首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms by which p210-BCR-ABL determines hematopoietic stem cells fate remain poorly understood. To better understand the behavior of BCR-ABL in pluripotent stem cells, we previously developed a murine embryonic stem (ES) cell model transformed by p210-BCR-ABL and reported that BCR-ABL activates STAT3, a major protein involved in ES cells self-renewal, which leads specifically to inhibition of ES cells differentiation. We show here that BCR-ABL either inhibits differentiation or, unexpectedly, induces a rapid commitment to differentiation of murine ES cells, according to the intracellular levels of activated STAT3. We show that inhibition of endogenous STAT3 activation with an inducible STAT3 protein with dominant-negative activity (STAT3F) results in an early, rapid and complete differentiation of BCR-ABL-expressing ES cells, whereas control ES cells retain a more undifferentiated phenotype. This phenomenon could be totally abrogated by PD98059, a specific MEK1 inhibitor, suggesting the involvement of mitogen-activated protein kinase (MAP-Kinase)/ERK1/2 pathway, which was found constitutively phosphorylated in BCR-ABL-expressing cells. In addition, BCR-ABL-expressing ES cells harboring low levels of activated STAT3 committed more rapidly through hematopoietic differentiation, since embryoid bodies (EBs) derived from these cells were able to generate numerous hematopoietic progenitors 2 days early. Moreover, BCR-ABL-expressing ES cells cultured first with low levels of activated STAT3 before EBs derivation displayed a more rapid loss of pluripotency than controls and failed to generate hematopoietic progenitors. This phenomenon was partially abrogated when ES cells were first exposed to PD98059 or to the tyrosine kinase inhibitor imatinib mesylate. From this predictive model, we suggest that variations of the activation levels in BCR-ABL substrates such as STAT3 may represent "instructive" secondary cooperating events involved in the transformation of the leukemic cell phenotype during the course of CML.  相似文献   

2.
3.
4.
We report here the identification and characterization of a novel paired-like homeobox-containing gene (Ehox). This gene, identified in embryonic stem (ES) cells, is differentially expressed during in vitro ES cell differentiation. We have assessed Ehox function using the ES cell in vitro differentiation system. This has involved molecular and biological analyses of the effects of sense or antisense Ehox expression (using episomal vectors) on ES cell differentiation. Analysis of antisense Ehox-expressing ES cells indicates that they are unable to express marker genes associated with hematopoietic, endothelial, or cardiac differentiation following removal of leukemia inhibitory factor. In contrast, overexpression of Ehox using the sense construct accelerated the appearance of these differentiation markers. ES cell self-renewal and differentiation assays reveal that inhibition of Ehox activity results in the maintenance of a stem cell phenotype in limiting concentrations of leukemia inhibitory factor and the almost complete impairment of the cardiomyocyte differentiation capacity of these cells. We therefore conclude that Ehox is a novel homeobox-containing gene that is essential for the earliest stages of murine ES cell differentiation.  相似文献   

5.
Cyclin-dependent kinase 1 (Cdk1) is indispensible for the early development of the embryo. However, its role in maintaining the undifferentiated state of the embryonic stem (ES) cells remains unknown. In this study, we dissected the function of Cdk1 in mouse ES cells by RNA-interference and gene expression analyses. Cdk1 expression is tightly correlated with the undifferentiated state of the ES cells. Upon differentiation, Cdk1 expression reduced drastically. Cdk1 knock-down by RNA interference resulted in the loss of proliferation and colony formation potential of the ES cells. Consequentially, expression of self-renewal genes was reduced while differentiation markers such as Cdx2 were induced. Our results suggest a role for Cdk1 in maintaining the unique undifferentiated and self-renewing state of the mouse ES cells.  相似文献   

6.
7.
RNA interference (RNAi) pathways regulate self-renewal and differentiation of embryonic stem (ES) cells. Argonaute 2 (Ago2) is a vital component of RNA-induced silencing complex (RISC) and the only Ago protein with slicer activity. We generated Ago2-deficient ES cells by conditional gene targeting. Ago2-deficient ES cells are defective in the small-RNA-mediated gene silencing and are significantly compromised in biogenesis of mature microRNA. The self-renewal rate of Ago2-deficient ES cells is affected due to failure of silencing of Cdkn1a by ES-cell-specific microRNAs (miRNA) in the absence of Ago2. Interestingly, unlike Dicer- and Dgcr8-deficient ES cells, they differentiate to all three germ layers both in vivo and in vitro. However, early differentiation of Ago2-deficient ES cells is delayed by 2–4 days as indicated by persistence of higher levels of self-renewal/ pluripotency markers during differentiation. Further, appearance of morphological and differentiation markers is also delayed during the differentiation. In this study we show that Ago2 is essential for normal self-renewal and differentiation. Also, our data suggest that self-renewal and differentiation of ES cells are regulated by both siRNA and miRNA pathways.  相似文献   

8.
9.
10.
11.
Embryonic stem (ES) cells maintain pluripotency by self-renewal. Several homeoproteins, including Oct3/4 and Nanog, are known to be key factors in maintaining the self-renewal capacity of ES cells. However, other genes required for the mechanisms underlying this process are still unclear. Here we report the identification by in silico analysis of a homeobox-containing gene, CrxOS, that is specifically expressed in murine ES cells and is essential for their self-renewal. ES cells mainly express the short isoform of endogenous CrxOS. Using a polyoma-based episomal expression system, we demonstrate that overexpression of the CrxOS short isoform is sufficient for maintaining the undifferentiated morphology of ES cells and stimulating their proliferation. Finally, using RNA interference, we show that CrxOS is essential for the self-renewal of ES cells, and provisionally identify foxD3 as a downstream target gene of CrxOS. To our knowledge, ours is the first delineation of the physiological role of CrxOS in ES cells.  相似文献   

12.
Embryonic stem (ES) cells are pluripotent cells capable of unlimited self-renewal and differentiation into the three embryonic germ layers under appropriate conditions. Mechanisms for control of the early period of differentiation, involving exit from the pluripotent state and lineage commitment, are not well understood. An emerging concept is that epigenetic histone modifications may play a role during this early period. We have found that upon differentiation of mouse ES cells by removal of the cytokine leukemia inhibitory factor, there is a global increase in coupled histone H3 phosphorylation (Ser-10)-acetylation (Lys-14) (H3 phosphoacetylation). We show that this occurs through activation of both the extracellular signal-regulated kinase (ERK) and p38 MAPK signaling pathways. Early ES cell differentiation is delayed using pharmacological inhibitors of the ERK and p38 pathways. One common point of convergence of these pathways is the activation of the mitogen- and stress-activated protein kinase 1 (MSK1). We show here that MSK1 is the critical mediator of differentiation-induced H3 phosphoacetylation using both the chemical inhibitor H89 and RNA interference. Interestingly, inhibition of H3 phosphoacetylation also alters gene expression during early differentiation. These results point to an important role for both epigenetic histone modifications and kinase pathways in modulating early ES differentiation.  相似文献   

13.
Liu N  Feng X  Fang Z  Ma F  Lu S  Lu M  Han Z 《Journal of cellular biochemistry》2008,104(6):2348-2362
Nanog plays an important role in embryonic stem (ES) cells pluripotency and self-renewal, yet the precise mechanism through which Nanog accomplishes this important function remains unclear. To understand comprehensive molecular mechanism by which Nanog mediates, we identified genome-wide molecular changes upon silencing Nanog in ES cells by using microarray technology. In order to downregulate Nanog expression efficiently, four siRNAs were designed on the basis of the conserved Nanog sequence and their effects on the Nanog expression were tested. Among these four siRNAs, Nanog-siRNA-P1 was found to be most effective. Once Nanog was downregulated, ES cells underwent differentiation by showing morphological change and decreased proliferation rate. Microarray analysis was then used to identify the altered gene expression after Nanog was silenced. A series of differentially expressed genes due to reduced expression of Nanog was identified as Nanog-related genes. These genes identified here could provide insights into the roles of Nanog in ES cells self-renewal and early differentiation.  相似文献   

14.
One of the most important issues in stem cell research is to understand the regulatory mechanisms responsible for their differentiation. An extensive understanding of mechanism underlying the process of differentiation is crucial in order to prompt stem cells to perform a particular function after differentiation. To elucidate the molecular mechanisms responsible for the hematopoietic differentiation of embryonic stem cells (ESCs), we investigated murine ES cells for the presence of hematopoietic lineage markers as well as Wnt signaling pathway during treatments with different cytokines alone or in combination with another. Here we report that Wnt/beta-catenin signaling is down-regulated in hematopoietic differentiation of murine ES cells. We also found that differentiation induced by the interleukin-3, interleukin-6, and erythropoietin combinations resulted in high expression of CD3e, CD11b, CD45R/B220, Ly-6G, and TER-119 in differentiated ES cells. A high expression of beta-catenin was observed in two undifferentiated ES cell lines. Gene and protein expression analysis revealed that the members downstream of Wnt in this signaling pathway including beta-catenin, GSK-3beta, Axin, and TCF4 were significantly down-regulated as ES cells differentiated into hematopoietic progenitors. Our results show that the Wnt/beta-catenin signaling pathway plays a role in the hematopoietic differentiation of murine ESCs and also may support beta-catenin as a crucial factor in the maintenance of ES cells in their undifferentiated state.  相似文献   

15.
16.
17.
Mouse embryonic stem (mES) cells are pluripotent cells that can be propagated in vitro with leukemia inhibitory factor (LIF) and serum. Intracellular signaling by LIF is principally mediated by activation of STAT-3, although additional pathways for self-renewal have been described. Here, we identified a novel role for Insulin receptor substrate-1 (IRS-1) as a critical factor in mES cells self-renewal and differentiation. IRS-1 is expressed and tyrosyl phosphorylated during mES cells self-renewal. Differentiation of mES cells, by LIF withdrawal, is associated with a marked reduction in IRS-1 expression. Targeting of IRS-1 by si-IRS-1 results in a severe reduction of Oct-4 protein expression and alkaline phosphatase activity, markers of undifferentiated mES cells. IRS-1 targeting does not interfere with LIF-induced STAT-3 phosphorylation, but negatively affects protein kinase B (PKB/AKT) and glycogen synthase kinase-3 (GSK-3beta) phosphorylation, which are downstream effectors of the LIF-mediated PI3K signaling cascade. Targeting of IRS-1 also results in a marked down regulation of Id-1 and Id-2 proteins expression, which are important components for self-renewal of ES cells. Conversely, over expression of IRS-1 inhibits mES cell differentiation. Taken together, these results suggest that expression and activity of IRS-1 are critical to the maintenance of the self-renewal program in mES cells.  相似文献   

18.
Pluripotency and self-renewal are two defining characteristics of embryonic stem cells (ES cells). Understanding the underlying molecular mechanism will greatly facilitate the use of ES cells for developmental biology studies, disease modeling, drug discovery, and regenerative medicine (reviewed in 1,2).To expedite the identification and characterization of novel regulators of ES cell maintenance and self-renewal, we developed a fluorescence reporter-based assay to quantitatively measure the self-renewal status in mouse ES cells using the Oct4GiP cells 3. The Oct4GiP cells express the green fluorescent protein (GFP) under the control of the Oct4 gene promoter region 4,5. Oct4 is required for ES cell self-renewal, and is highly expressed in ES cells and quickly down-regulated during differentiation 6,7. As a result, GFP expression and fluorescence in the reporter cells correlates faithfully with the ES cell identity 5, and fluorescence-activated cell sorting (FACS) analysis can be used to closely monitor the self-renewal status of the cells at the single cell level 3,8.Coupled with RNAi, the Oct4GiP reporter assay can be used to quickly identify and study regulators of ES cell maintenance and self-renewal 3,8. Compared to other methods for assaying self-renewal, it is more convenient, sensitive, quantitative, and of lower cost. It can be carried out in 96- or 384-well plates for large-scale studies such as high-throughput screens or genetic epistasis analysis. Finally, by using other lineage-specific reporter ES cell lines, the assay we describe here can also be modified to study fate specification during ES cell differentiation.  相似文献   

19.
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is widely used as a marker during vasculogenesis and angiogenesis from embryonic stem (ES) cells. However, the expression of PECAM-1 isoforms in ES cells has not been determined. The present study was designed to determine the role of PECAM-1 isoforms during in vitro endothelial differentiation of ES cells. It was found that undifferentiated ES cells expressed high level of PECAM-1, which primarily located at cell-cell junction, but the expression of PECAM-1 was sharply down-regulated during early ES cell differentiation. In addition, undifferentiated ES cells were found the expressed all eight known alternatively spliced PECAM-1 isoforms, among them the expression of PECAM-1 isoforms lacking exon 15 or 14&15 was predominant. Quantitative analysis revealed a significant increase in the expression of PECAM-1 isoform lacking exon 12&14&15 as vascular development of ES cells. These results indicate a constitutive expression of PECAM-1 in undifferentiated murine ES cells and suggest a developmental role of PECAM-1 isoform changes during vasculogenesis and angiogenesis.  相似文献   

20.
细胞周期蛋白依赖性激酶6(cyclin dependent kinase 6,Cdk6)对胚胎早期发育有着重要的作用.然而,它在胚胎干(embryonic stem,ES)细胞中的生物学功能仍不清楚.在该研究中,我们运用RNA干扰技术和基因表达分析方法探索了Cdk6在小鼠胚胎干细胞中的功能及分子机制.结果表明:Cdk6的表达水平与小鼠ES细胞的自我更新密切相关.首先,维甲酸(RA)处理和白血病抑制因子(LIF)去除实验显示 ,随着ES细胞的分化,Cdk6的表达水平明显降低.更为重要的是,RNA干扰介导的Cdk6表达抑制导致ES细胞自我更新相关基因的显著下调,同时伴随细胞分化基因的表达激活,提示Cdk6对维持ES细胞自我更新至关重要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号