首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Articular chondrocytes progressively undergo dedifferentiation into a spindle-shaped mesenchymal cellular phenotype in monolayers. Chondrocyte dedifferentiation is stimulated by retinoic acid. On the other hand, bone morphogenic proteins (BMPs) stimulate differentiation of chondrocytes. We examined the mechanism of effects of BMP in chondrocyte differentiation with use of a recombinant adenovirus vector system. Constitutively active forms of BMP type I receptors (BMPR-IA and BMPR-IB) and those of activin receptor-like kinase (ALK)-1 and ALK-2 maintained differentiation of chondrocytes in the presence of retinoic acid. The BMP receptor-regulated signaling substrates, Smad1/5, weakly induced chondrocyte differentiation; the effects of Smad1/5 were enhanced by BMP-7 treatment. Inhibitory Smad, Smad6, blocked increase of expression of chondrocyte markers by BMP-7 in a dose-dependent manner. SB202190, a p38 mitogen-activated protein kinase inhibitor, inhibited this effect of BMP-7; however, since SB202190 suppressed phosphorylation of Smad1/5, this may be due to blockade of BMP receptor activation. These results together strongly suggest that induction of chondrocyte differentiation by BMP-7 is regulated by Smad pathways.  相似文献   

7.
8.
Although bone morphogenetic proteins (BMPs) are clinically useful for bone regeneration, large amounts are required to induce new bone formation in monkeys and humans. We found recently that heparin stimulates BMP activity in vitro (Takada, T., Katagiri, T., Ifuku, M., Morimura, N., Kobayashi, M., Hasegawa, K., Ogamo, A., and Kamijo, R. (2003) J. Biol. Chem. 278, 43229-43235). In the present study, we examined whether heparin enhances bone formation induced by BMPs in vivo and attempted to determine the molecular mechanism by which heparin stimulates BMP activity using C2C12 myoblasts. Heparin enhanced BMP-2-induced gene expression and Smad1/5/8 phosphorylation at 24 h and thereafter, although not within 12 h. Heparitinase treatment did not affect the response of cells to BMP-2. In the presence of heparin, degradation of BMP-2 was blocked, and the half-life of BMP-2 in the culture medium was prolonged by nearly 20-fold. Although noggin mRNA was induced by BMP-2 within 1 h regardless of the presence of heparin, noggin failed to inhibit BMP-2 activity in the presence of heparin. Furthermore, simultaneous administration of BMP-2 and heparin in vivo dose-dependently induced larger amounts of mineralized bone tissue compared with BMP-2 alone. These findings clearly indicate that heparin enhances BMP-induced osteoblast differentiation not only in vitro but also in vivo. This study indicates that heparin enhances BMP-induced osteoblast differentiation in vitro and in vivo by protecting BMPs from degradation and inhibition by BMP antagonists.  相似文献   

9.
10.
Amyloid precursor protein (APP) is cleaved not only to generate the amyloid peptide (Aß), involved in neurodegenerative processes, but can also be metabolized by alpha secretase to produce and release soluble N-terminal APP (sAPPα), which has many properties including the induction of axonal elongation and neuroprotection. The mechanisms underlying the properties of sAPPα are not known. Here, we used proteomic analysis of mouse cortico-hippocampal membranes to identify the neuronal specific alpha3 (α3)-subunit of the plasma membrane enzyme Na, K-ATPase (NKA) as a new binding partner of sAPPα. We showed that sAPPα recruits very rapidly clusters of α3-NKA at neuronal surface, and its binding triggers a cascade of events promoting sAPPα-induced axonal outgrowth. The binding of sAPPα with α3-NKA was not observed for sAPPα-induced Aß1-42 oligomers neuroprotection, neither the downstream events particularly the interaction of sAPPα with APP before endocytosis, ERK signaling, and the translocation of SET from the nucleus to the plasma membrane. These data suggest that the mechanisms of the axonal growth promoting and neuroprotective properties of sAPPα appear to be specific and independent. The signals at the cell surface specific to trigger these mechanisms require further study.  相似文献   

11.
Both BMPs and Wnts play important roles in the regulation of bone formation. We examined the molecular mechanism regulating cross-talk between BMPs and Wnts in the osteoblastic differentiation of C2C12 cells. Canonical Wnts (Wnt1 and Wnt3a) but not non-canonical Wnts (Wnt5a and Wnt11) synergistically stimulated ALP activity in the presence of BMP-4. Wnt3a and BMP-4 synergistically stimulated the expression of type I collagen and osteonectin. However, Wnt3a did not stimulate ALP activity that was induced by a constitutively active BMP receptor or Smad1. Noggin and Dkk-1 suppressed the synergistic effect of BMP-4 and Wnt3a, but Smad7 did not. Overexpression of β-catenin did not affect BMP-4-induced ALP activity. By contrast, inhibition or stimulation of GSK3β activity resulted in either stimulation or suppression of ALP activity, respectively, in the presence of BMP-4. Taken together, these findings suggest that BMPs and canonical Wnts may regulate osteoblastic differentiation, especially at the early stages, through a GSK3β-dependent but β-catenin-independent mechanism.  相似文献   

12.
Gremlin is a glycoprotein that binds and antagonizes the actions of bone morphogenetic proteins (BMPs) -2, -4, and -7. Gremlin appears to activate the extracellular regulated kinase (ERK) pathway in endothelial and tumor cells, and as a consequence to have direct cellular effects. To determine whether gremlin has direct effects in osteoblasts, independent of its BMP binding activity, we examined its effects in ST-2 murine stromal cell lines and in primary cultures of murine calvarial osteoblasts. Gremlin did not activate Signaling mothers against decapentaplegic (Smad), and suppressed the BMP-2 induced Smad 1/5/8 phosphorylation and the transactivation of the BMP/Smad reporter construct 12xSBE-Oc-pGL3, confirming its BMPs antagonizing activity. Neither gremlin nor BMP-2 induced ERK 1/2 activation in ST-2 cells or calvarial osteoblasts. Moreover, slight changes in culture conditions induced the phosphorylation of ERK independent from BMP or gremlin exposure. In conclusion, gremlin inhibits BMP-2 signaling and activity, and does not have independent actions on ERK signaling in osteoblasts. Consequently, gremlin activity in osteoblasts can be attributed only to its BMP antagonizing effects.  相似文献   

13.
Signaling at the plasma membrane receptors is generally terminated by some form of feedback regulation, such as endocytosis and/or degradation of the receptors. BMP-Smad1 signaling can also be attenuated by BMP-induced expression of the inhibitory Smads, which are negative regulators of Smad1 transactivation activity and/or BMP antagonists. Here, we report on a novel Smad1 regulation mechanism that occurs in response to the blockade of BMP activity. Lowering the serum levels or antagonizing BMPs with noggin led to upregulation of Smad1 at the protein level in several cell lines, but not to upregulation of Smad5, Smad8 or Smad2/3. The Smad1 upregulation occurs at the level of protein stabilization. Upregulated Smad1 was relocalized to the perinuclear region. These alterations seem to affect the dynamics and amplitude of BMP2-induced Smad1 reactivation. Our findings indicate that depleting or antagonizing BMPs leads to Smad1 stabilization and relocalization, thus revealing an unexpected regulatory mechanism for BMP-Smad1 signaling.  相似文献   

14.
15.
Proteasome inhibitors enhance bone formation and osteoblastic differentiation in vivo and in vitro. In the present study, we examined whether the molecular mechanisms of lactacystin, one of many proteasome inhibitors, stimulated the osteoblastic differentiation of C2C12 cells that is induced by bone morphogenetic proteins (BMPs). Pretreatment with lactacystin enhanced the alkaline phosphatase (ALP) activity induced by BMP2, BMP4 or BMP7, but lactacystin did not induce ALP in the absence of BMPs. In addition, lactacystin-stimulated BMP2 induced mRNA expression of ALP, type I collagen, osteonectin, osteocalcin, Id1, Osterix, and Runx2. Lactacystin maintained BMP2-induced phosphorylation of Smad1/5/8 and increased the length of time that these Smads were bound to target DNA. Moreover, lactacystin prevented BMP receptor-induced Smad degradation. This enhancement of BMP2-induced ALP activity and Smad phosphorylation by lactacystin was also observed in primary osteoblasts. These findings suggest that pretreatment with lactacystin accelerates BMP-induced osteoblastic differentiation by increasing the levels of phosphorylated Smads, which are maintained because BMP receptor-induced degradation is inhibited. We propose that optimized stimulation by proteasome inhibitors in a clinical setting may facilitate autogenous or BMP-induced bone formation in areas of defective bone.  相似文献   

16.
A-disintegrin and metalloproteinase 10 (ADAM10) is involved in the generation of amyloid-β (Aβ) during amyloid precursor protein (APP) processing, and has a protective effect against Aβ neurotoxicity. We explored how metallothionein-III (MT-III) is regulated in the non-amyloidogenic pathway to generate soluble APPα (sAPPα). MT-??? increased sAPPα levels and reduced Aβ peptide levels, but did not affect ADAM10 expression. However, MT-III increased the activity of ADAM10. MT-???-induced sAPPα secretion, and Aβ peptide formation was blocked by specific inhibitors of furin, proprotein convertase7 (PC7), and PKCα. These results demonstrate that MT-??? increases the amount of active ADAM10 in association with furin, PC7 and PKCα.  相似文献   

17.
Clonal central nervous system neuronal cells, B103, do not synthesize detectable endogenous APP or APLP. B103 cells transfected with both wild-type (B103/APP) and mutant APP construct (B103/APPΔNL) secreted comparable amounts of soluble forms of APP (sAPP). B103/APP cells produced sAPP and cleaved at amyloid β/A4 (Aβ) 16, the α-secretase site, and B103/APPΔNL cells produced sAPPβ cleaved at Aβ 1, the β-secretase site. B103/APPΔNL cells developed fewer neurites than B103/APP cells in a serum-free defined medium. Neurite numbers of parent B103 cells were increased by the 50% conditioned medium (CM) from B103/APP cells but reduced by the CM from B103/APPΔNL cells. Chemically synthesized Aβ at concentration levels higher than 1 nM reduced numbers of neurites from B103 or B103/APPΔNL cells. However, Aβ at 1–100 nM could not reduce the neurite number of B103/APP cells. The protective activity against Aβ's deleterious effect to reduce neurite numbers was attributed to sAPPα in the CM. Although sAPPα could block the effect of Aβ, sAPPβ could not do so under the identical condition, suggesting the importance of the C-terminal 15-amino acid sequence in sAPPα. Nevertheless, sAPPα's protective activity required the N-terminal sequence around RERMS, previously identified to be the active domain of sAPPβ. The overall effect of APP mutation which overproduced Aβ and sAPPβ and underproduced sAPPα was a marked decline in the neurotrophic effect of APP. We suggest that the disruption of balance between the detrimental effect of Aβ and the trophic effect of sAPP may be important in the pathogenesis of AD caused by this pathogenic APP mutation © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 469–480, 1997  相似文献   

18.
The expression of bone morphogenetic proteins (BMPs) and their cognate receptors (BMPRs) in osteochondromas has not been investigated. We determined the immunohistochemical localization and distribution of BMP-2/4, -6 and -7; BMP receptors BMPR-1A, BMPR-1B and BMPR-2; signal transducing proteins phosphorylated Smad1/5/8; and BMP antagonist noggin in the cartilaginous cap of solitary (SO) and multiple (MO) human osteochondromas and compared these with bovine growth plate and articular cartilage. The distribution and localization patterns for BMP-6, BMP-7, BMPR-1A and BMPR-2 were similar between the cartilaginous cap and the growth plate. BMP-2/4 and BMPR-1B were present throughout the growth plate. However, BMP-2/4 and phosphorylated Smad1/5/8 were mainly detected in proliferating chondrocytes of the cartilaginous cap. Also, BMPR-1B was found in hypertrophic chondrocytes of SO and proliferating chondrocytes of MO. Noggin was observed in resting chondrocytes and, to a lesser extent, in clustered proliferating chondrocytes in SO. On the other hand, noggin in MO was observed in proliferating chondrocytes. Since BMPs can stimulate proliferation and hypertrophic differentiation of chondrocytes, these findings suggest that there is an imbalance of BMP-2/4 and noggin interactions that may lead to abnormal regulation of chondrocyte proliferation and differentiation in the cartilaginous cap of human osteochondromas.  相似文献   

19.
Satellite cells are the resident stem cells of adult skeletal muscle, supplying myonuclei for homoeostasis, hypertrophy and repair. In this study, we have examined the role of bone morphogenetic protein (BMP) signalling in regulating satellite cell function. Activated satellite cells expressed BMP receptor type 1A (BMPR-1A/Alk-3) and contained phosphorylated Smad proteins, indicating that BMP signalling is operating during proliferation. Indeed, exogenous BMP4 stimulated satellite cell division and inhibited myogenic differentiation. Conversely, interfering with the interactions between BMPs and their receptors by the addition of either the BMP antagonist Noggin or soluble BMPR-1A fragments, induced precocious differentiation. Similarly, blockade of BMP signalling by siRNA-mediated knockdown of BMPR-1A, disruption of the intracellular pathway by either Smad5 or Smad4 knockdown or inhibition of Smad1/5/8 phosphorylation with Dorsomorphin, also caused premature myogenic differentiation. BMP signalling acted to inhibit the upregulation of genes associated with differentiation, in part, through regulating Id1. As satellite cells differentiated, Noggin levels increased to antagonise BMP signalling, since Noggin knockdown enhanced proliferation and impeded myoblast fusion into large multinucleated myotubes. Finally, interference of normal BMP signalling after muscle damage in vivo perturbed the regenerative process, and resulted in smaller regenerated myofibres. In conclusion, BMP signalling operates during routine satellite cell function to help coordinate the balance between proliferation and differentiation, before Noggin is activated to antagonise BMPs and facilitate terminal differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号