首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent studies have shown that myostatin, first identified as a negative regulator of skeletal muscle growth, may also be involved in the formation of fibrosis within skeletal muscle. In this study, we further explored the potential role of myostatin in skeletal muscle fibrosis, as well as its interaction with both transforming growth factor-beta1 and decorin. We discovered that myostatin stimulated fibroblast proliferation in vitro and induced its differentiation into myofibroblasts. We further found that transforming growth factor-beta1 stimulated myostatin expression, and conversely, myostatin stimulated transforming growth factor-beta1 secretion in C2C12 myoblasts. Decorin, a small leucine-rich proteoglycan, was found to neutralize the effects of myostatin in both fibroblasts and myoblasts. Moreover, decorin up-regulated the expression of follistatin, an antagonist of myostatin. The results of in vivo experiments showed that myostatin knock-out mice developed significantly less fibrosis and displayed better skeletal muscle regeneration when compared with wild-type mice at 2 and 4 weeks following gastrocnemius muscle laceration injury. In wild-type mice, we found that transforming growth factor-beta1 and myostatin co-localize in myofibers in the early stages of injury. Recombinant myostatin protein stimulated myofibers to express transforming growth factor-beta1 in skeletal muscles at early time points following injection. In summary, these findings define a fibrogenic property of myostatin and suggest the existence of co-regulatory relationships between transforming growth factor-beta1, myostatin, and decorin.  相似文献   

3.
The p53 protein is known as a guardian of the genome and is involved in energy metabolism. Since the metabolic system is uniquely regulated in each tissue, we have anticipated that p53 also would play differential roles in each tissue. In this study, we focused on the functions of p53 in white adipose tissue (adipocytes) and skeletal muscle (myotubes), which are important peripheral tissues involved in energy metabolism. We found that in 3T3-L1 preadipocytes, but not in C2C12 myoblasts, p53 stabilization or overexpression downregulates the expression of Ppargc1a, a master regulator of mitochondrial biogenesis. Next, by using p53-knockdown C2C12 myotubes or 3T3-L1 preadipocytes, we further examined the relationship between p53 and mitochondrial regulation. In C2C12 myoblasts, p53 knockdown did not significantly affect Ppargc1a expression and mtDNA, but did suppress differentiation to myotubes, as previously reported. However, in 3T3-L1 preadipocytes and mouse embryonic fibroblasts, p53 downregulation enhanced both differentiation into adipocytes and mitochondrial DNA content. Furthermore, p53-depleted 3T3-L1 cells showed increase in mitochondrial proteins and enhancement of both Citrate Synthase and Complex IV activities during adipogenesis. These results show that p53 differentially regulates cell differentiation and mitochondrial biogenesis between adipocytes and myotubes, and provide evidence that p53 is an inhibitory factor of mitochondrial regulation in adipocyte lineage.  相似文献   

4.
Luo Z  Ma L  Zhao Z  He H  Yang D  Feng X  Ma S  Chen X  Zhu T  Cao T  Liu D  Nilius B  Huang Y  Yan Z  Zhu Z 《Cell research》2012,22(3):551-564
Impaired aerobic exercise capacity and skeletal muscle dysfunction are associated with cardiometabolic diseases. Acute administration of capsaicin enhances exercise endurance in rodents, but the long-term effect of dietary capsaicin is unknown. The capsaicin receptor, the transient receptor potential vanilloid 1 (TRPV1) cation channel has been detected in skeletal muscle, the role of which remains unclear. Here we report the function of TRPV1 in cultured C2C12 myocytes and the effect of TRPV1 activation by dietary capsaicin on energy metabolism and exercise endurance of skeletal muscles in mice. In vitro, capsaicin increased cytosolic free calcium and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression in C2C12 myotubes through activating TRPV1. In vivo, PGC-1α in skeletal muscle was upregulated by capsaicin-induced TRPV1 activation or genetic overexpression of TRPV1 in mice. TRPV1 activation increased the expression of genes involved in fatty acid oxidation and mitochondrial respiration, promoted mitochondrial biogenesis, increased oxidative fibers, enhanced exercise endurance and prevented high-fat diet-induced metabolic disorders. Importantly, these effects of capsaicin were absent in TRPV1-deficient mice. We conclude that TRPV1 activation by dietary capsaicin improves energy metabolism and exercise endurance by upregulating PGC-1α in skeletal muscles. The present results indicate a novel therapeutic strategy for managing metabolic diseases and improving exercise endurance.  相似文献   

5.
Toxoplasma gondii infects virtually any nucleated cell type of warm-blooded animals and humans including skeletal muscle cells (SkMCs). Infection of SkMCs by T. gondii, differentiation from the highly replicative tachyzoites to dormant bradyzoites and tissue cyst formation are crucial for parasite persistence in muscle tissue. These processes are also prerequisites for one of the major routes of transmission to humans via undercooked or cured meat products. Evidence obtained in vitro and in vivo indicates that SkMCs are indeed a preferred cell type for tissue cyst formation and long-term persistence of T. gondii. This raises intriguing questions about what makes SkMCs a suitable environment for parasite persistence and how the SkMC–T. gondii interaction is regulated. Recent data from our laboratory show that differentiation of SkMCs from myoblasts to syncytial myotubes, rather than the cell type itself, is critical for parasite growth, bradyzoite formation and tissue cyst maturation. Myotube formation is accompanied by a permanent withdrawal from the cell cycle, and the negative cell cycle regulator cell division autoantigen (CDA)-1 directly or indirectly promotes T. gondii stage conversion in SkMCs. Moreover, host cell cycle regulators are specifically modulated in mature myotubes, but not myoblasts, following infection. Myotubes also up-regulate the expression of various pro-inflammatory cytokines and chemokines after T. gondii infection and they respond to IFN-γ by exerting potent anti-parasitic activity. This highlights that mature myotubes are active participants rather than passive targets of the local immune response to T. gondii which may also govern the interaction between SkMCs and the parasite.  相似文献   

6.
Thrombin is involved in tissue repair through its proteolytic activation of a specific thrombin receptor (PAR-1). Previous studies have shown that serine proteases and their inhibitors are involved in neuromuscular junction plasticity. We hypothesized that thrombin could also be involved during skeletal muscle inflammation. Thus we investigated the expression of PAR-1 in human myoblasts and myotubes in vitro and its regulation by injury-related factors. The functionality of this receptor was tested by measuring thrombin's ability to elicit Ca2+ signals. Western blot analysis and immunocytochemistry demonstrated the presence of PAR-1 in myoblasts but not in myotubes unless they were treated by tumor necrosis factor-alpha (10 ng/ml), interleukin-1beta (5 ng/ml), or transforming growth factor-beta(1) (10 ng/ml). The addition of 10 nM alpha-thrombin evoked a strong Ca2+ signal in myoblasts while a limited response in myotubes was observed. However, in the additional presence of injury-related factors, the amplitude of the Ca2+ response was significantly enhanced, representing 88, 65, 48% of their respective basal level, compared to 27% of that obtained in controls. Moreover, immunochemical studies on human skeletal muscle biopsies of patients suffering from inflammatory myopathies showed an overexpression of PAR-1. These results suggest that PAR-1 synthesis may be induced in response to muscle injury, thereby implicating thrombin signaling in certain muscle inflammatory diseases.  相似文献   

7.
Skeletal muscle insulin resistance (IR) is closely linked to hyperglycemia and metabolic disorders. Regular exercise enhances insulin sensitivity in skeletal muscle, but its underlying mechanisms remain unknown. Sestrin3 (SESN3) is a stress-inducible protein that protects against obesity-induced hepatic steatosis and insulin resistance. Regular exercise training is known to increase SESN3 expression in skeletal muscle. The purpose of this study was to explore whether SESN3 mediates the metabolic effects of exercise in the mouse model of high-fat diet (HFD)-induced IR. SESN3?/? mice exhibited severer body weight gain, ectopic lipid accumulation, and dysregulation of glucose metabolism after long-term HFD feeding compared with the wild-type (WT) mice. Moreover, we found that SESN3 deficiency weakened the effects of exercise on reducing serum insulin levels and improving glucose tolerance in mice. Exercise training increased pAKT-S473 and GLUT4 expression, accompanied by enhanced pmTOR-S2481 (an indicator of mTORC2 activity) in WT quadriceps that were less pronounced in SESN3?/? mice. SESN3 overexpression in C2C12 myotubes further confirmed that SESN3 played an important role in skeletal muscle glucose metabolism. SESN3 overexpression increased the binding of Rictor to mTOR and pmTOR-S2481 in C2C12 myotubes. Moreover, SESN3 overexpression resulted in an elevation of glucose uptake and a concomitant increase of pAKT-S473 in C2C12 myotubes, whereas these effects were diminished by downregulation of mTORC2 activity. Taken together, SESN3 is a crucial protein in amplifying the beneficial effects of exercise on insulin sensitivity in skeletal muscle and systemic glucose levels. SESN3/mTORC2/AKT pathway mediated the effects of exercise on skeletal muscle insulin sensitivity.  相似文献   

8.
Decorin, a small leucine-rich proteoglycan, plays an important role in the regulation of cell growth. Our recent study has shown that immobilized decorin in the collagen matrix sequesters myostatin into the extracellular matrix and prevents its inhibitory action to myoblast proliferation in vitro. However, it still remains unclear whether free decorin could affect the proliferation and differentiation of myogenic cells by regulating myostatin activity. In the present study, we generated stable clonal C2C12 myoblasts that were over-expressing decorin, and showed that decorin over-expressing cells had an increased rate of proliferation as compared to control cells. Decorin over-expressing cells formed multi-giant hypertrophic myotubes with an elongated morphology and larger size as compared to control cells, although the initiation of differentiation in decorin over-expressing cells was somewhat delayed as compared to control cells. Western blot analysis demonstrated that MyoD expression in decorin over-expressing cells was lower than that in control cells until 12 h after induction to differentiate. At 48-h differentiation, the expressions of MyoD, p21 and myogenin were dramatically increased in cells that over-expressed decorin. Furthermore, we revealed that over-expression of decorin suppressed the activity of myostatin endogenously synthesized in C2C12 myoblasts and attenuated the signaling of exogenous myostatin. Consistent with these results, knock-down of decorin impairs C2C12 myoblast growth by increasing the sensitivity to exogenous myostatin. These results clearly show that decorin enhances the proliferation and differentiation of C2C12 myoblasts through suppressing myostatin activity.  相似文献   

9.
Since its identification in 1997, myostatin has been considered as a novel and unique negative regulator of muscle growth, as mstn-/- mice display a dramatic and widespread increase in skeletal muscle mass. Myostatin also appears to be involved in muscle homeostasis in adults as its expression is regulated during muscle atrophy. Moreover, deletion of the myostatin gene seems to affect adipose tissue mass in addition to skeletal muscle mass. Natural myostatin gene mutations occur in cattle breeds such as Belgian Blue, exhibiting an obviously increased muscle mass, but also in humans, as has recently been demonstrated. Here we review these natural mutations and their associated phenotypes as well as the physiological influence of the alterations in myostatin expression and the physiopathological consequences of changes in myostatin expression, especially with regard to satellite cells. Interestingly, studies have demonstrated some rescue effects of myostatin in muscular pathologies such as myopathies, providing a novel pharmacological strategy for treatment. Furthermore, the myostatin pathway is now better understood thanks to in vitro studies and it consists of inhibition of myoblast progression in the cell cycle, inhibition of myoblast terminal differentiation, in both cases associated to protection from apoptosis. The molecular pathway driving the myogenic myostatin influence is currently under extensive study and many molecular partners of myostatin have been identified, suggesting novel potent muscle growth enhancers for both human and agricultural applications.  相似文献   

10.
11.
MicroRNA-27a promotes myoblast proliferation by targeting myostatin   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs that play critical roles in skeletal muscle development as well as in regulation of muscle cell proliferation and differentiation. However, the role of miRNAs in myoblast proliferation remains poorly understood. Here we found that the expression of miR-27a was increased during proliferation of C2C12 myoblasts. Moreover, overexpression of miR-27a in C2C12 cells promoted myoblast proliferation by reducing the expression of myostatin, a critical inhibitor of skeletal myogenesis. In addition, the miR-27a was confirmed to target myostatin 3'UTR by a luciferase reporter analysis. Together, these results suggest that miR-27a promotes myoblast proliferation through targeting myostatin.  相似文献   

12.
Glucocorticoids production is increased in many pathological conditions that are associated with muscle loss, but their role in causing muscle wasting is not fully understood. We have demonstrated a new mechanism of glucocorticoid-induced muscle atrophy: Dexamethasone (Dex) suppresses satellite cell function contributing to the development of muscle atrophy. Specifically, we found that Dex decreases satellite cell proliferation and differentiation in vitro and in vivo. The mechanism involved Dex-induced upregulation of myostatin and suppression of Akirin1, a promyogenic gene. When myostatin was inhibited in Dex-treated mice, Akirin1 expression increased as did satellite cell activity, muscle regeneration and muscle growth. In addition, silencing myostatin in myoblasts or satellite cells prevented Dex from suppressing Akirin1 expression and cellular proliferation and differentiation. Finally, overexpression of Akirin1 in myoblasts increased their expression of MyoD and myogenin and improved cellular proliferation and differentiation, theses improvements were no longer suppressed by Dex. We conclude that glucocorticoids stimulate myostatin which inhibits Akirin1 expression and the reparative functions of satellite cells. These responses attribute to muscle atrophy. Thus, inhibition of myostatin or increasing Akirin1 expression could lead to therapeutic strategies for improving satellite cell activation and enhancing muscle growth in diseases associated with increased glucocorticoid production.  相似文献   

13.
14.
15.
16.
The growth of muscle fibers can be negatively regulated by bovine myostatin. The first two exons of myostatin gene code for the N-propeptide and its third exon codes for the C-polypeptide. Myostatin is secreted as a latent configuration formed by dimerization of two matured C peptides non-covalently linked with the N terminal pro-peptide. Pro-peptide has two distinct functions in guiding protein folding and regulating biological activity of myostatin. When the structure of the leader peptide is altered via mutations resulting in more tight binding with the mature peptide, myostatin function is inhibited, resulting in the changes of P21 and CDK2 expression levels which are relatedto the regulation of cell cycle. In the present study, the coding region of bMSTN (bovine myostatin) gene was amplified and mutated (A224C and G938A) through fusion PCR, and the mutated bMSTN gene (bMSTN-mut) was inserted in frame into the pEF1a-IRES-DsRed-Express2 vector and transfected into bovine fibroblast cells. The expression levels of bMSTN-mut, P21 and CDK2 (cyclin dependent kinase 2) were examined with qPCR and Western-blotting. Changes in cell cycle after transfection were also analyzed with flow cytometry. The results indicated that leader peptide mutation resulted in down-regulation of P21 expression levels and up-regulation of CDK2 expression levels. The flow cytometry results showed that the proportion of cells in the G0/G1-phase was lower and that of cells in the S-phase was higher in bMSTN-mut transfected group than that in the control group. The proliferation rate of bMSTN-mut transfected cells was also significantly higher than that of the control cells. In conclusion, the studies have shown that the pEF1a-IRES-DsRed-Express2–bMSTN-mut recombinant plasmid could effectively promote the proliferation of bovine fibroblast cells. The site-directed mutagenesis of bMSTN gene leader peptide and in vitro expression in bovine fibroblast cells could be helpful to further the studies of bMSTN in regulating bovine muscle cell growth and development.  相似文献   

17.
Breast cancer type 1 (BRCA1) susceptibility protein is expressed across multiple tissues including skeletal muscle. The overall objective of this investigation was to define a functional role for BRCA1 in skeletal muscle using a translational approach. For the first time in both mice and humans, we identified the presence of multiple isoforms of BRCA1 in skeletal muscle. In response to an acute bout of exercise, we found increases in the interaction between the native forms of BRCA1 and the phosphorylated form of acetyl-CoA carboxylase. Decreasing BRCA1 content using a shRNA approach in cultured primary human myotubes resulted in decreased oxygen consumption by the mitochondria and increased reactive oxygen species production. The decreased BRCA1 content also resulted in increased storage of intracellular lipid and reduced insulin signaling. These results indicate that BRCA1 plays a critical role in the regulation of metabolic function in skeletal muscle. Collectively, these data reveal BRCA1 as a novel target to consider in our understanding of metabolic function and risk for development of metabolic-based diseases.  相似文献   

18.
19.
Myostatin, a member of TGF-beta superfamily of growth factors, acts as a negative regulator of skeletal muscle mass. The mechanism whereby myostatin controls the proliferation and differentiation of myogenic cells is mostly clarified. However, the regulation of myostatin activity to myogenic cells after its secretion in the extracellular matrix (ECM) is still unknown. Decorin, a small leucine-rich proteoglycan, binds TGF-beta and regulates its activity in the ECM. Thus, we hypothesized that decorin could also bind to myostatin and participate in modulation of its activity to myogenic cells. In order to test the hypothesis, we investigated the interaction between myostatin and decorin by surface plasmon assay. Decorin interacted with mature myostatin in the presence of concentrations of Zn(2+) greater than 10microM, but not in the absence of Zn(2+). Kinetic analysis with a 1:1 binding model resulted in dissociation constants (K(D)) of 2.02x10(-8)M and 9.36x10(-9)M for decorin and the core protein of decorin, respectively. Removal of the glycosaminoglycan chain by chondroitinase ABC digestion did not affect binding, suggesting that decorin could bind to myostatin with its core protein. Furthermore, we demonstrated that immobilized decorin could rescue the inhibitory effect of myostatin on myoblast proliferation in vitro. These results suggest that decorin could trap myostatin and modulate its activity to myogenic cells in the ECM.  相似文献   

20.
Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. To address this problem, we used a systems-based discovery strategy to search for a small molecule whose mRNA expression signature negatively correlates to mRNA expression signatures of human skeletal muscle atrophy. This strategy identified a natural small molecule from tomato plants, tomatidine. Using cultured skeletal myotubes from both humans and mice, we found that tomatidine stimulated mTORC1 signaling and anabolism, leading to accumulation of protein and mitochondria, and ultimately, cell growth. Furthermore, in mice, tomatidine increased skeletal muscle mTORC1 signaling, reduced skeletal muscle atrophy, enhanced recovery from skeletal muscle atrophy, stimulated skeletal muscle hypertrophy, and increased strength and exercise capacity. Collectively, these results identify tomatidine as a novel small molecule inhibitor of muscle atrophy. Tomatidine may have utility as a therapeutic agent or lead compound for skeletal muscle atrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号