首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Cell aggregation in unicellular organisms, induced by either cell non-sexual adhesion to yield flocs and biofilm, or pheromone-driving sexual conjugation is of great significance in cellular stress response, medicine, and brewing industries. Most current literatures have focused on one form of cell aggregation termed flocculation and its major molecular determinants, the flocculation (FLO) family genes. Here, we implemented a map-based approach for dissecting the molecular basis of non-sexual cell aggregation in Saccharomyces cerevisiae. Genome-wide mapping has identified four major quantitative trait loci (QTL) underlying nature variation in the cell aggregation phenotype. High-resolution mapping following up with knockout and allele replacement experiments resolved the QTL into the underlying genes (AMN1, RGA1, FLO1, and FLO8) or even into the causative nucleotide. Genetic variation in the QTL genes can explain up to 46% of phenotypic variation of this trait. Of these genes, AMN1 plays the leading role, differing from the FLO family members, in regulating expression of cell clumping phenotype through inducing cell segregation defect. These findings provide novel insights into the molecular mechanism of how cell aggregation is regulated in budding yeast, and the data will be directly implicated to understand the molecular basis and evolutionary implications of cell aggregation in other fungus species.  相似文献   

7.
8.
9.
10.
11.
The FLO11-encoded flocculin is required for a variety of important phenotypes in Saccharomyces cerevisiae, including flocculation, adhesion to agar and plastic, invasive growth, pseudohyphae formation and biofilm development. We present evidence that Flo11p belongs to the Flo1-type class of flocculins rather than to the NewFlo class. Both Flo1-type and NewFlo yeast flocculation are inhibited by mannose. NewFlo flocculation, however, is also inhibited by several other carbohydrates including glucose, maltose and sucrose. These differences have in at least one case been shown to reflect differences in the structure of the carbohydrate-binding site of the flocculins. We report that Flo11p-dependent flocculation is inhibited by mannose, but not by glucose, maltose or sucrose. Furthermore, Flo11p contains a peptide sequence highly similar to one that has been shown to characterise Flo1-type flocculins. Further characterisation of the properties of Flo11p-dependent flocculation revealed that it is dependent on calcium, occurs only at cell densities greater than 1 x 10(8) ml(-1), and only occurs at acidic pH.  相似文献   

12.
The Flo11/Muc1 flocculin has diverse phenotypic effects. Saccharomyces cerevisiae cells of strain background Σ1278b require Flo11p to form pseudohyphae, invade agar, adhere to plastic, and develop biofilms, but they do not flocculate. We show that S. cerevisiae var. diastaticus strains, on the other hand, exhibit Flo11-dependent flocculation and biofilm formation but do not invade agar or form pseudohyphae. In order to study the nature of the Flo11p proteins produced by these two types of strains, we examined secreted Flo11p, encoded by a plasmid-borne gene, in which the glycosylphosphatidylinositol anchor sequences had been replaced by a histidine tag. A protein of approximately 196 kDa was secreted from both strains, which upon purification and concentration, aggregated into a form with a very high molecular mass. When secreted Flo11p was covalently attached to microscopic beads, it conferred the ability to specifically bind to S. cerevisiae var. diastaticus cells, which flocculate, but not to Σ1278b cells, which do not flocculate. This was true for the 196-kDa form as well as the high-molecular-weight form of Flo11p, regardless of the strain source. The coated beads bound to S. cerevisiae var. diastaticus cells expressing FLO11 and failed to bind to cells with a deletion of FLO11, demonstrating a homotypic adhesive mechanism. Flo11p was shown to be a mannoprotein. Bead-to-cell adhesion was inhibited by mannose, which also inhibits Flo11-dependent flocculation in vivo, further suggesting that this in vitro system is a useful model for the study of fungal adhesion.  相似文献   

13.
14.
15.
16.
17.
18.
The flor strains of Saccharomyces cerevisiae form a flor on the surface of wine after alcoholic fermentation. High hydrophobicity of the cell surface is suggested to be important for flor formation by the flor wine yeasts. However, the molecular mechanism of flor formation is not clear. We found that expression of C-terminal deleted NRG1 lacking its two C2H2 zinc finger motifs (NRG1(1-470)) on the multicopy plasmid conferred the ability to form a flor to a non-flor laboratory strain. The cell surface hydrophobicity of NRG1(1-470) was higher than of the non-flor strain. Disruption of the Nrg1p-repressed gene FLO11, which encodes a cell surface glycoprotein that functions as a flocculin or an adhesin, abolished flor formation. Moreover, expression of FLO11 on a multicopy plasmid could also cause flor formation. These results indicate that FLO11 is essential for flor formation by NRG1(1-470). In addition, the results suggest that the C-terminal truncated form of Nrg1p exerts a dominant negative effect on FLO11 repression, resulting in FLO11 expression and, thus, flor formation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号