首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

The Tridax procumbens flavonoids (TPF), are well known for their medicinal properties among local natives. The TPF are traditionally used for dropsy, anaemia, arthritis, gout, asthma, ulcer, piles, and urinary problems. It also used in treating gastric problems, body pain, and rheumatic pains of joints. The TPF have been reported to increase osteogenic functioning in mesenchymal stem cells. However, their effects on osteoclastogenesis remain unclear. The TPF isolated from T. procumbens and investigated the effects of the TPF inhibit on osteoclast differentiation and bone resorption activities using primary osteoclastic cells. Osteoclast formation was assessed by counting the number of tartrate resistant acid phosphatase (TRAP) positive multinucleated cells and by measuring both TRAP activities.

Results

The TPF significantly suppressed the RANKL-induced differentiation of osteoclasts and the formation of pits in primary osteoclastic cells. The TPF also decreased the expression of mRNAs related to osteoclast differentiation, including Trap, Cathepsin K, Mmp-9, and Mmp-13 in primary osteoclastic cells. The treatment of primary osteoclastic cells with the TPF decreased Cathepsin K, Mmp-9, and Mmp-13 proteins expression in primary osteoclastic cells.

Conclusion

These results indicated that TPF inhibit osteoclastogenesis and pits formation activities. Our results suggest that the TPF could be a potential anti-bone resorptic agent to treat patients with bone loss-associated diseases such as osteoporosis.  相似文献   

3.
4.
Two experiments were conducted to determine whether addition of hyaluronan to culture medium could improve survival of bovine embryos after vitrification or following embryo transfer. In Experiment 1, embryos were produced in vitro and cultured for 7 days in modified synthetic oviductal fluid (SOF) containing one of four concentrations of hyaluronan (0, 0.1, 0.5, or 1 mg/mL), with or without 4 mg/mL of bovine serum albumin (BSA). On Day 7 after insemination, blastocysts and expanded blastocysts were vitrified using open-pulled straws. At a concentration of 1 mg/mL, hyaluronan increased (P < 0.05) the percentage of oocytes that were blastocysts and re-expansion rate at 24 h after warming. At 0.5 mg/mL, hyaluronan tended (P < 0.10) to increase re-expansion rate at 48 h after warming and increased (P < 0.05) embryo hatching rate at 24 and 72 h. Treatment with BSA caused a slight reduction in cleavage rate (P < 0.05), but only for cultures containing hyaluronan (BSA × hyaluronan, P = 0.10), an increase in the percentage of oocytes that became blastocysts (P < 0.001), and a reduction in re-expansion rates (P < 0.001) and hatching rates (P < 0.05 or P < 0.01) at all times examined. In Experiment 2, embryos were produced in vitro and cultured in modified SOF containing 4 mg/mL BSA, with or without 1 mg/mL hyaluronan. At 159-162 h after insemination, grade 1 morula, blastocysts and expanded blastocysts were harvested for embryo transfer. Harvested embryos were transferred individually to lactating Holstein recipients with a palpable corpus luteum on Day 7 after presumptive ovulation. There was an interaction (P < 0.05) between hyaluronan and embryo stage on pregnancy rate. Recipients that received morula and blastocyst stage embryos treated with hyaluronan had a higher pregnancy rate than recipients that received control embryos of the same stage. There was no effect of hyaluronan on pregnancy rates of recipients that received expanded blastocysts. In conclusion, addition of hyaluronan to embryo culture enhanced blastocyst yield, improved survival following vitrification, and enhanced the post-transfer survival of fresh morula and blastocyst stage embryos.  相似文献   

5.
Hyaluronic acid (HA) is a component of the extracellular matrix that has been shown to play an important role in bone formation, resorption, and mineralization both in vivo and in vitro. We examined the effects of HA at several molecular weights on osteoclast formation and function induced by RANKL (receptor activator of NF-kappa B ligand) in a mouse monocyte cell line (RAW 264.7). HA at M(r) < 8,000 (low molecular weight HA (LMW-HA)) enhanced tartrate-resistant acid phosphatase-positive multinucleated cell formation and tartrate-resistant acid phosphatase activity induced by RANKL in a dose-dependent manner, whereas HA at M(r) > 900,000 (high molecular weight HA (HMW-HA)) showed no effect on osteoclast differentiation. LMW-HA enhanced pit formation induced by RAW 264.7 cells, whereas HMW-HA did not, and LMW-HA stimulated the expression of RANK (receptor activator of NF-kappa B) protein in RAW 264.7 cells. In addition, we found that LMW-HA enhanced the levels of c-Src protein and phosphorylation of ERKs and p38 MAPK in RAW 264.7 cells stimulated with RANKL, whereas the p38 MAPK inhibitor SB203580 inhibited RANKL-induced osteoclast differentiation. This enhancement of c-Src and RANK proteins induced by LMW-HA was inhibited by CD44 function-blocking monoclonal antibody. These results indicate that LMW-HA plays an important role in osteoclast differentiation and function through the interaction of RANKL and RANK.  相似文献   

6.
The complex anatomy the of ovine cervix limits the success of transcervical artificial insemination in sheep, but Misoprostol (a PGE1 analogue) relaxes the cervix and facilitates transcervical artificial insemination. However, the mechanism by which Misoprostol causes cervical relaxation is not known. This study examined if intra-cervical Misoprostol altered the hyaluronan content and the mRNA expression of COX-2, LHR, or FSHR in the cervix of the estrus ewe. Estrus was synchronized in cyclic ewes with progestagen pessaries and 48 h after sponge removal ewes were treated intra-cervically with 0 (controls), 200, or 400 μg Misoprostol. Hyaluronan content was determined by ELISA and mRNA expression of LHR, FSHR, and COX-2 was analyzed by in situ hybridization using digoxigenin-11-uridine-5′-triphosphate labeled riboprobes. The hyaluronan content of the cervix was significantly higher in sheep that received 200 (P < 0.05) or 400 (P < 0.05) μg Misoprostol compared to controls. Moreover, it was significantly (P < 0.05) higher in the vaginal region compared to mid and uterine regions. Misoprostol increased (P < 0.05) the mRNA expression of LHR and COX-2 but not FSHR. The expression for all three genes was highest in the vaginal region and lowest in uterine region. The luminal epithelium and circular smooth muscle layers had higher (P < 0.05) expression for LHR, FSHR, and COX-2 mRNAs, and the sub-epithelial stroma had the lowest (P < 0.05). We propose that the intra-cervical application of Misoprostol induces the mRNA expression of LHR, FSHR, and COX-2 through a positive feedback loop. The data suggest that softening of the cervix by Misoprostol is caused by an increase in the hyaluronan content of the cervix.  相似文献   

7.
Factor VIIa-tissue factor complex (fVIIa/TF) and factor XIa (fXIa) play important roles in the initiation and amplification of coagulation, respectively. They may be good targets for the development of novel anticoagulants to treat and prevent thromboembolic disease. In this study, we cloned, expressed and identified a novel anticoagulant peptide, AcaNAP10, from the blood-feeding nematode Ancylostoma caninum. AcaNAP10 showed potent anticoagulant activity and doubled the activated partial thromboplastin and prothrombin times at estimated concentrations of 92.9 nM and 28.8 nM, respectively. AcaNAP10 demonstrated distinct mechanisms of action compared with known anticoagulants. It inhibited fXIa and fVIIa/TF with IC50 values of 25.76 ± 1.06 nM and 123.9 ± 1.71 nM, respectively. This is the first report on an anticoagulant that can inhibit both fXIa and fVIIa/TF. This anticoagulant peptide may be an alternative molecule for the development of novel anticoagulants.  相似文献   

8.
Sulfated polysaccharides potently inhibit the infectivity of herpes simplex virus (HSV) in cultured cells. In this study, we have analyzed sulfated xylogalactofucan and alginic acid containing fractions generated from Laminaria angustata, a marine alga. The xylogalactofucan that has apparent molecular mass of 56 ± 5 kDa and unusually low sulfate content contains, inter alia, 1,3-, 1,4- and 1,2-linked fucopyranosyl residues. The algin (molecular mass: 32 ± 5 kDa) contains gulo- (55.5%) and mannuronic (44.5%) acid residues. Introduction of sulfate groups enhanced the macromolecules capability to inhibit the infection of cells by HSV-1. The 50% inhibitory concentration (IC50) values of these macromolecules against HSV-1 were in the range of 0.2-25 μg ml−1 and they lacked cytotoxicity at concentrations up to 1000 μg ml−1. The sulfate content appeared to be an important hallmark of anti-HSV-1 activity. Our results suggest the feasibility of inhibiting HSV attachment to cells by direct interaction of polysaccharides with viral particles.  相似文献   

9.
The role of Giardia duodenalis surface molecules in the attachment of trophozoites to epithelial cells has been established through the dual strategies of characterizing G. duodenalis clones with deficient adhesion and blocking experiments with surface-specific monoclonal antibodies. Also, the infectivity of the analyzed clones was tested using Mongolian gerbils as experimental model. Two adhesion-deficient G. duodenalis clones, C6 and C7, were isolated from the wild type C5 clone which in turn was obtained from the WB strain. The adhesion efficiencies of C6 and C7 clones (48.2 ± 4.9 and 32.6 ± 2.4, respectively) were significantly lower as compared with WB strain or C5 clone (82.8 ± 6.4 and 79.9 ± 7.9). Analysis of radiolabel surface proteins by 1D and 2D SDS-PAGE revealed prominently labelled 28 and 88 kDa components in C6 and C7 clones and a major 200 kDa protein in the C5 clone and the WB strain. The 88 and 200 kDa components are acidic proteins by two-dimensional electrophoretic analyses. The most striking difference between wild-type and adhesion-deficient Giardia trophozoites was the reduced expression of a 200 kDa surface protein in the latter. Significantly, a mAb (IG3) specific for the 200 kDa protein that reacted with more than 99% of WB and C5 trophozoites and less than 1% of C6 and C7 trophozoites as determined by indirect immunofluorescence inhibited the adhesion of trophozoites from WB and C5 clone to Madin Darby Canine Kidney cells by 52% and 40.9%, respectively, suggesting a participation of this antigen in adherence. Finally, the functional relevance of trophozoite adhesion to epithelial cells was indicated by the reduced capacity of the adhesion-deficient clones to establish the infection in Mongolian gerbils.  相似文献   

10.
11.
The intestinal permeability of low-molecular-weight hyaluronan (LMW-HA) was investigated by using cultured monolayers of Caco-2 cells. The amount of LMW-HA that permeated the Caco-2 monolayers was measured by a carbazole assay. The permeability of LMW-HA increased inversely with the molecular size and was dose-dependent. The transport was observed to be energy-independent, and was correlated with the tight junction (TJ) permeability. These results suggest that LMW-HA permeated the Caco-2 cell monolayers via the paracellular pathway.  相似文献   

12.
13.
14.
In the pituitary gland, NO is locally synthesized by gonadotroph and folliculo-stellate cells. Many reports have shown that NO can modulate the growth hormone (GH) secretion. However, its role on mice embryo GH regulation remains unclear. In addition, it is unknown whether the regulation is associated with the proliferation of pituitary cells. In this study, we have investigated the regulatory effects of NO on somatotroph differentiation, proliferation and GH mRNA and protein expression using primary cell cultures of mice fetal pituitaries (embryonic days 16.5, ED 16.5). Our results show that incubation of pituitary cells in the presence of sodium nitroprusside (SNP; 1 mM), a NO donor, for 4.5 h resulted in a significant increase in GH mRNA and protein expression (P < 0.05) and the stimulation of SNP can be inhibited by hemoglobin, a NO scavenger. But the addition of cyclic guanosine monophosphate (cGMP; 3.0 mM), the second messenger of multiple NO actions cannot influence GH mRNA and protein expression. The cyclic nucleotide cellular efflux pumps existed in the pituitary cells can transport the majority of de novo-produced cGMP and effectively block cGMP accumulation. For maintaining intracellular concentration of cGMP, probenecid (0.5 mM), a blocker of cGMP efflux pump, combined with cGMP (3.0 mM) was used to treat the pituitary cells. This also cannot influence GH mRNA and protein expression. In addition, the ratio of GH-positive cells is increased significantly after the stimulation of SNP (P < 0.05). However, SNP cannot modulate the pituitary cell proliferation. From these results we conclude that NO can increase GH mRNA and protein expression in fetal pituitary cells and cGMP is not involved in this hormonal regulation. Stimulation of NO on the somatotroph differentiation does not occur due to pituitary cell proliferation.  相似文献   

15.
Purple acid phosphatase in the walls of tobacco cells   总被引:1,自引:0,他引:1  
Kaida R  Hayashi T  Kaneko TS 《Phytochemistry》2008,69(14):2546-2551
Purple acid phosphatase isolated from the walls of tobacco cells appears to be a 220 kDa homotetramer composed of 60 kDa subunits, which is purple in color and which contains iron as its only metal ion. Although the phosphatase did not require dithiothreitol for activity and was not inhibited by phenylarsine oxide, the enzyme showed a higher catalytic efficiency (kcat/Km) for phosphotyrosine-containing peptides than for other substrates including p-nitrophenyl-phosphate and ATP. The phosphatase formed as a 120 kDa dimer in the cytoplasm and as a 220 kDa tetramer in the walls, where Brefeldin A blocked its secretion during wall regeneration. According to our double-immunofluorescence labeling results, the enzyme might be translocated through the Golgi apparatus to the walls at the interphase and to the cell plate during cytokinesis.  相似文献   

16.
The role for hyaluronan (HA) and CD44 in vascular barrier regulation is unknown. We examined high and low molecular weight HA (HMW-HA, approximately 1,000 kDa; LMW-HA, approximately 2.5 kDa) effects on human transendothelial monolayer electrical resistance (TER). HMW-HA increased TER, whereas LMW-HA induced biphasic TER changes ultimately resulting in EC barrier disruption. HMW-HA induced the association of the CD44s isoform with, and AKT-mediated phosphorylation of, the barrier-promoting sphingosine 1-phosphate receptor (S1P1) within caveolin-enriched lipid raft microdomains, whereas LMW-HA induced brief CD44s association with S1P1 followed by sustained association of the CD44v10 isoform with, and Src and ROCK 1/2-mediated phosphorylation of, the barrier-disrupting S1P3 receptor. HA-induced EC cytoskeletal reorganization and TER alterations were abolished by either disruption of lipid raft formation, CD44 blocking antibody or siRNA-mediated reductions in expression of CD44 isoforms. Silencing S1P1, AKT1, or Rac1 blocked the barrier enhancing effects of HA whereas silencing S1P3, Src, ROCK1/2, or RhoA blocked the barrier disruption induced by LMW-HA. In summary, HA regulates EC barrier function through novel differential CD44 isoform interaction with S1P receptors, S1P receptor transactivation, and RhoA/Rac1 signaling to the EC cytoskeleton.  相似文献   

17.
Angiogenesis or the formation of new blood vessels is important in the growth and metastatic potential of various cancers. Therefore, understanding the mechanism(s) by which angiogenesis occurs can have important therapeutic implications in numerous malignancies. We and others have demonstrated that low molecular weight hyaluronan (LMW-HA, ∼2500 Da) promotes endothelial cell (EC) barrier disruption and angiogenesis. However, the mechanism(s) by which this occurs is poorly defined. Our data indicate that treatment of human EC with LMW-HA induced CD44v10 association with the receptor-tyrosine kinase, EphA2, transactivation (tyrosine phosphorylation) of EphA2, and recruitment of the PDZ domain scaffolding protein, PATJ, to the cell periphery. Silencing (siRNA) CD44, EphA2, PATJ, or Dbs (RhoGEF) expression blocked LMW-HA-mediated angiogenesis (EC proliferation, migration, and tubule formation). In addition, silencing EphA2, PATJ, Src, or Dbs expression blocked LMW-HA-mediated RhoA activation. To translate our in vitro findings, we utilized a novel anginex/liposomal targeting of murine angiogenic endothelium with either CD44 or EphA2 siRNA and observed inhibition of LMW-HA-induced angiogenesis in implanted Matrigel plugs. Taken together, these results indicate LMW-HA-mediated transactivation of EphA2 is required for PATJ and Dbs membrane recruitment and subsequent RhoA activation required for angiogenesis. These results suggest that targeting downstream effectors of LMW-HA could be a useful therapeutic intervention for angiogenesis-associated diseases including tumor progression.  相似文献   

18.
Hepatitis B virus (HBV)-targeted ribonuclease (HBV-TR) is a fused protein of HBV core protein and a ribonuclease, human eosinophil-derived neurotoxin (hEDN). Our previous results showed that HBV-TR could effectively inhibit HBV replication in vitro. To test whether HBV-TR can inhibit HBV replication in vivo, we constructed a recombinant adenoviral vector expressing HBV-TR (Ad-TR) and used it to treat HBV-transgenic mice. Immunohistochemical staining showed that TR was expressed at varied levels in different tissues of Ad-TR-treated mice. Serum HBsAg concentration was decreased by 64.8% for the Ad-TR-treated mice compared with empty adenoviral vector-treated control mice. The amount of HBV-DNA in the livers of the Ad-TR-treated mice was 0.74 × 107 copies/μg of genomic DNA while the amount of HBV-DNA in the livers of the empty adenoviral vector-treated control mice was 2.86 × 107 copies/μg of genomic DNA. Serum HBV-DNA of Ad-TR-treated mice was also decreased by 71.4% compared with empty adenoviral vector-treated control mice. In addition, for some Ad-TR-treated mice, the expression of HBsAg in the liver cells turned negative. No discernible adverse effects were observed for Ad-TR-treated mice. Taken together, our results indicated that adenovirus mediated transfer of HBV-TR can inhibit HBV replication in vivo.  相似文献   

19.
2,3-Dihydroxy-quinoxaline, a small molecule that promotes ATPase catalytic activity of Herpes Simplex Virus thymidine kinase (HSV-TK), was identified by virtual screening. This compound competitively inhibited HSV-TK catalyzed phosphorylation of acyclovir with Ki = 250 μM (95% CI: 106–405 μM) and dose-dependently increased the rate of the ATP hydrolysis with KM = 112 μM (95% CI: 28–195 μM). The kinetic scheme consistent with this experimental data is proposed.  相似文献   

20.
In fish, amphibians and mammals, gap junctions of some cells allow passage of elongate molecules as large as 18 kDa, while excluding smaller, less elongate molecules. Fluorescently labeled Calmodulin (17 kDa) and fluorescently labeled Troponin-C (18 kDa), when microinjected into oocytes of Danio rerio, Xenopus laevis or Mus domestica, were able to transit the gap junctions between these oocytes and the granulosa cells which surrounded them. Co-microinjected with these Ca2+-binding proteins, Texas-red-labeled dextran (10 kDa) remained in the microinjected cell. Osteocalcin (6 kDa), also a Ca2+-binding protein, but with a wide “V” shape proved unable to transit these gap junctions. Calmodulin, but not Troponin-C, was able to transit gap junctions of gonadotropin treated WB cells in culture. We show evidence that molecules as large as 18 kDa can pass through some vertebrate gap junctions, both homologous and heterologous, and that it is primarily molecular configuration which governs gap junctional permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号