat brain cortical prisms and compared with that of ouabain. As already shown for ouabain, a transient effect was obtained with endobain E; maximal accumulation of inositol phosphates induced by endobain E was 604 ± 138% and 186 ± 48% of basal values in neonatal and adult rats, respectively. The concentration-response plot for the interaction between endobain E and phosphoinositide turnover differed from that of ouabain, thus suggesting the involvement of distinct mechanisms. In the presence of endobain E plus ouabain at saturating concentrations, no additive effect was recorded, suggesting that both substances share at least a common step in their activation mechanism of inositol phosphates metabolism or that they enhance phosphatidylinositol 4,5-biphosphate breakdown from the same membrane precursor pool, until its exhaustion. Experiments with benzamil, a potent blocker of Na+/Ca2+ exchanger, showed that it partially and dose-dependently inhibited endobain E effect. These results indicate that the endogenous Na+, K+-ATPase inhibitor endobain E, like ouabain, is able to stimulate phosphoinositide turnover transiently during postnatal brain development.  相似文献   

13.
Binding of ouabain to Na+/K+-ATPase activated multiple signal transduction pathways including stimulation of Src, Ras, p42/44 MAPKs and production of reactive oxygen species (ROS) in rat cardiac myocytes. Inhibition of either Src or Ras ablated ouabain-induced increase in both [Ca2+]i and contractility. While PD98059 abolished the effects of ouabain on [Ca2+]i, it only caused a partial inhibition of ouabain-induced increases in contractility. On the other hand, pre-incubation of myocytes with N-acetyl cysteine (NAC) reduced the effects of ouabain on contractility, but not [Ca2+]i. Furthermore, 5-hydroxydecanoate (5-HD) blocked ouabain-induced ROS production and partially inhibited ouabain-induced increases in contractility in cardiac myocytes. Pre-incubation of myocytes with both 5-HD and PD98059 completely blocked ouabain's effect on contractility. Finally, we found that opening of mitochondrial KATP channel by diazoxide increased intracellular ROS and significantly raised contractility in cardiac myocytes. These new findings indicate that ouabain regulates cardiac contractility via both [Ca2+]i and ROS. While activation of MAPKs leads to increases in [Ca2+]i, opening of mitochondrial KATP channel relays the ouabain signal to increased ROS production in cardiac myocytes.  相似文献   

14.
Nanocarriers with positive surface charges are known for their toxicity which has limited their clinical applications. The mechanism underlying their toxicity, such as the induction of inflammatory response, remains largely unknown. In the present study we found that injection of cationic nanocarriers, including cationic liposomes, PEI, and chitosan, led to the rapid appearance of necrotic cells. Cell necrosis induced by cationic nanocarriers is dependent on their positive surface charges, but does not require RIP1 and Mlkl. Instead, intracellular Na+ overload was found to accompany the cell death. Depletion of Na+ in culture medium or pretreatment of cells with the Na+/K+-ATPase cation-binding site inhibitor ouabain, protected cells from cell necrosis. Moreover, treatment with cationic nanocarriers inhibited Na+/K+-ATPase activity both in vitro and in vivo. The computational simulation showed that cationic carriers could interact with cation-binding site of Na+/K+-ATPase. Mice pretreated with a small dose of ouabain showed improved survival after injection of a lethal dose of cationic nanocarriers. Further analyses suggest that cell necrosis induced by cationic nanocarriers and the resulting leakage of mitochondrial DNA could trigger severe inflammation in vivo, which is mediated by a pathway involving TLR9 and MyD88 signaling. Taken together, our results reveal a novel mechanism whereby cationic nanocarriers induce acute cell necrosis through the interaction with Na+/K+-ATPase, with the subsequent exposure of mitochondrial damage-associated molecular patterns as a key event that mediates the inflammatory responses. Our study has important implications for evaluating the biocompatibility of nanocarriers and designing better and safer ones for drug delivery.  相似文献   

15.
It was found that ouabain and marinobufagenin, specific inhibitors of Na+,K+-ATPase, increased the contraction of the isolated rat diaphragm by ~15% (positive inotropic effect) at EC50 = 1.2 ± 0.3 nM and 0.3 ± 0.1 nM, respectively, which was indicative of the participation of the ouabain-sensitive Na+,K+-ATPase α2 isoform. Analysis of the dose-response curves for the effect of ouabain on the resting membrane potential of muscle fibers in the absence and in the presence of 100 nM acetylcholine (hyperpolarizing the membrane) showed the presence of two pools of Na+,K+-ATPase α2 that differed in affinity for ouabain. Only the high-affinity pool (IC50 ~ 9 nM) mediates the hyperpolarizing effect of nanomolar concentrations of acetylcholine. Most likely, it is this pool of that is involved in the positive inotropic effect of ouabain, which can be a mechanism of regulation of the muscle function by circulating endogenous inhibitors of Na+,K+-ATPase.  相似文献   

16.
Distal colon absorbs K+ through a Na+-independent, ouabain-sensitive H+/K+-exchange, associated to an apical ouabain-sensitive H+/K+-ATPase. Expression of HKα2, gene associated with this ATPase, induces K+-transport mechanisms, whose ouabain susceptibility is inconsistent. Both ouabain-sensitive and ouabain-insensitive K+-ATPase activities have been described in colonocytes. However, native H+/K+-ATPases have not been identified as unique biochemical entities. Herein, a procedure to purify ouabain-sensitive H+/K+-ATPase from guinea-pig distal colon is described. H+/K+-ATPase is Mg2+-dependent and activated by K+, Cs+ and NH4+ but not by Na+ or Li+, independently of K+-accompanying anion. H+/K+-ATPase was inhibited by ouabain and vanadate but insensitive to SCH-28080 and bafilomycin-A. Enzyme was phosphorylated from [32P]-γ-ATP, forming an acyl-phosphate bond, in an Mg2+-dependent, vanadate-sensitive process. K+ inhibited phosphorylation, effect blocked by ouabain. H+/K+-ATPase is an α/β-heterodimer, whose subunits, identified by Tandem-mass spectrometry, seems to correspond to HKα2 and Na+/K+-ATPase β1-subunit, respectively. Thus, colonic ouabain-sensitive H+/K+-ATPase is a distinctive P-type ATPase.  相似文献   

17.
The mechanisms of cell death signaling triggered by cardiotonic steroids are poorly understood. Based on massive detachment of ouabain-treated Madin-Darby canine kidney (MDCK) cells, it may be proposed that the cytotoxic action of these compounds is mediated by anoikis, i.e. a particular mode of death occurring in cells lacking cell-to-extracellular matrix interactions. We tested this hypothesis. Six hour incubation of MDCK cells with ouabain, marinobufagenin or K+-free medium almost completely blocked Na+,K+-ATPase, increased Nai+ content by ∼10-fold and suppressed cell attachment to regular-plastic-plates by up to 5-fold. In contrast, the death of attached cells was observed after 24-h incubation with ouabain but not in the presence of marinobufagenin or K+-free medium. Cells treated with ouabain and undergoing anoikis on ultra-low attachment plates exhibited different cell volume behaviour, i.e. swelling and shrinkage, respectively. The pan-caspase inhibitor z-VAD.fmk and the protein kinase C activator PMA rescued MDCK cells from anoikis but did not influence the survival of ouabain-treated cells, whereas medium acidification from pH 7.2 to 6.7 almost completely abolished the cytotoxic action of ouabain, but did not significantly affect anoikis. Our results show that the Na i+,Ki+-independent mode of MDCK cell death evoked by ouabain is not mediated by anoikis.  相似文献   

18.
We have previously demonstrated that Na+, K+-ATPase activity is present in both differentiated plasma membranes from Electrophorus electricus (L.) electrocyte. Considering that the α subunit is responsible for the catalytic properties of the enzyme, the aim of this work was to study the presence and localization of α isoforms (α1 and α2) in the electrocyte. Dose-response curves showed that non-innervated membranes present a Na+, K+-ATPase activity 2.6-fold more sensitive to ouabain (I50=1.0±0.1 μM) than the activity of innervated membranes (I50=2.6±0.2 μM). As depicted in [3H]ouabain binding experiments, when the [3H]ouabain-enzyme complex was incubated in a medium containing unlabeled ouabain, reversal of binding occurred differently: the bound inhibitor dissociated 32% from Na+, K+-ATPase in non-innervated membrane fractions within 1 h, while about 50% of the ouabain bound to the enzyme in innervated membrane fractions was released in the same time. These data are consistent with the distribution of α1 and α2 isoforms, restricted to the innervated and non-innervated membrane faces, respectively, as demonstrated by Western blotting from membrane fractions and immunohistochemical analysis of the main electric organ. The results provide direct evidence for a distinct distribution of Na+, K+-ATPase α-subunit isoforms in the differentiated membrane faces of the electrocyte, a characteristic not yet described for any polarized cell.  相似文献   

19.
The structure-activity relationships of the genin moieties of digitalis glycosides are commonly elucidated by determining the inhibitory potency of a variety of genins toward the plasma membrane Na+, K+-ATPase; qualitatively these relationships appear to be fairly independent of the specific Na+, K+-ATPase preparation utilized for the analysis. To determine whether this is the case with regard to the sugar moieties of glycosides, the inhibitory effects of 12 monoglycosides of digitoxigenin toward four Na+, K+-ATPase preparations of different origin were measured. It was found that while recognition of the major structural determinants of sugar activity appeared to be independent of enzyme source, recognition of the minor structural determinants of activity showed some source dependence. It was also observed that the intrinsic sensitivity to sugar potentiation may be source dependent and unrelated to intrinsic sensitivity to inhibition by digitoxigenin. These observations are compatible with a model of the Na+, K+-ATPase sugar binding site(s) in which intrinsic sensitivity to sugar attachment as well as recognition characteristics (for sugar structural features) both determine the extent to which a sugar moiety may contribute to the activity of monoglycosides. Further, in these studies one of the Na+, K+-ATPase preparations employed was obtained from rat brain, a tissue known to contain a mixture of ouabain sensitive and insensitive isoforms. We have observed that the rigorous purification techniques employed appear to have selectively removed from or denatured the less ouabain sensitive al isoform found in this enzyme preparation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号