首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ubiquitin-mediated protein degradation is involved in various cellular processes including plant–microbe interactions and defense responses. Although there are many E3 ubiquitin ligases in rice, the functions of their targets in defense responses are unclear. We recently found that SPIN6 (SPL11-interacting Protein 6) is a Rho GTPase-activating protein and acts as the target of the E3 ligase SPL11, a negative regulator of plant cell death and innate immunity. Our results showed that SPIN6 serves as a link between the SPL11-mediated ubiquitination pathway and the OsRac1-associated defense system. Here, we show that SPIN6 interacts with OsHUB1 and OsHUB2, the homologous proteins of Arabidopsis RING finger E3 ligases HUB1 and HUB2. OsHub1 and OsHub2 are down-regulated in the Spin6 RNAi plants and during the compatible interaction between rice and Magnaporthe oryzae. OsHub1 and OsHub2 are induced by hormone treatments. Like HUB1 and HUB2 in Arabidopsis, OsHUB1 and OsHUB2 in rice form homo- and hetero-dimers. Our results suggest that OsHUB1 and OsHUB2 may be associated with the SPIN6/OsRac1 pathway in rice immunity.  相似文献   

2.
Zeng LR  Qu S  Bordeos A  Yang C  Baraoidan M  Yan H  Xie Q  Nahm BH  Leung H  Wang GL 《The Plant cell》2004,16(10):2795-2808
The rice (Oryza sativa) spotted leaf11 (spl11) mutant was identified from an ethyl methanesulfonate-mutagenized indica cultivar IR68 population and was previously shown to display a spontaneous cell death phenotype and enhanced resistance to rice fungal and bacterial pathogens. Here, we have isolated Spl11 via a map-based cloning strategy. The isolation of the Spl11 gene was facilitated by the identification of three additional spl11 alleles from an IR64 mutant collection. The predicted SPL11 protein contains both a U-box domain and an armadillo (ARM) repeat domain, which were demonstrated in yeast and mammalian systems to be involved in ubiquitination and protein-protein interactions, respectively. Amino acid sequence comparison indicated that the similarity between SPL11 and other plant U-box-ARM proteins is mostly restricted to the U-box and ARM repeat regions. A single base substitution was detected in spl11, which results in a premature stop codon in the SPL11 protein. Expression analysis indicated that Spl11 is induced in both incompatible and compatible rice-blast interactions. In vitro ubiquitination assay indicated that the SPL11 protein possesses E3 ubiquitin ligase activity that is dependent on an intact U-box domain, suggesting a role of the ubiquitination system in the control of plant cell death and defense.  相似文献   

3.
The ubiquitin proteasome system in plants plays important roles in plant-microbe interactions and in immune responses to pathogens. We previously demonstrated that the rice U-box E3 ligase SPL11 and its Arabidopsis ortholog PUB13 negatively regulate programmed cell death (PCD) and defense response. However, the components involved in the SPL11/PUB13-mediated PCD and immune signaling pathway remain unknown. In this study, we report that SPL11-interacting Protein 6 (SPIN6) is a Rho GTPase-activating protein (RhoGAP) that interacts with SPL11 in vitro and in vivo. SPL11 ubiquitinates SPIN6 in vitro and degrades SPIN6 in vivo via the 26S proteasome-dependent pathway. Both RNAi silencing in transgenic rice and knockout of Spin6 in a T-DNA insertion mutant lead to PCD and increased resistance to the rice blast pathogen Magnaporthe oryzae and the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. The levels of reactive oxygen species and defense-related gene expression are significantly elevated in both the Spin6 RNAi and mutant plants. Strikingly, SPIN6 interacts with the small GTPase OsRac1, catalyze the GTP-bound OsRac1 into the GDP-bound state in vitro and has GAP activity towards OsRac1 in rice cells. Together, our results demonstrate that the RhoGAP SPIN6 acts as a linkage between a U-box E3 ligase-mediated ubiquitination pathway and a small GTPase-associated defensome system for plant immunity.  相似文献   

4.
5.
6.
The attachment of ubiquitin (Ub) to lysines on substrates or itself by ubiquitin-conjugating (E2) and ubiquitin ligase (E3) enzymes results in protein ubiquitination. Lysine selection is important for generating diverse substrate-Ub structures and targeting proteins to different fates; however, the mechanisms of lysine selection are not clearly understood. The positioning of lysine(s) toward the E2/E3 active site and residues proximal to lysines are critical in their selection. We investigated determinants of lysine specificity of the ubiquitin-conjugating enzyme Cdc34, toward substrate and Ub lysines. Evaluation of the relative importance of different residues positioned −2, −1, +1 and +2 toward ubiquitination of its substrate, Sic1, on lysine 50 showed that charged residues in the −1 and −2 positions negatively impact on ubiquitination. Modeling suggests that charged residues at these positions alter the native salt-bridge interactions in Ub and Cdc34, resulting in misplacement of Sic1 lysine 50 in the Cdc34 catalytic cleft. During polyubiquitination, Cdc34 showed a strong preference for Ub lysine 48 (K48), with lower activity towards lysine 11 (K11) and lysine 63 (K63). Mutating the −2, −1, +1 and +2 sites surrounding K11 and K63 to mimic those surrounding K48 did not improve their ubiquitination, indicating that further determinants are important for Ub K48 specificity. Modeling the ternary structure of acceptor Ub with the Cdc34~Ub complex as well as in vitro ubiquitination assays unveiled the importance of K6 and Q62 of acceptor Ub for Ub K48 polyubiquitination. These findings provide molecular and structural insight into substrate lysine and Ub K48 specificity by Cdc34.  相似文献   

7.
Jung CG  Lim SD  Hwang SG  Jang CS 《Gene》2012,505(1):9-18
RING (Really Interesting New Gene) finger proteins are believed to play a critical role in mediating the transfer of ubiquitin to heterogeneous substrate(s). While the two canonical types, RING-H2 and RING-HC, have been well-characterized, the molecular functions of the modified types, particularly the RING-C2 types, remain elusive. We isolated two rice genes harboring the RING-C2 domain on the distal parts of rice chromosomes 11 and 12, termed OsRINGC2-1 and OsRINGC2-2, respectively. A comparison of sequence divergences between 10 duplicate pairs on the distal parts of rice chromosomes 11 and 12 and randomly selected duplicate pairs suggested that OsRINGC2-1 and OsRINGC2-2 have evolved in concert via gene conversion. An in vitro ubiquitination assay revealed that both proteins possess E3 ligase activity, suggesting that the innate functions of these RING domains have not been affected by their modifications during evolution. Subcellular localizations were strikingly different; OsRINGC2-1 was found only in the cytoplasm with many punctate complexes, whereas OsRINGC2-2 was observed in both the nucleus and cytoplasm. The expression patterns of both genes showed striking differences in response to salt stress, whereas plants heterogeneous for both genes mediated salt tolerance in Arabidopsis, supporting the notion of concerted evolution. These results shed light on the molecular functions of OsRINGC2-1 and OsRINGC2-2 and provide insight into their molecular evolution.  相似文献   

8.
Shin DY  Lee H  Park ES  Yoo YJ 《FEBS letters》2011,585(24):3959-3963
In this study using non-reduced/reduced 2-dimensional electrophoresis (NR/R-2DE), we clearly demonstrated that E3-independent ubiquitination by Ube2K produced not only unanchored but also Ube2K-linked polyubiquitins through thioester and isopeptide bonds. E3-independent assembly of polyubiquitins on the catalytic cysteine of Ube2K strongly supports the possibility of ‘en bloc transfer’ for polyubiquitination. From the same analyses of E3-independent ubiquitination products by other E2s, we also found that different lengths of polyubiquitins were linked to different E2s through thioester bond; longer chains by Cdc34 like Ube2K, short chains by Ube2g2, and mono-ubiquitin by UbcH10. Our results suggest that E2s possess the different intrinsic catalytic activities for polyubiquitination.  相似文献   

9.
The ubiquitin (Ub) system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the sequential action of three classes of enzymes (E1, E2 and E3). E2 Ub-conjugating enzymes have a central role in the ubiquitination pathway, interacting with both E1 and E3, and influencing the ultimate fate of the substrates. Several E2s are characterized by an extended acidic insertion in loop 7 (L7), which if mutated is known to impair the proper E2-related functions. In the present contribution, we show that acidic loop is a conserved ancestral motif in E2s, relying on the presence of alternate hydrophobic and acidic residues. Moreover, the dynamic properties of a subset of family 3 E2s, as well as their binary and ternary complexes with Ub and the cognate E3, have been investigated. Here we provide a model of L7 role in the different steps of the ubiquitination cascade of family 3 E2s. The L7 hydrophobic residues turned out to be the main determinant for the stabilization of the E2 inactive conformations by a tight network of interactions in the catalytic cleft. Moreover, phosphorylation is known from previous studies to promote E2 competent conformations for Ub charging, inducing electrostatic repulsion and acting on the L7 acidic residues. Here we show that these active conformations are stabilized by a network of hydrophobic interactions between L7 and L4, the latter being a conserved interface for E3-recruitment in several E2s. In the successive steps, L7 conserved acidic residues also provide an interaction interface for both Ub and the Rbx1 RING subdomain of the cognate E3. Our data therefore suggest a crucial role for L7 of family 3 E2s in all the E2-mediated steps of the ubiquitination cascade. Its different functions are exploited thank to its conserved hydrophobic and acidic residues in a finely orchestrate mechanism.  相似文献   

10.
Protein ubiquitination is a fundamental regulatory component in eukaryotic cell biology, where a cascade of ubiquitin activating (E1), conjugating (E2), and ligating (E3) enzymes assemble distinct ubiquitin signals on target proteins. E2s specify the type of ubiquitin signal generated, while E3s associate with the E2~Ub conjugate and select the substrate for ubiquitination. Thus, producing the right ubiquitin signal on the right target requires the right E2–E3 pair. The question of how over 600 E3s evolved to discriminate between 38 structurally related E2s has therefore been an area of intensive research, and with over 50 E2–E3 complex structures generated to date, the answer is beginning to emerge. The following review discusses the structural basis of generic E2–RING E3 interactions, contrasted with emerging themes that reveal how specificity can be achieved.  相似文献   

11.
Lesion mimic mutants that exhibit spontaneous hypersensitive response (HR)‐like necrotic lesions are ideal experimental systems for elucidating molecular mechanisms involved in plant cell death and defence responses. Here we report identification of a rice lesion mimic mutant, spotted leaf 35 (spl35), and cloning of the causal gene by TAIL‐PCR strategy. spl35 exhibited decreased chlorophyll content, higher accumulation of H2O2, up‐regulated expression of defence‐related marker genes, and enhanced resistance to both fungal and bacterial pathogens of rice. The SPL35 gene encodes a novel CUE (coupling of ubiquitin conjugation to ER degradation) domain‐containing protein that is predominantly localized in cytosol, ER and unknown punctate compartment(s). SPL35 is constitutively expressed in all organs, and both overexpression and knockdown of SPL35 cause the lesion mimic phenotype. SPL35 directly interacts with the E2 protein OsUBC5a and the coatomer subunit delta proteins Delta‐COP1 and Delta‐COP2 through the CUE domain, and down‐regulation of these interacting proteins also cause development of HR‐like lesions resembling those in spl35 and activation of defence responses, indicating that SPL35 may be involved in the ubiquitination and vesicular trafficking pathways. Our findings provide insight into a role of SPL35 in regulating cell death and defence response in plants.  相似文献   

12.
Rice bran oil is known as wonder oil and it is the most important vegetable oil in Asia. Rice bran oil is extracted from bran that is the outer hard layer of rice. It is an emerging category in edible oil with a lot of nutritional properties and health benefits. Rice bran oil is heart-friendly, boosts up immunity, and prevents from other diseases occurring commonly in Pakistan. The current study aimed to stabilize rice bran oil through different probiotic isolates and to assess the nutritional content of rice bran oil after stabilization. The study was aimed to inactivate naturally occurring lipases that can hydrolyze oil into glycerol and free fatty acid which is a serious problem that gives it a rancid taste and smell. Antilipase activity was used to inactivate naturally occurring lipases that are a huge threat to the stabilization process. The fermentation process utilizes antilipase activity without affecting the nutritional value of oil. Lactobacillus strains were used for the stabilization of rice bran oil. Rice bran oil was extracted in the Soxhlet apparatus. The probiotic lab isolates Lactobacillus delbrueckii S2, Lactobacillus casei S5 and Lactobacillus plantarum S13 were applied to it to increase its shelf life and prevent oxidative rancidity. The extraction temperature of rice bran oil was maintained above 40 °C to inhibit lipase activity. Rice bran oil samples were stored at refrigeration temperature to arrest lipase activity. Probiotics maintained acidic pH to keep oil stabilization. Qualitative analysis was done to confirm rice bran oil stabilization. Determination of Free Fatty Acid (FFA) and saponification value confirmed that oxidative rancidity of rice bran oil was controlled by probiotics. FFA count was less than 10% and Saponification Value (SV) was 180. GC analysis was performed to analyze the FFA profile. Gas Chromatography results have shown 3 fatty acids. Statistical analysis has shown non-significant effect on different incubation temperatures of Lactobacillus isolates. Among the biological methods of stabilization, the use of probiotics is a novel concept and recommended for commercial application.  相似文献   

13.
Nitrogen is the most critical nutrient for plant growth. To find potential strategies for enhancing both nitrogen use and tolerance to nitrogen deficiency in rice plants, we used the rice Full-length-cDNA OvereXpressor (FOX)-hunting system, a high-throughput phenotyping screen. After screening 3229 rice FOX lines, we identified 82 FOX-hunting lines that responded differently to nitrogen starvation. Among them, 11 FOX-hunting lines overexpressed putative E3 ligases, of which 6 were RING-type and 5 were F-box type E3 ligases. Of these, two lines overexpressed the same F-box type E3 ligase, OsFBL15. In vitro ubiquitination assay confirmed the auto-ubiquitination activity of OsFBL15. The overexpression of these E3 ligases altered the rice response to nitrogen deficiency and suggests a way to develop rice that is tolerant to nitrogen-deficient field conditions.  相似文献   

14.

Background and Aims

Although xyloglucans are ubiquitous in land plants, they are less abundant in Poales species than in eudicotyledons. Poales cell walls contain higher levels of β-1,3/1,4 mixed-linked glucans and arabinoxylans than xyloglucans. Despite the relatively low level of xyloglucans in Poales, the xyloglucan endotransglucosylase/hydrolase (XTH) gene family in rice (Oryza sativa) is comparable in size to that of the eudicotyledon Arabidopsis thaliana. This raises the question of whether xyloglucan is a substrate for rice XTH gene products, whose enzyme activity remains largely uncharacterized.

Methods

This study focused on OsXTH19 (which belongs to Group IIIA of the XTH family and is specifically expressed in growing tissues of rice shoots), and two other XTHs, OsXTH11 (Group I/II) and OsXTH20 (Group IIIA), for reference, and measurements were made of the enzymatic activities of three recombinant rice XTHs, i.e. OsXTH11, OsXTH20 and OsXTH19.

Key Results

All three OsXTH gene products have xyloglucan endohydrolase (XEH, EC 3·2·1·151) activity, and OsXTH11 has both XEH and xyloglucan endotransglycosylase (XET, EC 2·4·1207) activities. However, these proteins had neither hydrolase nor transglucosylase activity when glucuronoarabinoxylan or mixed-linkage glucan was used as the substrate. These results are consistent with histological observations demonstrating that pOsXTH19::GUS is expressed specifically in the vicinity of tissues where xyloglucan immunoreactivity is present. Transgenic rice lines over-expressing OsXTH19 (harbouring a Cauliflower Mosaic Virus 35S promoter::OsXTH19 cDNA construct) or with suppressed OsXTH19 expression (harbouring a pOsXTH19 RNAi construct) did not show dramatic phenotypic changes, suggesting functional redundancy and collaboration among XTH family members, as was observed in A. thaliana.

Conclusions

OsXTH20 and OsXTH19 act as hydrolases exclusively on xyloglucan, while OsXTH11 exhibits both hydrolase and XET activities exclusively on xyloglucans. Phenotypic analysis of transgenic lines with altered expression of OsXTH19 suggests that OsXTH19 and related XTH(s) play redundant roles in rice growth.  相似文献   

15.
Greenhouse studies were conducted to investigate plant-mediated interactions between an above-ground and a below-ground herbivore when sharing a common host plant, rice (Oryza sativa L). Two common pests of rice were used: the rice water weevil (RWW), Lissorhoptrus oryzophilus Kuschel, as the root herbivore, and the fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith) as the foliage-feeding herbivore. Rice water weevil larval performance was assessed by measuring larval density and average weight in response to different levels of defoliation by FAW larvae. The reciprocal experiment was done to evaluate FAW performance (growth rate) in response to RWW feeding. Severe defoliation by FAW decreased RWW densities by 32% and reduced larval weights by 48% compared to larvae on roots of non-defoliated plants. Effects in the converse experiments were not as strong. FAW growth rates were reduced 9–37% when feeding on rice leaves from plants damaged by RWW compared to larvae feed leaves from the no damage treatment. These reciprocal negative effects show that RWW and FAW are potential competitors when sharing a rice plant. Because RWW and FAW did not interact directly, competition was plant-mediated.  相似文献   

16.
Ubiquitination refers to the covalent addition of ubiquitin (Ub) to substrate proteins or other Ub molecules via the sequential action of three enzymes (E1, E2, and E3). Recent advances in mass spectrometry proteomics have made it possible to identify and quantify Ub linkages in biochemical and cellular systems. We used these tools to probe the mechanisms controlling linkage specificity for UbcH5A. UbcH5A is a promiscuous E2 enzyme with an innate preference for forming polyubiquitin chains through lysine 11 (K11), lysine 48 (K48), and lysine 63 (K63) of Ub. We present the crystal structure of a noncovalent complex between Ub and UbcH5A. This structure reveals an interaction between the Ub surface flanking K11 and residues adjacent to the E2 catalytic cysteine and suggests a possible role for this surface in formation of K11 linkages. Structure-guided mutagenesis, in vitro ubiquitination and quantitative mass spectrometry have been used to characterize the ability of residues in the vicinity of the E2 active site to direct synthesis of K11- and K63-linked polyubiquitin. Mutation of critical residues in the interface modulated the linkage specificity of UbcH5A, resulting in generation of more K63-linked chains at the expense of K11-linkage synthesis. This study provides direct evidence that the linkage specificity of E2 enzymes may be altered through active-site mutagenesis.  相似文献   

17.
Ubiquitination involves the attachment of ubiquitin to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Ubiquitin attachment to different lysine residues can generate diverse substrate-ubiquitin structures, targeting proteins to different fates. The mechanisms of lysine selection are not well understood. Ubiquitination by the largest group of E3 ligases, the RING-family E3 s, is catalyzed through co-operation between the non-catalytic ubiquitin-ligase (E3) and the ubiquitin-conjugating enzyme (E2), where the RING E3 binds the substrate and the E2 catalyzes ubiquitin transfer. Previous studies suggest that ubiquitination sites are selected by E3-mediated positioning of the lysine toward the E2 active site. Ultimately, at a catalytic level, ubiquitination of lysine residues within the substrate or ubiquitin occurs by nucleophilic attack of the lysine residue on the thioester bond linking the E2 catalytic cysteine to ubiquitin. One of the best studied RING E3/E2 complexes is the Skp1/Cul1/F box protein complex, SCFCdc4, and its cognate E2, Cdc34, which target the CDK inhibitor Sic1 for K48-linked polyubiquitination, leading to its proteasomal degradation. Our recent studies of this model system demonstrated that residues surrounding Sic1 lysines or lysine 48 in ubiquitin are critical for ubiquitination. This sequence-dependence is linked to evolutionarily conserved key residues in the catalytic region of Cdc34 and can determine if Sic1 is mono- or poly-ubiquitinated. Our studies indicate that amino acid determinants in the Cdc34 catalytic region and their compatibility to those surrounding acceptor lysine residues play important roles in lysine selection. This may represent a general mechanism in directing the mode of ubiquitination in E2 s.  相似文献   

18.
Chew KC  Matsuda N  Saisho K  Lim GG  Chai C  Tan HM  Tanaka K  Lim KL 《PloS one》2011,6(5):e19720

Background

Mutations in the parkin gene, which encodes a ubiquitin ligase (E3), are a major cause of autosomal recessive parkinsonism. Although parkin-mediated ubiquitination was initially linked to protein degradation, accumulating evidence suggests that the enzyme is capable of catalyzing multiple forms of ubiquitin modifications including monoubiquitination, K48- and K63-linked polyubiquitination. In this study, we sought to understand how a single enzyme could exhibit such multifunctional catalytic properties.

Methods and Findings

By means of in vitro ubiquitination assays coupled with mass spectrometry analysis, we were surprised to find that parkin is apparently capable of mediating E2-independent protein ubiquitination in vitro, an unprecedented activity exhibited by an E3 member. Interestingly, whereas full length parkin catalyzes solely monoubiquitination regardless of the presence or absence of E2, a truncated parkin mutant containing only the catalytic moiety supports both E2-independent and E2-dependent assembly of ubiquitin chains.

Conclusions

Our results here suggest a complex regulation of parkin''s activity and may help to explain how a single enzyme like parkin could mediate diverse forms of ubiquitination.  相似文献   

19.
BackgroundThe ubiquitin system is a modification process with many different cellular functions including immune signaling and antiviral functions. E3 ubiquitin ligases are enzymes that recruit an E2 ubiquitin-conjugating enzyme bound to ubiquitin in order to catalyze the transfer of ubiquitin from the E2 to a protein substrate. The RING E3s, the most abundant type of ubiquitin ligases, are characterized by a zinc (II)-binding domain called RING (Really Interesting New Gene). Viral replication requires modifying and hijacking key cellular pathways within host cells such as cellular ubiquitination. There are well-established examples where a viral proteins bind to RING E3s, redirecting them to degrade otherwise long-lived host proteins or inhibiting E3’s ubiquitination activity. Recently, three binary interactions between SARS-CoV-2 proteins and innate human immune signaling Ε3 RING ligases: NSP15-RNF41, ORF3a-TRIM59 and NSP9-MIB1 have been experimentally established.MethodsIn this work, we have investigated the mode of the previous experimentally supported NSP15-RNF41, ORF3a,-TRIM59 and NSP9-MIB1 binary interactions by in silico methodologies intending to provide structural insights of E3-virus interplay that can help identify potential inhibitors that could block SARS-CoV-2 infection of immune cells.ConclusionIn silico methodologies have shown that the above human E3 ligases interact with viral partners through their Zn(II) binding domains. This RING mediated formation of stable SARS-CoV-2-E3 complexes indicates a critical structural role of RING domains in immune system disruption by SARS-CoV-2-infection.Data AvailabilityThe data used to support the findings of this research are included within the article and are labeled with references.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号