首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

GS-9256 and vedroprevir are inhibitors of the hepatitis C virus NS3 protease enzyme, an important drug target. The potency, selectivity, and binding kinetics of the two compounds were determined using in vitro biochemical assays.

Methods

Potency of the compounds against NS3 protease and selectivity against a panel of mammalian proteases were determined through steady-state enzyme kinetics. Binding kinetics were determined using stopped-flow techniques. Dissociation rates were measured using dilution methods.

Results

GS-9256 and vedroprevir had measured Ki values of 89 pM and 410 pM, respectively, against genotype 1b NS3 protease; Ki values were higher against genotype 2a (2.8 nM and 39 nM) and genotype 3 proteases (104 nM and 319 nM) for GS-9256 and vedroprevir, respectively. Selectivity of GS-9256 and vedroprevir was > 10,000-fold against all tested off-target proteases. Association rate constants of 4 × 105 M− 1 s− 1 and 1 × 106 M− 1 s− 1, respectively, were measured, and dissociation rate constants of 4.8 × 10− 5 s− 1 and 2.6 × 10− 4 s− 1 were determined.

Conclusions

GS-9256 and vedroprevir are potent inhibitors of NS3 protease with high selectivity against off-target proteases. They have rapid association kinetics and slow dissociation kinetics.

General Significance

The NS3 protease is a key drug target for the treatment of hepatitis C. The potency, selectivity, and binding kinetics of GS-9256 and vedroprevir constitute a biochemical profile that supports the evaluation of these compounds in combination with other direct-acting antivirals in clinical trials for hepatitis C.  相似文献   

2.

Background

Nanosized particles of gold are widely used as advanced materials for enzyme catalysis investigations. In some bioanalytical methods these nanoparticles can be exploited to increase the sensitivity by enhancing electron transfer to the biological component i.e. redox enzymes such as drug metabolizing enzymes.

Methods

In this work, we describe the characterization of human flavin-containing monooxygenase 3 (hFMO3) in a nanoelectrode system based on AuNPs stabilized with didodecyldimethylammonium bromide (DDAB) on glassy carbon electrodes. Once confirmed by FTIR spectroscopy that in the presence of DDAB-AuNPs the structural integrity of hFMO3 is preserved, the influence of AuNPs on the electrochemistry of the enzyme was studied by cyclic voltammetry and square wave voltammetry.

Results

Our results show that AuNPs improve the electrochemical performance of hFMO3 on glassy carbon electrodes by enhancing the electron transfer rate and the current signal-to-noise ratio. Moreover, the electrocatalytic activity of hFMO3-DDAB-AuNP electrodes which was investigated in the presence of two well known substrates, benzydamine and sulindac sulfide, resulted in KM values of 52 μM and 27 μM, with Vmax of 8 nmol min− 1 mg− 1 and 4 nmol min− 1 mg− 1, respectively, which are in agreement with data obtained with the microsomal enzyme.

Conclusions

The immobilization of hFMO3 protein in DDAB stabilized AuNP electrodes improves the bioelectrochemical performance of this important phase I drug metabolizing enzyme.

General significance

This bio-analytical method can be considered as a promising advance in the development of new techniques suitable for the screening of novel hFMO3 metabolized pharmaceuticals.  相似文献   

3.

Aims/hypothesis

Changes in cellular cholesterol level may contribute to beta cell dysfunction. Islets from low density lipoprotein receptor knockout (LDLR−/−) mice have higher cholesterol content and secrete less insulin than wild-type (WT) mice. Here, we investigated the association between cholesterol content, insulin secretion and Ca2 + handling in these islets.

Methods

Isolated islets from both LDLR−/− and WT mice were used for measurements of insulin secretion (radioimmunoassay), cholesterol content (fluorimetric assay), cytosolic Ca2 + level (fura-2AM) and SNARE protein expression (VAMP-2, SNAP-25 and syntaxin-1A). Cholesterol was depleted by incubating the islets with increasing concentrations (0–10 mmol/l) of methyl-beta-cyclodextrin (MβCD).

Results

The first and second phases of glucose-stimulated insulin secretion (GSIS) were lower in LDLR−/− than in WT islets, paralleled by an impairment of Ca2 + handling in the former. SNAP-25 and VAMP-2, but not syntaxin-1A, were reduced in LDLR−/− compared with WT islets. Removal of excess cholesterol from LDLR−/− islets normalized glucose- and tolbutamide-induced insulin release. Glucose-stimulated Ca2 + handling was also normalized in cholesterol-depleted LDLR−/− islets. Cholesterol removal from WT islets by 0.1 and 1.0 mmol/l MβCD impaired both GSIS and Ca2 + handling. In addition, at 10 mmol/l MβCD WT islet showed a loss of membrane integrity and higher DNA fragmentation.

Conclusion

Abnormally high (LDLR−/− islets) or low cholesterol content (WT islets treated with MβCD) alters both GSIS and Ca2 + handling. Normalization of cholesterol improves Ca2 + handling and insulin secretion in LDLR−/− islets.  相似文献   

4.

Background

Mammalian GPx7 is a monomeric glutathione peroxidase of the endoplasmic reticulum (ER), containing a Cys redox center (CysGPx). Although containing a peroxidatic Cys (CP) it lacks the resolving Cys (CR), that confers fast reactivity with thioredoxin (Trx) or related proteins to most other CysGPxs.

Methods

Reducing substrate specificity and mechanism were addressed by steady-state kinetic analysis of wild type or mutated mouse GPx7. The enzymes were heterologously expressed as a synuclein fusion to overcome limited expression. Phospholipid hydroperoxide was the oxidizing substrate. Enzyme–substrate and protein–protein interaction were analyzed by molecular docking and surface plasmon resonance analysis.

Results

Oxidation of the CP is fast (k+ 1 > 103 M− 1 s− 1), however the rate of reduction by GSH is slow (k′+ 2 = 12.6 M− 1 s− 1) even though molecular docking indicates a strong GSH–GPx7 interaction. Instead, the oxidized CP can be reduced at a fast rate by human protein disulfide isomerase (HsPDI) (k+ 1 > 103 M− 1 s− 1), but not by Trx. By surface plasmon resonance analysis, a KD = 5.2 μM was calculated for PDI–GPx7 complex. Participation of an alternative non-canonical CR in the peroxidatic reaction was ruled out. Specific activity measurements in the presence of physiological reducing substrate concentration, suggest substrate competition in vivo.

Conclusions

GPx7 is an unusual CysGPx catalyzing the peroxidatic cycle by a one Cys mechanism in which GSH and PDI are alternative substrates.

General significance

In the ER, the emerging physiological role of GPx7 is oxidation of PDI, modulated by the amount of GSH.  相似文献   

5.

Background

The concentration of extracellular nucleotides is regulated by enzymes that have their catalytic site facing the extracellular space, the so-called ecto-enzymes.

Methods

We used LLC-PK1 cells, a well-characterized porcine renal proximal tubule cell line, to biochemically characterize ecto-ATPase activity in the luminal surface. The [γ-32P]Pi released after reaction was measured in aliquots of the supernatant by liquid scintillation.

Results

This activity was linear with time up to 20 min of reaction and stimulated by divalent metals. The ecto-ATPase activity measured in the presence of 5 mM MgCl2 was (1) optimum at pH 8, (2) insensitive to different inhibitors of intracellular ATPases, (3) inhibited by 1 mM suramin, an inhibitor of ecto-ATPases, (4) sensitive to high concentrations of sodium azide (NaN3) and (5) also able to hydrolyze ADP in the extracellular medium. The ATP:ADP hydrolysis ratio calculated was 4:1. The ecto-ADPase activity was also inhibited by suramin and NaN3. The dose–response of ATP revealed a hyperbolic profile with maximal velocity of 25.2 ± 1.2 nmol Pi x mg− 1 x min− 1 and K0.5 of 0.07 ± 0.01 mM. When cells were submitted to ischemia, the E-NTPDase activity was reduced with time, achieving 71% inhibition at 60 min of ischemia.

Conclusion

Our results suggest that the ecto-ATPase activity of LLC-PK1 cells has the characteristics of a type 3 E-NTPDase which is inhibited by ischemia.

General Significance

This could represent an important pathophysiologic mechanism that explains the increase in ATP concentration in the extracellular milieu in the proximal tubule during ischemia.  相似文献   

6.

Background

The single-gene approach in association studies of polygenic diseases such as acute myocardial infarction (AMI) is likely to provide limited value. Interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) plasma levels may be genetically influenced.

Aim

We evaluate the impact of single nucleotide polymorphism of the promoter region of these genes, as well as reciprocal interaction of these genes with ST-elevation of myocardial infarction (STEMI).

Methods

In a case–control study 500 STEMI patients and 500 age- and sex-matched controls were studied. Three single-nucleotide polymorphism genotypes were evaluated by polymerase chain reaction and restriction enzyme analysis and assessed their association with STEMI. The synergistic effects of IL-6, TNF-α and IL-10 gene polymorphisms were evaluated by using logistic regression analysis.

Results

We found that IL-6 and TNF-α concentrations of studied population were significantly different (p < 0.0001) in each genotype of IL-6 − 174G>C and TNF-α − 308G>A gene polymorphisms respectively. A significant association was found in multivariate analysis for the IL-6 − 174G>C [odds ratio (OR): 0.390; 95% confidence interval (CI): 0.176–0.865, p = 0.020] and TNF-α − 308G>A [OR: 0.372; 95% CI: 0.171–808, p = 0.012] gene polymorphisms with STEMI. In contrast, IL-10 − 592C>A gene polymorphism was no longer significant in the multivariate model (OR: 0.678; 95% CI: 0.288 to 1.594, p = 0.373) whereas significant in univariate analysis (OR: 0.697; 95% CI: 0.523–0.929, p = 0.014).

Conclusions

Our findings suggest that IL-6, TNF-α and IL-10 gene polymorphisms all contribute in the association with STEMI whereas the association persisted only for IL-6 and TNF-α but not for IL-10 gene polymorphism with this disease in the multivariate analysis.  相似文献   

7.

Background

The p38α MAP kinase pathway is involved in inflammation, cell differentiation, growth, apoptosis and production of pro-inflammatory cytokines TNF-α and IL-1β. The overproduction of these cytokines plays an important role in cancer. The aim of this work was to design a peptide inhibitor on the basis of structural information of the active site of p38α.

Methods

A tetrapeptide, VWCS as p38α inhibitor was designed on the basis of structural information of the ATP binding site by molecular modeling. The inhibition study of peptide with p38α was performed by ELISA, binding study by Surface Plasmon Resonance and anti-proliferative assays by MTT and flow cytometry.

Results

The percentage inhibition of designed VWCS against pure p38α protein and serum of HNSCC patients was 70.30 and 71.5%, respectively. The biochemical assay demonstrated the KD and IC50 of the selective peptide as 7.22 × 10− 9 M and 20.08 nM, respectively. The VWCS as inhibitor significantly reduced viability of oral cancer KB cell line with an IC50 value of 10 μM and induced apoptosis by activating Caspase 3 and 7.

Conclusions

VWCS efficiently interacted at the ATP binding pocket of p38α with high potency and can be used as a potent inhibitor in case of HNSCC.

General significance

VWCS can act as an anticancer agent as it potentially inhibits the cell growth and induces apoptosis in oral cancer cell-line in a dose as well as time dependent manner. Hence, p38α MAP kinase inhibitor can be a potential therapeutic agent for human oral cancer.  相似文献   

8.

Background

Biphasic effects on cell proliferation of bisphenol A (BPA) can occur at lesser or greater exposures. Sertoli cells play a pivotal role in supporting proliferation and differentiation of germ cells. The mechanisms responsible for inverse effects of great and low concentrations of BPA on Sertoli cell proliferation need further study.

Methods

We utilized proteomic study to indentify the protein expression changes of Sertoli TM4 cells treated with 10− 8 M and 10− 5 M BPA. The further mechanisms related to mitochondria, energy metabolism and oxidative stress were investigated by qRT-PCR and Western-blotting analysis.

Results

Proteomic studies identified 36 proteins and two major clusters of proteins including energy metabolism and oxidative stress expressed with opposite changes in Sertoli cells treated with 10− 8 M and 10− 5 M BPA, respectively, for 24 h. Exposure to 10− 5 M BPA resulted in greater oxidative stress and then inhibited cell proliferation, while ROS scavenger NAC effectively blocked these effects. Exposure to 10− 8 M BPA caused higher intercellular ATP, greater activities of mitochondria, and resulted in significant proliferation of TM4 cells, while oligomycin A, an inhibitor of ATP synthase, abolished these growth advantages.

Conclusions

Our study demonstrated that micromolar BPA inhibits proliferation of Sertoli cells by elevating oxidative stress while nanomolar BPA stimulates proliferation by promoting energy metabolism.

General significance

Micromolar BPA inhibits cell proliferation by elevating oxidative stress while nanomolar BPA stimulates cell proliferation by promoting energy metabolism.  相似文献   

9.

Background

Online label-free monitoring of in-vitro differentiation of stem cells remains a major challenge in stem cell research. In this paper we report the use of Raman micro-spectroscopy (RMS) to measure time- and spatially-resolved molecular changes in intact embryoid bodies (EBs) during in-vitro cardiogenic differentiation.

Methods

EBs formed by aggregation of human embryonic stem cells (hESCs) were cultured in defined medium to induce differentiation towards cardiac phenotype and maintained in purpose-built micro-bioreactors on the Raman microscope for 5 days (between days 5 and 9 of differentiation) and spatially-resolved spectra were recorded at 24 h intervals.

Results

The Raman spectra showed that the onset of spontaneous beating of EBs at day 7 coincided with an increase in the intensity of the Raman bands at 1340 cm− 1, 1083 cm− 1, 937 cm− 1, 858 cm− 1, 577 cm− 1 and 482 cm− 1. The spectral maps corresponding to these bands had a high positive correlation with the expression of the cardiac-specific α-actinin obtained by immuno-fluorescence imaging of the same EBs. The spectral markers obtained here are also in agreement with previous studies performed on individual live hESC-derived CMs.

Conclusions

The intensity profile of these Raman bands can be used for label-free in-situ monitoring of EBs to estimate the efficacy of cardiogenic differentiation.

General significance

As the acquisition of the time-course Raman spectra did not affect the viability or the differentiation potential of the hESCs, this study demonstrates the feasibility of using RMS for on-line non-invasive continuous monitoring of such processes inside bioreactor culture systems.  相似文献   

10.

Background

Recent studies suggested that resting heart rate (RHR) might be an independent predictor of cardiovascular mortality and morbidity. Nonetheless, the interrelation between RHR and cardiovascular diseases is not clear. In order to resolve this puzzle, the importance of genetic determinants of RHR has been recently suggested, but it needs to be further investigated.

Objective

The aim of this study was to estimate the contribution of common genetic variations on RHR using Genome Wide Association Study.

Methods

We performed a Genome Wide Association Study in an isolated population cohort of 1737 individuals, the Italian Network on Genetic Isolates — Friuli Venezia Giulia (INGI-FVG). Moreover, a haplotype analysis was performed. A regression tree analysis was run to highlight the effect of each haplotype combination on the phenotype.

Results

A significant level of association (p < 5 × 10− 8) was detected for Single Nucleotide Polymorphisms (SNPs) in two genes expressed in the heart: MAML1 and CANX. Founding that the three different variants of the haplotype, which encompass both genes, yielded a phenotypic correlation. Indeed, a haplotype in homozygosity is significantly associated with the lower quartile of RHR (RHR ≤ 58 bpm). Moreover no significant association was found between cardiovascular risk factors and the different haplotype combinations.

Conclusion

Mastermind-like 1 and Calnexin were found to be associated with RHR. We demonstrated a relation between a haplotype and the lower quartile of RHR in our populations. Our findings highlight that genetic determinants of RHR may be implicated in determining cardiovascular diseases and could allow a better risk stratification.  相似文献   

11.

Background

DNase antibodies can play an important role in the pathogenesis of different autoimmune pathologies.

Methods

An immunoglobulin light chain phagemid library derived from peripheral blood lymphocytes of patients with systemic lupus erythematosus (SLE) was used. The small pools of phage particles displaying DNA binding light chains with different for DNA were isolated by affinity chromatography on DNA-cellulose and the fraction eluted with 0.5 M NaCl was used for preparation of individual monoclonal light chains (MLChs, 28 kDa). Forty-five of 451 individual colonies were randomly chosen for a study of MLChs with DNase activity. The clones were expressed in Escherichia coli in a soluble form, and MLChs were purified by metal chelating chromatography followed by gel filtration, and studied in detail.

Results

Fifteen of 45 MLChs efficiently hydrolyzed DNA, and fourteen of them demonstrated various optimal concentrations of KCl or NaCl in a 1–100 mM range and showed one or two pH optima in a 4.8–9.1 range. All MLChs were dependent on divalent metal cations: the ratio of relative DNase activity in the presence of Mn2 +, Ca2 +, Mg2 +, Ni2 +, Zn2 +, Cu2 +, and Co2 + was individual for each MLCh preparation. Fourteen MLChs demonstrated a comparable affinity for DNA (260–320 nM), but different kcat values (0.02–0.7 min− 1).

Conclusions

These observations suggest an extreme diversity of DNase abzymes from SLE patients.

General significance

SLE light chain repertoire can serve as a source of new types of DNases.  相似文献   

12.

Background

Functional polymorphisms in the receptor for advanced glycation end-products (RAGE) gene have been implicated in several vascular diseases. However, to date, no study investigated the association of RAGE polymorphisms with heart failure (HF).

Objective

In this study we tested the hypothesis that the 63-bp insertion/deletion, the − 374T > A (rs1800624) and the − 429T > C (rs1800625) polymorphisms in the RAGE gene might be associated with susceptibility to HF and could predict all-cause mortality in Brazilian outpatients with left ventricular systolic dysfunction.

Methods

A total of 273 consecutive HF patients (196 Caucasian- and 77 African-Brazilians) and 334 healthy blood donors (260 Caucasian- and 74 African-Brazilians) were enrolled in a tertiary care university hospital. Genotyping of RAGE polymorphisms was done by polymerase chain reaction (PCR) or PCR followed by enzyme restriction analysis.

Results

The allele, genotype and haplotype frequencies of − 374T > A and − 429T > C polymorphisms were not significantly different between HF patients and healthy blood donors in both ethnic groups. However, among African-Brazilians, the frequency of carriership of the del allele was lower in HF patients than in blood donors (2.6% vs 12.2%, respectively, p = 0.008). Patients were followed-up for a median of 38 months and the survival analysis did not reveal a consistent association between RAGE polymorphisms and all-cause death in both ethnic groups.

Conclusion

The − 374T > A and − 429T > C polymorphisms in the RAGE gene were not associated with the susceptibility and prognosis of HF. Notwithstanding, the 63-bp ins/del polymorphism might be involved in the susceptibility to HF in African-Brazilians.  相似文献   

13.

Background

Trypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore relevant to attack possible biomedical targets with specific preparations and since arginine kinase does not occur in humans but is present in the parasite it becomes a suitable target.

Methods

Fluorescence quenching, thermodynamic analysis and FRET have shown that arginine kinase from T. brucei interacted with silver or gold nanoparticles.

Results

The enzyme only had one binding site. At 25 °C the dissociation (Kd) and Stern–Volmer constants (KSV) were 15.2 nM, 0.058 nM− 1 [Ag]; and 43.5 nM, 0.052 nM− 1 [Au] and these decreased to 11.2 nM, 0.041 nM− 1 [Ag]; and 24.2 nM, 0.039 nM− 1 [Au] at 30 °C illustrating static quenching and the formation of a non-fluorescent fluorophore–nanoparticle complex. Silver nanoparticles bound to arginine kinase with greater affinity, enhanced fluorescence quenching and easier access to tryptophan molecules than gold. Negative ΔH and ΔG values implied that the interaction of both Ag and Au nanoparticles with arginine kinase was spontaneous with electrostatic forces. FRET confirmed that the nanoparticles were bound 2.11 nm [Ag] and 2.26 nm [Au] from a single surface tryptophan residue.

Conclusions

The nanoparticles bind close to the arginine substrate through a cysteine residue that controls the electrophilic and nucleophilic characters of the substrate arginine–guanidinium group crucial for enzymatic phosphoryl transfer between ADP and ATP.

General significance

The nanoparticles of silver and gold interact with arginine kinase from T. brucei and may prove to have far reaching consequences in clinical trials.  相似文献   

14.

Background

Graves' Disease (GD) is a common and complex disorder, with a strong hereditary component. IL-17F is a potent cytokine and a potential contributor to the etiology of various human autoimmune diseases. In the present study, we focused on the relationship between polymorphisms in the IL-17F gene and GD susceptibility through a case–control association study in two independent Chinese cohorts.

Methods

Our pilot study was performed on a cohort from Shanghai, which included 757 GD patients and 741 healthy controls. Our replication cohort was from Xiamen, consisting of 434 GD patients and 420 healthy controls. We selected four tag SNPs (rs763780, rs2397084, rs9463772 and rs761167) within the IL-17F gene to conduct a genotyping analysis.

Results

In the Shanghai cohort, the rs9463772 polymorphism showed a significant association with GD and Graves' Disease-associated Ophthalmopathy (GO) patients (Pallele = 7 × 10− 5 and 7.4 × 10− 3 for GD and GO patients, respectively). The rs763780 polymorphism was found to have only a difference in genotype distribution between GD individuals and healthy controls (P = 0.017). In the replication study, we confirmed the association between the rs9463772 polymorphism and GD susceptibility. Haplotype analysis showed that the haplotype of the four SNPs (GCTT) was associated with a significant risk of GD in the Shanghai cohort (P = 7.9 × 10− 3).

Conclusion

Our results suggest that polymorphisms in the IL-17F gene increase the risk of Graves' Disease and that IL-17F is therefore a good candidate gene for Graves' Disease prediction in the Han Chinese population.  相似文献   

15.

Background

Activation of adenylyl cyclase (AC) by prolonged exposure of mammalian organism to morphine was demonstrated in previous studies of mechanism of action of this drug. However, expression level of individual AC isoforms was not analyzed in crucial cell structure, plasma membrane (PM).

Methods

Rats were adapted to morphine for 10 days and sacrificed 24 h (group + M10) or 20 days (+ M10/−M20) after the last dose. Control animals were sacrificed in parallel with morphine-treated (groups − M10 and (− M10/−M20)). Percoll®-purified PM were isolated from brain cortex and analyzed by immunoblotting and specific radioligand binding.

Results

ACI (ACII) was increased 8× (2.5×) in morphine-adapted rats (+ M10) when compared with controls (− M10). Increase of ACI and II by long-term adaptation to increasing doses of morphine represented a specific effect as the amount of ACIII–ACIX, of prototypical PM marker, Na, K-ATPase and of trimeric G protein α and β subunits was unchanged. Increase of ACI and II was not detected in PM isolated from group (+ M10/−M20). Thus, the marked increase of ACI and ACII faded away 20 days since the last dose of morphine.

Conclusions

We assume that the specific increase in expression level of ACI and ACII in brain cortex of morphine-adapted rats proceeds as a compensatory, homeostatic response to prolonged exposure to inhibitory drug, morphine.

General significance

Our findings demonstrate that the dramatic and specific change of the crucial component of the opioid receptor cascade in brain cortex, manifested as an increase in PM level of ACI and II, is reversible.  相似文献   

16.

Background

Interaction of putative anticancer agent sanguinarine with two quadruplex forming sequences, human telomeric DNA (H24) and NHE III1 upstream of the P1 promoter of c-myc (Pu27), has been studied to understand the structural basis of the recognition.

Methods

Absorption, fluorescence and circular dichroism spectroscopy have been employed to characterize the association. Energetics of the interaction was studied by isothermal titration and differential scanning calorimetry. TRAP assay was done to assess the inhibitory potential of sanguinarine.

Results

Absorption and fluorescence studies show that sanguinarine has high binding affinity of ~ 105 M− 1 for both sequences. Binding stoichiometry is 2:1 for H24 and 3:1 for Pu27. Results suggest stacking interaction between planar sanguinarine moiety and G-quartets. Circular dichroism spectra show that sanguinarine does not cause structural perturbation in the all-parallel Pu27 but causes a structural transition from mixed hybrid to basket form at higher sanguinarine concentration in case of H24. The interaction is characterized by total enthalpy–entropy compensation and high heat capacity values. Differential scanning calorimetry studies suggest that sanguinarine binding increases the melting temperature and also the total enthalpy of transition of both quadruplexes. TRAP results show that sanguinarine effectively blocks telomerase activity in a concentration dependent manner in cell extracts from MDAMB-231 breast cancer cell lines.

Conclusion

These results suggest that there is a difference in the structural modes of association of sanguinarine to the quadruplexes.

General significance

It helps to understand the role of quadruplex structures as a target of small molecule inhibitors of telomerase.  相似文献   

17.

Background and aims

Sustained interaction of advanced glycation end products (AGEs) with their receptor RAGE and subsequent signaling plays an important role in the development of diabetic complications. Genetic variation of RAGE gene may be associated with the development of vascular complications in type 2 diabetes mellitus (T2DM).

Objectives

The present study aimed to explore the possible association of RAGE gene polymorphisms namely − 374T/A, − 429T/C and G82S with serum level of AGEs, paraoxonase (PON1) activity and macro-vascular complications (MVC) in Indian type 2 diabetes mellitus patients (T2DM).

Methods

A total of 265 diabetic patients, including DM without any complications (n = 135), DM-MVC (n = 130) and 171 healthy individuals were enrolled. Genotyping of RAGE variants were assessed by polymerase chain reaction-restriction fragment length polymorphism. Serum AGEs were estimated by ELISA and fluorometrically. and PON1 activity was assessed spectrophotometrically.

Results

Of the three examined SNPs, association of − 429T/C polymorphism with MVC in T2DM was observed (OR = 3.001, p = 0.001) in the dominant model. Allele ‘A’ of − 374T/A polymorphism seems to confer better cardiac outcome in T2DM. Patients carrying C allele (− 429T/C) and S allele (G82S) had significantly higher AGEs levels. − 429T/C polymorphism was also found to be associated with low PON1 activity. Interaction analysis revealed that the risk of development of MVC was higher in T2DM patients carrying both a CC genotype of − 429T/C polymorphism and a higher level of AGEs (OR = 1.343, p = 0.040).

Conclusion

RAGE gene polymorphism has a significant effect on AGEs level and PON1 activity in diabetic subjects compared to healthy individuals. Diabetic patients with a CC genotype of − 429T/C are prone to develop MVC, more so if AGEs levels are high and PON1 activity is low.  相似文献   

18.
19.

Aims

Aristolochic acid (AA) nephrotoxicity is related to accumulation of methylglyoxal (MGO) and Nε-(carboxymethyl)lysine (CML) in the mouse kidney. We studied the activity of renal semicarbazide-sensitive amine oxidase (SSAO), a key enzyme involved in MGO generation, in AA-treated mice, and investigated nephroprotective effects produced by metformin, a MGO scavenger.

Methods

Mice were orally administered water or metformin for 15 days (12 or 24 mg kg− 1 day− 1), and injected AA (5 mg kg− 1 day− 1) intraperitoneally for 8 days starting on day 8. Renal function was studied, and histopathological examination, determination of renal SSAO activity, and measurement of MGO levels were performed.

Key findings

Compared to control mice, AA-injected mice showed significant renal damage and approximately 2.7-fold greater renal SSAO activity (p < 0.05). Further, compared to control treatment, administration of 12 mg/kg metformin inhibited formation of renal lesions, and significantly decreased renal MGO levels (37.33 ± 9.78 vs. 5.89 ± 2.64 μg/mg of protein, respectively, p < 0.01). In the AA-treated mice, metformin also inhibited the accumulation of CML in renal tubules, but did not affect SSAO activity.

Significance

This study is the first to show elevated renal SSAO activity in AA-treated mice, which could be involved in MGO accumulation. Moreover, MGO scavenging by metformin reduces AA nephrotoxicity. These findings suggest that reducing MGO accumulation produces nephroprotection, revealing new therapeutic strategies for the management. SSAO is a key enzyme involved in MGO generation, and consequently, inhibition of renal SSAO activity is worth investigating in AA nephrotoxicity and other renal pathologies further.  相似文献   

20.

Background

Cytokines have been implicated in the acute rejection of solid organ transplantation. Many studies have investigated the association between recipient or donor IL-4 polymorphism and acute rejection, with different studies reporting inconclusive results.

Methods

We searched PUBMED and EMBASE until June 2012 to identify eligible studies investigating the association between IL-4 polymorphism with acute rejection after solid organ transplantation. Statistical analysis was performed using STATA10.0.

Results

A total of 12 studies were included. Pooled ORs suggested 1) no significant association was detected between recipient or donor IL-4 − 590C/T polymorphism and acute rejection of solid allograft; 2) no significant association was detected between recipient IL-4 − 33C/T polymorphism and acute rejection of solid allograft; 3) when stratified by transplantation type, IL-4 − 590C/T polymorphism was associated with acute rejection of liver transplantation (T/T + C/T vs. C/C: OR = 0.36, 95%CI = 0.14–0.90); 4) significantly decreased risk of acute rejection was detected in recipient IL-4 − 590*T-negative/donor T-positive genotype pairs than all other recipient–donor IL-4 − 590T/C pairs (OR = 0.14, 95%CI = 0.03–0.66).

Conclusions

Our meta-analysis suggested that recipient IL-4 − 590C/T polymorphism was associated with acute rejection of liver transplantation, but nor renal or heart transplantation. It was also suggested that combined recipient IL-4 − 590*T-negative/donor T-positive genotype may suffer decreased risk of acute rejection of solid allograft. Further well-designed studies with larger sample size were required to verify our findings, with focus on the association of IL-4 polymorphism with acute rejection in patients with liver transplantation and studies investigating combined recipient–donor genotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号