首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obstructive sleep apnea (OSA) increases cardiovascular morbidity and mortality. We have reported that chronic intermittent hypoxia (CIH), a direct consequence during OSA, leads to left ventricular (LV) remodeling and dysfunction in rats. The present study is to determine LV myocardial cellular injury that is possibly associated with LV global dysfunction. Fifty-six rats were exposed either to CIH (nadir O(2) 4-5%) or sham (handled normoxic controls, HC), 8 h/day for 6 wk. At the end of the exposure, we studied LV global function by cardiac catheterization, and LV myocardial cellular injury by in vitro analyses. Compared with HC, CIH animals demonstrated elevations in mean arterial pressure and LV end-diastolic pressure, but reductions in cardiac output (CIH 141.3 +/- 33.1 vs. HC 184.4 +/- 21.2 ml x min(-1) x kg(-1), P < 0.01), maximal rate of LV pressure rise in systole (+dP/dt), and maximal rate of LV pressure fall in diastole (-dP/dt). CIH led to significant cell injury in the left myocardium, including elevated LV myocyte size, measured by cell surface area (CIH 3,564 +/- 354 vs. HC 2,628 +/- 242 microm(2), P < 0.05) and cell length (CIH 148 +/- 23 vs. HC 115 +/- 16 microm, P < 0.05), elevated terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-stained positive cell number (CIH 98 +/- 45 vs. HC 15 +/- 13, P < 0.01), elevated caspase-3 activity (906 +/- 249 vs. 2,275 +/- 1,169 pmol x min(-1) x mg(-1), P < 0.05), and elevated expression of several remodeling gene markers, including c-fos, atrial natriuretic peptide, beta-myosin heavy chain, and myosin light chain-2. However, there was no difference between groups in sarcomere contractility of isolated LV myocytes, or in LV collagen deposition on trichrome-stained slices. In conclusion, CIH-mediated LV global dysfunction is associated with myocyte hypertrophy and apoptosis at the cellular level.  相似文献   

2.
Chronic intermittent hypoxia (CIH) is the primary feature of obstructive sleep apnoea (OSA), a crucial risk factor for cardiovascular diseases. Long non-coding RNAs (lncRNAs) in myocardial infarction (MI) pathogenesis have drawn considerable attention. However, whether CIH participates in the modulation of lncRNA profiles during MI is yet unclear. To investigate the influence of CIH on MI, cardiac damage was assessed by histology and echocardiography, and lncRNA and mRNA integrated microarrays were screened. MI mouse model showed myocardial hypertrophy, aggravated inflammation and fibrosis, and compromised left ventricle function under CIH. Compared with normoxia, 644 lncRNAs and 1084 differentially expressed mRNAs were identified following CIH for 4 weeks, whereas 1482 lncRNAs and 990 mRNAs were altered at 8 weeks. Strikingly, reoxygenation after CIH markedly affected 1759 lncRNAs and 778 mRNAs. Of these, 11 lncRNAs modulated by CIH were restored after reoxygenation and were validated by qPCR. The GO terms and KEGG pathways of genes varied significantly by CIH. lncRNA-mRNA correlation further showed that lncRNAs, NONMMUT032513 and NONMMUT074571 were positively correlated with ZEB1 and negatively correlated with Cmbl. The current results demonstrated a causal correlation between CIH and lncRNA alternations during MI, suggesting that lncRNAs might be responsible for MI aggravation under CIH.  相似文献   

3.
目的:研究氢气对慢性间歇性低氧大鼠肝脏损伤的改善作用。方法:24只雄性成年SD大鼠,随机分为3组(n=8):常氧组(Norm)、慢性间歇性低氧组(CIH)、氢气+慢性间歇性低氧组(H2+CIH)。Norm组暴露于空气中,CIH组与H2+CIH组接受间歇性低氧处理5周,其中H2+CIH组在间歇性低氧处理前给予1 h 67%浓度的氢气吸入。5周后比较各组大鼠血清氧化应激指标、炎症因子指标、肝酶水平、血脂水平,并在电镜下观察大鼠肝组织超微结构变化。结果:与Norm组相比,CIH组肝组织超微结构受损严重,谷丙转氨酶(ALT)、谷草转氨酶(AST)水平显著升高(P<0.05);血清8-羟基脱氧鸟苷(8-OHdG)水平显著升高;超氧化物歧化酶(SOD)活性显著降低;白介素-6(IL-6)水平显著升高。与CIH组相比,H2+CIH组肝组织超微结构损伤减轻,ALT、AST水平显著降低(P<0.05);8-OHdG与IL-6水平显著降低,SOD活性显著升高。与Norm组相比,CIH组IL-1水平升高;血清TC、TG、LDL水平升高,但无统计学差异。HDL在各组之间无统计学差异。结论:氢气可以减轻慢性间歇性低氧对大鼠肝脏的损伤,有效降低氧化应激水平,保护肝细胞受损。  相似文献   

4.
目的:观察消痰化瘀利窍方对慢性间歇性低氧(CIH)大鼠肠系膜动脉功能损伤的作用,并探讨其可能机制。方法:48只雄性SD大鼠随机分为4组(n=12),常氧对照组(Normoxia)、慢性间歇性低氧组(CIH)、慢性间歇性低氧中药干预组(Formula+CIH)、中药对照组(Formula)。CIH与Formula+CIH组置于间歇性低氧装置,通过充入氮气、氧气使O2含量在9%至21%间循环,每循环3min;Normoxia和Formula组则充入空气。其中,Formula+CIH与Formula组于每日造模前中药水煎液灌胃(24g/kg),而CIH组与Normoxia组给予等量生理盐水。造模结束后,应用HE染色观察各组大鼠肠系膜动脉的组织病理学改变,通过微血管环技术观察ACh、L-Arg诱导的肠系膜动脉舒张反应,通过ELISA技术检测大鼠造模前及造模21d血清一氧化氮(NO)的含量并应用Westernblot技术测定肠系膜动脉eNOS和p-eNOS的蛋白水平。结果:与Normoxia组相比,CIH组大鼠肠系膜动脉内皮明显损伤、中膜增厚,ACh、L-Arg诱导的肠系膜动脉舒张反应明显减弱,血清中NO水平及肠系膜动脉p-eNOS/eNOS比值显著降低。消痰化瘀利窍方干预能够减轻大鼠肠系膜动脉的内膜与中膜病理损伤,改善肠系膜动脉舒张功能,提高血清NO含量及肠系膜动脉eNOS磷酸化水平。而单纯给予消痰化瘀利窍方大鼠与Normoxia组相比各指标均未发现显著变化。结论:消痰化瘀利窍方可以减轻慢性间歇性低氧引起的大鼠肠系膜动脉功能损伤,其机制与提高NO的生物利用度有关。  相似文献   

5.
6.
Obstructive sleep apnea syndrome (OSAS) is associated with many cardiovascular disorders such as heart failure, hypertension, atherosclerosis, and arrhythmia and so on. Of the many associated factors, chronic intermittent hypoxia (CIH) in particular is the primary player in OSAS. To assess the effects of CIH on cardiac function secondary to OSAS, we established a model to study the effects of CIH on Wistar rats. Specifically, we examined the possible underlying cellular mechanisms of hypoxic tissue damage and the possible protective role of adiponectin against hypoxic insults. In the first treatment group, rats were exposed to CIH conditions (nadir O2, 5–6%) for 8 hours/day, for 5 weeks. Subsequent CIH-induced cardiac dysfunction was measured by echocardiograph. Compared with the normal control (NC) group, rats in the CIH-exposed group experienced elevated levels of left ventricular end-systolic dimension and left ventricular end-systolic volume and depressed levels of left ventricular ejection fraction and left ventricular fractional shortening (p<0.05). However, when adiponectin (Ad) was added in CIH + Ad group, we saw a rescue in the elevations of the aforementioned left ventricular function (p<0.05). To assess critical cardiac injury, we detected myocardial apoptosis by Terminal deoxynucleotidyl transfer-mediated dUTP nick end-labeling (TUNEL) analysis. It was showed that the apoptosis percentage in CIH group (2.948%) was significantly higher than that in NC group (0.4167%) and CIH + Ad group (1.219%) (p<0.05). Protein expressions of cleaved caspase-3, cleaved caspase-9, and cleaved-caspase-12 validated our TUNEL results (p<0.05). Mechanistically, our results demonstrated that the proteins expressed with endoplasmic reticulum stress and the expression of reactive oxygen species (ROS) were significantly elevated under CIH conditions, whereas Ad supplementation partially decreased them. Overall, our results suggested that Ad augmentation could improve CIH-induced left ventricular dysfunction and associated myocardial apoptosis by inhibition of ROS-dependent ER stress.  相似文献   

7.
Chronic intermittent hypoxia (CIH) is associated with increased production of reactive oxygen species that contributes to the adaptive mechanism underlying the improved myocardial ischemic tolerance. The aim was to find out whether the antioxidative enzyme manganese superoxide dismutase (MnSOD) can play a role in CIH-induced cardioprotection. Adult male Wistar rats were exposed to intermittent hypobaric hypoxia (7000 m, 8 h/day, 25 exposures) (n=14) or kept at normoxia (n=14). Half of the animals from each group received N-acetylcysteine (NAC, 100 mg/kg) daily before the hypoxic exposure. The activity and expression of MnSOD were increased by 66 % and 23 %, respectively, in the mitochondrial fraction of CIH hearts as compared with the normoxic group; these effects were suppressed by NAC treatment. The negative correlation between MnSOD activity and myocardial infarct size suggests that MnSOD can contribute to the improved ischemic tolerance of CIH hearts.  相似文献   

8.
Most cardiac surgical procedures require the use of prolonged induced myocardial ischemia. Experimental models of global myocardial ischemia which mimic cardiac surgical techniques have been developed to investigate the possibility of oxygen free radical development during prolonged myocardial ischemia or upon reperfusion. In such experiments, various free radical scavenging agents, including superoxide dismutase, catalase, and mannitol, have been shown to improve the tolerance of the heart to protracted global ischemia. Use of these agents has improved cardiac functional recovery and has attenuated the biochemical and structural changes which occur due to prolonged ischemia and reflow. In a recently developed porcine experimental model, the effects of preexisting regional myocardial ischemia with superimposed global ischemia and reperfusion have been studied, with free radical scavenging agents administered in an attempt to reduce myocardial infarction and improve regional functional recovery. In most such studies completed to date, free radical scavenging agents have resulted in better myocardial preservation, suggesting, at least indirectly, that there may be an oxygen free radical-mediated component of the ischemia-reperfusion injury seen in such models. Techniques for directly measuring myocardial oxygen free radical levels may allow for early clarification of the development of such toxic species in the clinical cardiac surgical setting.  相似文献   

9.
Chronic intermittent hypoxia (CIH) and cardiovascular dysfunction occur in patients with obstructive sleep apnea. We hypothesized that the Na(+)/Ca(2+) exchanger-1 (NCX1) mediates, at least partially, left ventricular (LV) dysfunction in CIH. Four groups of mice (N = 15-17 per group), either cardiac-specific NCX1 knockouts (KO) or wild types (WT), were exposed to either CIH or normoxia [i.e., handled controls (HC)] 10 h/day for 8 wk. As expected, myocardial expression of NCX1 was greater in WT than in KO animals, both in HC and CIH-exposed groups. In both CIH groups (WT or KO), but not the HC groups, blood pressure increased by 10% at week 1 over their baseline and remained elevated for all 8 wk, with no differences between WT and KO. LV dilation (increased diastolic and systolic dimension) and hypertrophy (increased left heart weight), along with LV dysfunction (greater end-diastolic pressure and lower ejection fraction), were observed in the WT animals compared with the KO following CIH exposure. Compared with HC, CIH exposure was associated with apoptosis (terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling and caspase-3) in WT, but not KO, mice. We conclude that myocardial NCX1 does not mediate changes in blood pressure, but is one of the mediators for LV global dysfunction and cardiomyocyte injury in CIH.  相似文献   

10.
The adaptation to chronic hypoxia confers long-lasting cardiac protection against acute ischemia–reperfusion injury. Protein kinase C (PKC) appears to play a role in the cardioprotective mechanism but the involvement of individual PKC isoforms remains unclear. The aim of this study was to examine the effects of chronic intermittent hypoxia (CIH; 7,000 m, 8 h/day) and acute administration of PKC-δ inhibitor (rottlerin, 0.3 mg/kg) on the expression and subcellular distribution of PKC-δ and PKC-ε in the left ventricular myocardium of adult male Wistar rats by Western blot and quantitative immunofluorescence microscopy. CIH decreased the total level of PKC-ε in homogenate without affecting the level of phosphorylated PKC-ε (Ser729). In contrast, CIH up-regulated the total level of PKC-δ as well as the level of phosphorylated PKC-δ (Ser643) in homogenate. Rottlerin partially reversed the hypoxia-induced increase in PKC-δ in the mitochondrial fraction. Immunofluorescent staining of ventricular cryo-sections revealed increased co-localization of PKC-δ with mitochondrial and sarcolemmal membranes in CIH hearts that was suppressed by rottlerin. The formation of nitrotyrosine as a marker of oxidative stress was enhanced in CIH myocardium, particularly in mitochondria. The expression of total oxidative phosphorylation complexes was slightly decreased by CIH mainly due to complex II decline. In conclusion, up-regulated PKC-δ in CIH hearts is mainly localized to mitochondrial and sarcolemmal membranes. The inhibitory effects of rottlerin on PKC-δ subcellular redistribution and cardioprotection (as shown previously) support the view that this isoform plays a role in the mechanism of CIH-induced ischemic tolerance.  相似文献   

11.
目的: 探讨转化生长因子-β(TGF-β)信号通路在消痰化瘀利窍中药组方(XC)对改善慢性间歇性低氧(CIH)大鼠心肌纤维化中的作用。方法: 40只SD 大鼠,随机分为常氧组(Normoxia)、常氧+中药干预组(TCMC)、慢性间歇性低氧模型组(CIH)、CIH +中药干预组(TCMC+CIH),每组10只。通过向舱内充入氮气,使舱内氧体积分数在90 s内从21%下降到9%,随后90 s再充氧气使舱内氧体积分数逐渐上升到21%为一循环建立CIH模型。CIH 与 TCMC+CIH 组大鼠置于CIH装置, Normoxia 和TCMC组大鼠置于正常氧舱。此外TCMC+CIH 与 TCMC 组大鼠于每日XC生药(24 g/kg)煎制灌胃,而 CIH 组与 Normoxia 组大鼠给予等体积生理盐水。造模结束后,天狼星红染色观察大鼠心肌间质内胶原沉积情况;Western blot 法检测大鼠心肌间质中 CollagenⅠ、Collagen Ⅲ、Fibronectin、TGF-β、p-Smad2、p-Smad3的蛋白表达水平。采用Q-PCR法检测基质金属蛋白酶2(MMP-2)和基质金属蛋白酶抑制因子 2 (TIMP-2) 的 mRNA表达水平。结果: 与正常组比较,CIH大鼠心肌组织出现明显胶原的沉积,CollagenⅠ、Collagen Ⅲ和Fibronectin蛋白表达明显增多(P均<0.01),TGF-β、p-Smad2、p-Smad3蛋白表达水平也明显增高(P均<0.01);CIH大鼠心肌组织TIMP-2 mRNA上调导致MMP-2 mRNA明显减少(P均<0.01)。给予XC干预后,CIH大鼠心肌组织胶原沉积明显减少,CollagenⅠ、Collagen Ⅲ和Fibronectin蛋白表达明显降低(P<0.05,P< 0.01,P<0.05);CIH大鼠心肌组织中TGF-β、p-Smad2、p-Smad3蛋白表达水平明显降低(P<0.01,P<0.05,P< 0.01)。心肌组织中TIMP-2明显基因减少致MMP-2增多(P均<0.05)。 结论: 消痰化瘀利窍中药组方可抑制CIH大鼠心肌纤维化的形成,进而改善CIH大鼠心肌功能。其机制与该中药组方下调TGF-β/ Smad2/3信号通路及下调TIMP-2mRNA有关。  相似文献   

12.
Antioxidant responses to chronic hypoxia in the rat cerebellum and pons   总被引:6,自引:0,他引:6  
Obstructive sleep apnea (OSA) is characterized by chronic intermittent hypoxia (CIH) and sleep fragmentation and deprivation. Exposure to CIH results in oxidative stress in the cortex, hippocampus and basal forebrain of rats and mice. We show that sustained and intermittent hypoxia induces antioxidant responses, an indicator of oxidative stress, in the rat cerebellum and pons. Increased glutathione reductase (GR) activity and thiobarbituric acid reactive substance (TBARS) levels were observed in the pons and cerebellum of rats exposed to CIH or chronic sustained hypoxia (CSH) compared with room air (RA) controls. Exposure to CIH or CSH increased GR activity in the pons, while exposure to CSH increased the level of TBARS in the cerebellum. The level of TBARS was increased to a greater extent after exposure to CSH than to CIH in the cerebellum and pons. Increased superoxide dismutase activity (SOD) and decreased total glutathione (GSHt) levels were observed after exposure to CIH compared with CSH only in the pons. We have previously shown that prolonged sleep deprivation decreased SOD activity in the rat hippocampus and brainstem, without affecting the cerebellum, cortex or hypothalamus. We therefore conclude that sleep deprivation and hypoxia differentially affect antioxidant responses in different brain regions.  相似文献   

13.
Hypoxia is an important topic both physiologically and clinically. Traditionally, physiology research has been focusing on the effect of acute and chronic sustained hypoxia and human adaptive response to high altitude. In the past 20 years, genetic studies by many have expanded our understanding of hypoxia to the molecular level. However, in contrast to our extensive knowledge about acute and chronic sustained hypoxia, we know relatively little about the effect of chronic intermittent hypoxia (CIH). In recent years, CIH has attracted more research attention because of the increasing prevalence of obesity and obstructive sleep apnea (OSA) in the western countries. Clinically, CIH is commonly seen in patients with sleep-disordered breathing including OSA, Cheyne-Stokes respiration and nocturnal hypoventilation. It was estimated that for OSA of at least mild severity prevalence estimates range from 3 to 28% in the general population. OSA is characterized by recurrent upper airway collapse during sleep leading to intermittent nocturnal hypoxia and sleep fragmentation. OSA is associated with significant mortality and morbidity including neurocognitive dysfunction, hypertension, many cardiovascular disorders and metabolic disorders such as diabetes and metabolic syndrome. The intermittent hypoxia in OSA closely mimics what is seen in the ischemia-reperfusion injury. Experimentally, there is no universally accepted definition for CIH. Laboratory protocols vary greatly in duration of hypoxia exposure, numbers of hypoxia episodes per day and the total number of days of exposure. Despite the lack of a uniform definition, recent data suggest that CIH may lead to multiple long-term pathophysiologic consequences similar to what we see in patients with OSA. Recent evidences also demonstrate that there are remarkable differences in the response of the physiologic systems to sustained hypoxia and intermittent hypoxia. This review is aimed to briefly discuss the clinical significance of sleep-disordered breathing and our current understanding of CIH.  相似文献   

14.
Adiponectin and interleukin 10 (IL-10) are adipokines that are predominantly secreted by differentiated adipocytes and are involved in energy homeostasis, insulin sensitivity, and the anti-inflammatory response. These two adipokines are reduced in obese subjects, which favors increased activation of nuclear factor kappa B (NF-κB) and leads to elevation of pro-inflammatory adipokines. However, the effects of adiponectin and IL-10 on NF-κB DNA binding activity (NF-κBp50 and NF-κBp65) and proteins involved with the toll-like receptor (TLR-2 and TLR-4) pathway, such as MYD88 and TRAF6 expression, in lipopolysaccharide-treated 3T3-L1 adipocytes are unknown. Stimulation of lipopolysaccharide-treated 3T3-L1 adipocytes for 24 h elevated IL-6 levels; activated the NF-κB pathway cascade; increased protein expression of IL-6R, TLR-4, MYD88, and TRAF6; and increased the nuclear activity of NF-κB (p50 and p65) DNA binding. Adiponectin and IL-10 inhibited the elevation of IL-6 levels and activated NF-κB (p50 and p65) DNA binding. Taken together, the present results provide evidence that adiponectin and IL-10 have an important role in the anti-inflammatory response in adipocytes. In addition, inhibition of NF-κB signaling pathways may be an excellent strategy for the treatment of inflammation in obese individuals.  相似文献   

15.
Chronic intermittent hypoxia (CIH), a characteristic of sleep obstructive apnea, enhances carotid body (CB) chemosensory responses to hypoxia, but its consequences on CB vascular area and VEGF expression are unknown. Accordingly, we studied the effect of CIH on CB volume, glomus cell numbers, blood vessel diameter and number, and VEGF immunoreactivity (VEGF-ir) in male Sprague-Dawley rats exposed to 5% O(2), 12 times/h for 8 h or sham condition for 21 days. We found that CIH did not modify the CB volume or the number of glomus cells but increased VEGF-ir and enlarged the vascular area by increasing the size of the blood vessels, whereas the number of the vessels was unchanged. Because oxidative stress plays an essential role in the CIH-induced carotid chemosensory potentiation, we tested whether antioxidant treatment with ascorbic acid may impede the vascular enlargement and the VEGF upregulation. Ascorbic acid, which prevents the CB chemosensory potentiation, failed to impede the vascular enlargement and the increased VEGF-ir. Thus present results suggest that the CB vascular enlargement induced by CIH is a direct effect of intermittent hypoxia and not secondary to the oxidative stress. Accordingly, the subsequent capillary changes may be secondary to the mechanisms involved in the neural chemosensory plasticity induced by intermittent hypoxia.  相似文献   

16.
Previous studies have documented that repetitive exposure to intermittent hypoxia, such as that encountered in preparation to high-altitude ascent, influences breathing. However, the impact of intermittent hypoxia on airway smooth muscle has not been explored. Ascents to high altitude, in addition to hypoxia, expose individuals to cold air. The objective of the present study is to examine the effect of chronic intermittent hypobaric hypoxia (CIH) and CIH combined with cold exposure (CIHC) on tracheal smooth muscle responses to various contractile and relaxant agonists. Experiments were performed on tracheal rings harvested from adult guinea pigs exposed either to CIH or CIHC [14 days (6 h/day) at barometric pressure of 350 mmHg with and without cold exposure of 5 degrees C] or to room air (normoxia). CIH and CIHC attenuated maximum contractile responses to ACh compared with normoxia. The maximum contractile response to histamine decreased with CIH, whereas CIHC restored the response back to normoxia. Both CIH and CIHC attenuated maximum contractile responses to 5-HT. Altered contractile responses after CIH and CIHC were independent of epithelium. Isoproterenol-induced relaxation was not altered by CIH, whereas it was enhanced after CIHC, and these responses were independent of the epithelium. The data demonstrate that intermittent exposure to hypoxia profoundly influences contractile response of tracheal smooth muscle, and cold exposure can further modulate the response, implying the importance of cold at high altitude.  相似文献   

17.
The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of improved cardiac ischemic tolerance. Adult male Wistar rats were exposed to CIH in a hypobaric chamber (7,000 m, 8 h/day, 5 days/wk, 24-30 exposures). Half of the animals received antioxidant N-acetylcysteine (NAC; 100 mg/kg) daily before the exposure; the remaining rats received saline. Control rats were kept under normoxia and treated in a corresponding manner. One day after the last exposure (and/or NAC injection), anesthetized animals were subject to 20 min of coronary artery occlusion and 3 h of reperfusion for determination of infarct size. In parallel subgroups, biochemical analyses of the left ventricular myocardium were performed. Adaptation to CIH reduced infarct size from 56.7 +/- 4.5% of the area at risk in the normoxic controls to 27.7 +/- 4.9%. NAC treatment decreased the infarct size in the controls to 42.0 +/- 3.4%, but it abolished the protection provided by CIH (to 41.1 +/- 4.9%). CIH decreased the reduced-to-oxidized glutathione ratio and increased the relative amount of PKC isoform-delta in the particulate fraction; NAC prevented these effects. The expression of PKC-epsilon was decreased by CIH and not affected by NAC. Activities of superoxide dismutase, catalase, and glutathione peroxidase were affected by neither CIH nor NAC treatment. It is concluded that oxidative stress associated with CIH plays a role in the development of increased cardiac ischemic tolerance. The infarct size-limiting mechanism of CIH seems to involve the PKC-delta-dependent pathway but apparently not the increased capacity of major antioxidant enzymes.  相似文献   

18.
Chronic intermittent hypoxia (CIH) is known to induce hypertension, but the mechanism is not well understood. We hypothesized that sensory plasticity of the carotid body (CB) and oxidative stress in the paraventricular nucleus (PVN) are involved in CIH-induced hypertension. In this study, rats were exposed to CIH for 28 days (intermittent hypoxia of 21% O2 for 60 s and 5% O2 for 30 s, cyclically repeated for 8 hr/day) and then randomly grouped for intracerebroventricular injection of 5-HT2 receptor antagonist ritanserin, Rho-associated protein kinase (ROCK) inhibitor Y-27632, and NADPH oxidase (NOX) inhibitor diphenyleneiodonium (DPI), respectively. We found that CIH increased blood pressure (BP), elevated carotid sinus nerve (CSN) and renal sympathetic nerve (RSN) activities, oxidative stress, and cell apoptosis in PVN. NOX-derived reactive oxygen species (ROS) production and cell apoptosis decreased when CIH-induced activation of 5-HT/5-HT2AR/PKC signaling was inhibited by ritanserin. In addition, RhoA expression was downregulated when oxidative stress was attenuated by DPI, while Y-27632 decreased the expression of endothelin-1, which is overexpressed in the vascular wall during hypertension. Moreover, treatment with ritanserin, DPI or Y-27632 attenuated the sensory plasticity and sympathetic hyperactivity as well as CIH-induced elevation of BP. In conclusion, CIH-induced activation of 5-HT/5-HT2AR/PKC signaling contributes to NOX-derived oxidative stress in PVN, which may cause sensory plasticity of CB, RSN hyperactivity, and elevated BP.  相似文献   

19.
20.
It has been reported that intermittent hypoxia treatment prevents oxidative injuries to the brain and protects the heart against ischemia-reperfusion injury. Both anti-oxidative defensive systems and prevention of free intracellular calcium overload might be the result of intermittent hypoxia. Thus, the purpose of this study was to explore the effects of intermittent hypoxia (8 h at 12 % O2 per day) for 0, 7 or 14 days on inducible nitric oxide synthase (iNOS) expression in the spleen and on splenic calcium response to the mitogen phytohemagglutinin (PHA). The results demonstrated that administration of intermittent hypoxia for 7 days caused severe hemolysis of erythrocytes in the spleen and the hemolytic condition was ameliorated by intermittent hypoxia for 14 days. However, a significant decline in splenic weight and an increase in plasma total bilirubin levels appeared in rats after hypoxia for 14 days. No calcium response to PHA was observed in splenocytes obtained from rats after intermittent hypoxia for 7 days. After intermittent hypoxia for 14 days, the calcium response to PHA was restored to the level of the controls. Intermittent hypoxia for 7 days was able to induce higher iNOS expression in splenic tissues than hypoxia for 14 days. These results suggested that intermittent hypoxia for 14 days appeared to involve acclimatization that protects the rats from oxidative injury through less hemolysis and iNOS expression in splenic tissues and by the presence of more bilirubin in the plasma. The increase in plasma total bilirubin levels might be the cause of induced adaptation to chronic intermittent hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号