首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using yeast two-hybrid assay, we investigated protein-protein interactions between all orthologous histidine kinase (HK)/response regulator (RR) pairs of M. tuberculosis H37Rv and identified potential protein-protein interactions between a noncognate HK/RR pair, DosT/NarL. The protein interaction between DosT and NarL was verified by phosphotransfer reaction from DosT to NarL. Furthermore, we found that the DosT and DosS HKs, which share considerable sequence similarities to each other and form a two-component system with the DosR RR, have different cross-interaction capabilities with NarL: DosT interacted with NarL, while DosS did not. The dimerization domains of DosT and DosS were shown to be sufficient to confer specificity for DosR, and the different cross-interaction abilities of DosS and DosT with NarL were demonstrated to be attributable to variations in the amino acid sequences of the α2-helices of their dimerization domains.  相似文献   

2.
3.
4.
Allergic rhinitis is a chronic inflammatory disease that is assumed to be due to an interaction between different genetic and/or environmental factors. A disintegrin and metalloprotease domain 33 (ADAM33) has been extensively studied as a susceptibility gene in asthma and has been linked to bronchial hyper-responsiveness. In this study, we investigated the association between ADAM33 single nucleotide polymorphisms and the incidence of allergic rhinitis among the Jordanian population. We conducted a case–control association study on 120 adult individuals diagnosed with allergic rhinitis and 128 normal healthy controls. 8 single-nucleotide polymorphisms in ADAM33 were genotyped using PCR-RFLP method. No significant differences in the allelic frequencies of all SNPs tested between AR patients and the control volunteers were found, although S2 C/G SNP showed a tendency toward significance with P = 0.06. On the genotype level significant association were found in the following genotypes: T1 AA, T1 AG, T2 GG, T2 AG, T + 1 GG, T + 1 AG, V4 CG, S2 CC, S2 CG, Q-1AA. Seven haplotypes were present only within AR patients and eight haplotypes were completely absent from the AR patients. Three haplotypes exhibited significant association with AR P ≤ 0.05, two of them were present only in AR patients. In conclusion, the polymorphisms in the ADAM33 gene are associated with susceptibility to AR in the Jordanian population. Furthermore, the haplotype of the tested SNPs were also associated with the risk of AR.  相似文献   

5.
The response regulator DosR is essential for promoting long-term survival of Mycobacterium tuberculosis under low oxygen conditions in a dormant state and may be responsible for latent tuberculosis in one-third of the world's population. Here, we report crystal structures of full-length unphosphorylated DosR at 2.2 Å resolution and its C-terminal DNA-binding domain at 1.7 Å resolution. The full-length DosR structure reveals several features never seen before in other response regulators. The N-terminal domain of the full-length DosR structure has an unexpected (βα)4 topology instead of the canonical (βα)5 fold observed in other response regulators. The linker region adopts a unique conformation that contains two helices forming a four-helix bundle with two helices from another subunit, resulting in dimer formation. The C-terminal domain in the full-length DosR structure displays a novel location of helix α10, which allows Gln199 to interact with the catalytic Asp54 residue of the N-terminal domain. In contrast, the structure of the DosR C-terminal domain alone displays a remarkable unstructured conformation for helix α10 residues, different from the well-defined helical conformations in all other known structures, indicating considerable flexibility within the C-terminal domain. Our structures suggest a mode of DosR activation by phosphorylation via a helix rearrangement mechanism.  相似文献   

6.
The DevRS/DosT two‐component system is essential for mycobacterial survival under hypoxia, a prevailing stress within granulomas. DevR (also known as DosR) is activated by an inducing stimulus, such as hypoxia, through conventional phosphorylation by its cognate sensor kinases, DevS (also known as DosS) and DosT. Here, we show that the DevR regulon is activated by acetyl phosphate under ‘non‐inducing’ aerobic conditions when Mycobacterium tuberculosis devS and dosT double deletion strain is cultured on acetate. Overexpression of phosphotransacetylase caused a perturbation of the acetate kinase‐phosphotransacetylase pathway, a decrease in the concentration of acetyl phosphate and dampened the aerobic induction response in acetate‐grown bacteria. The operation of two pathways of DevR activation, one through sensor kinases and the other by acetyl phosphate, was established by an analysis of wild‐type DevS and phosphorylation‐defective DevSH395Q mutant strains under conditions partially mimicking a granulomatous‐like environment of acetate and hypoxia. Our findings reveal that DevR can be phosphorylated in vivo by acetyl phosphate. Importantly, we demonstrate that acetyl phosphate‐dependent phosphorylation can occur in the absence of DevR’s cognate kinases. Based on our findings, we conclude that anti‐mycobacterial therapy should be targeted to DevR itself and not to DevS/DosT kinases.  相似文献   

7.
Yang F  Du YZ  Wang LP  Cao JM  Yu WW 《Gene》2011,485(1):7-15
The complete mitochondrial genome sequence of Liriomyza sativae Blanchard (15,551 bp) was determined and analyzed in this study. The circular genome contained 37 genes including 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and an A + T-rich region. The initiation codons of COI and ND1 were ‘ATCA’ and ‘GTG’, respectively. ND2 gene used the truncated termination codon ‘T’. All the tRNA genes had the typical cloverleaf secondary structures except for tRNASer(AGN) gene, which was found with the absence of a DHU arm. In addition, a tRNA-like secondary structure (tRNAMet) was found in the A + T-rich region. The great difference was that the length of L. sativae A + T-rich region was 597 bp shorter than that of Liriomyza trifolii (Burgess). Meanwhile, some minor differences such as ‘TATA’ block were also observed in L. sativae in contrast to ‘TACA’ block in L. trifolii. There were also some essential structure elements such as ‘TATA’ block, ‘G(A)nT’ block, poly-T stretch and stem-and-loop structure in the A + T-rich region of L. sativae mitochondrial genome.  相似文献   

8.
In bacteria, membrane transporters of the cation diffusion facilitator (CDF) family participate in Zn2 +, Fe2 +, Mn2 +, Co2 + and Ni2 + homeostasis. The functional role during infection processes for several members has been shown to be linked to the specificity of transport. Sinorhizobium meliloti has two homologous CDF genes with unknown transport specificity. Here we evaluate the role played by the CDF SMc02724 (SmYiiP). The deletion mutant strain of SmYiiP (ΔsmyiiP) showed reduced in vitro growth fitness only in the presence of Mn2 +. Incubation of ΔsmyiiP and WT cells with sub-lethal Mn2 + concentrations resulted in a 2-fold increase of the metal only in the mutant strain. Normal levels of resistance to Mn2 + were attained by complementation with the gene SMc02724 under regulation of its endogenous promoter. In vitro, liposomes with incorporated heterologously expressed pure protein accumulated several transition metals. However, only the transport rate of Mn2 + was increased by imposing a transmembrane H+ gradient. Nodulation assays in alfalfa plants showed that the strain ΔsmyiiP induced a lower number of nodules than in plants infected with the WT strain. Our results indicate that Mn2 + homeostasis in S. meliloti is required for full infection capacity, or nodule function, and that the specificity of transport in vivo of SmYiiP is narrowed down to Mn2 + by a mechanism involving the proton motive force.  相似文献   

9.
In this study, we have investigated the association between osteoporosis and osteocalcin (BGLAP) − 298 C>T, estrogen receptor 1 (ER1) 397 T>C, collagen type1 alpha 1 (Col1A1) 2046 G>T and calcitonin receptor (CALCR) 1340 T>C polymorphisms. Genomic DNA was obtained from 266 persons (158 osteoporotic and 108 healthy controls). Genomic DNA was extracted from EDTA-preserved peripheral venous blood of patients and controls by a salting-out method and analyzed by PCR-RFLP. As a result, there was no statistically significant difference in the genotype and allele frequencies of patients and controls for BGLAP − 298 C>T, Col1A1 2046 G>T, ER1 397 T>C and CALCR 1340 T>C polymorphisms. However, ER1 CC genotype compared with TT + TC genotypes was found to increase the two fold the risk of osteoporosis [p = 0.039, OR = 2.156, 95% CI (1.083–4.293)] and CALCR CC genotype compared with TT + TC genotypes was found to have protective effect against osteoporosis [p = 0.045, OR = 0.471, 95% CI (0.237–0.9372)]. In the combined genotype analysis, ER1/CALCR TCCC combined genotype was estimated to have protective effect against osteoporosis [p = 0.0125, OR = 0.323, 95% CI (0.1383–0.755)] whereas BGLAP/Col1A1 CCTT and ER1/CALCR CCTT combined genotypes were estimated as risk factors for osteoporosis in Turkish population (p = 0.027, p = 0.009 respectively).  相似文献   

10.
11.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), which claims approximately two million people annually, remains a global health concern. The non‐replicating or dormancy like state of this pathogen which is impervious to anti‐tuberculosis drugs is widely recognized as the culprit for this scenario. The dormancy survival regulator (DosR) regulon, composed of 48 co‐regulated genes, is held as essential for Mtb persistence. The DosR regulon is regulated by a two‐component regulatory system consisting of two sensor kinases—DosS (Rv3132c) and DosT (Rv2027c), and a response regulator DosR (Rv3133c). The underlying regulatory mechanism of DosR regulon expression is very complex. Many factors are involved, particularly the oxygen tension. The DosR regulon enables the pathogen to persist during lengthy hypoxia. Comparative genomic analysis demonstrated that the DosR regulon is widely distributed among the mycobacterial genomes, ranging from the pathogenic strains to the environmental strains. In‐depth studies on the DosR response should provide insights into its role in TB latency in vivo and shape new measures to combat this exceeding recalcitrant pathogen. J. Cell. Biochem. 114: 1–6, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Endothelial NO, which is synthesized by endothelial nitric oxide synthase (eNOS), has been reported to be related with the occurrence of pre-eclampsia (PE). However, the polymorphisms of eNOS (− 786 T > C, 4b/a and G894T), the level of nitric oxide and the risk of PE remain unclear. Thus we performed this meta-analysis to determine the associations between them in order to predict the risk for PE and interference with PE development in the early period of antenatal care. All studies investigating the associations between PE risk and polymorphisms of eNOS, or PE risk and serum concentration of NO were reviewed. Finally, 29 studies were included, involving 11 for − 786 T > C, 11for 4b/a, and 22 for G894T polymorphisms and PE risk. In the overall analysis, − 786 T > C polymorphism was found to be related with increased PE risk in the dominant model (OR = 1.17, 95% CI = 1.02-1.35). a allele for 4b/a suffers the high risk of PE (OR = 1.46, 95% CI = 1.01–2.10). In the subgroup analysis, significantly increased risk was detected among Europeans for − 786 T > C polymorphism (OR = 1.40, 95%CI = 1.14–1.73).However, no significant association was detected for G894T polymorphism in the overall and subgroup analysis. The comprehensive evaluation of 9 available studies indicated that serum NO level was significantly decreased in case group (SMD = − 0.96 umol/mL, 95%CI = − 1.80, − 0.12 umol/mL).Hence, we concluded that eNOS gene − 786 T > C and 4b/a except for G894T polymorphisms were contributed significantly to PE risk, especially for Europeans, and a low NO concentration in serum increased the risk for PE.  相似文献   

13.
The DosS (DevS) and DosT histidine kinases form a two-component system together with the DosR (DevR) response regulator in Mycobacterium tuberculosis. DosS and DosT, which have high sequence similarity to each other over the length of their amino acid sequences, contain two GAF domains (GAF-A and GAF-B) in their N-terminal sensory domains. Complementation tests in conjunction with phylogenetic analysis showed that DevS of Mycobacterium smegmatis is more closely related to DosT than DosS. We also demonstrated in vivo that DosS and DosT of M. tuberculosis play a differential role in hypoxic adaptation. DosT responds to a decrease in oxygen tension more sensitively and strongly than DosS, which might be attributable to their different autooxidation rates. The different responsiveness of DosS and DosT to hypoxia is due to the difference in their GAF-A domains accommodating the hemes. Multiple alignment analysis of the GAF-A domains of mycobacterial DosS (DosT) homologs and subsequent site-directed mutagenesis revealed that just one substitution of E87, D90, H97, L118, or T169 of DosS with the corresponding residue of DosT is sufficient to convert DosS to DosT with regard to the responsiveness to changes in oxygen tension.Oxygen sensing is important for facultative anaerobes to adapt to changes in metabolic necessities during the transition between aerobic and anaerobic conditions. Although Mycobacterium tuberculosis (MTB) is an obligate aerobe, a gradual depletion of O2 from its culture is known to lead to a drastic change in gene expression (8, 21, 24, 28, 34, 37, 39). Approximately 48 genes of M. tuberculosis were reported to be induced under early hypoxic conditions, which is mediated by the DosSR (DevSR) two-component system (16, 24, 34). The induction of the DosR regulon is important for survival of M. tuberculosis under hypoxic conditions and for it to enter the nonreplicating dormant state (2, 19). The DosSR two-component system consists of the DosS histidine kinase (HK) and its cognate DosR response regulator (RR) (24, 26, 29). The DosT HK, which shares high sequence similarity to DosS over the length of their primary structures, was also found to cross talk with DosR (26, 30). The N-terminal domains of DosS and DosT contain two tandem GAF domains (GAF-A and GAF-B from their N termini), and the three-dimensional structure of the GAF-A and GAF-B domains was determined (5, 25). A b-type heme is embedded in the GAF-A domain, composed of one five-stranded antiparallel β-sheet and four α-helices (5, 14, 25, 32). The heme is positioned nearly perpendicular to the β-sheet, and H149 and H147 of the polypeptides serve as the proximal axial ligands for DosS and DosT, respectively (5, 25). The ligand-binding state at the distal axial position of heme and the redox state of the heme iron modulate the autokinase activity of DosS and DosT. The O2-bound (oxyferrous) and ferric forms of the HKs are inactive, whereas the unliganded ferrous (deoxyferrous) form as well as NO- and CO-bound forms are active (17, 36). The heme iron of DosT is stable against autooxidation of Fe2+ to Fe3+ in the presence of O2, indicating that its conversion between deoxyferrous and oxyferrous forms is the mechanism by which DosT recognizes O2 (17). However, the autooxidation property of oxyferrous DosS remains controversial. Kumar et al. (17) and Cho et al. (5) reported that DosS undergoes autooxidation on exposure to O2, while other research groups demonstrated that the oxyferrous form of DosS is stable against autooxidation (13, 14, 36). Recently, different roles of DosS and DosT in O2 sensing by M. tuberculosis were suggested. DosT plays a more important role in the early phase of hypoxic conditions than DosS when the growth of M. tuberculosis is transferred from aerobic to hypoxic conditions (11).Mycobacterium smegmatis possesses a single DevS HK that phosphorylates the DevR RR (20). The DevSR two-component system is also implemented in hypoxic adaptation of this bacterium (20). Like DosT of M. tuberculosis, the autokinase activity of M. smegmatis DevS was shown to be controlled by the ligand-binding state of its heme (18). Regarding the autooxidation property, DevS of M. smegmatis was suggested to be similar to DosT rather than DosS; i.e., the heme iron in DevS is resistant to autooxidation from an oxyferrous to a ferric state in the presence of O2 (18).In this paper we report several lines of evidence for the functional difference between DosS and DosT in the hypoxic adaptation of mycobacteria and discuss the implications of these findings.  相似文献   

14.
Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive disorder characterized by seizures and therapeutic response to pharmacological dose of pyridoxine. Mutations in the ALDH7A1 gene, encoding α-aminoadipic semialdehyde (α-AASA) dehydrogenase (antiquitin), have been reported to cause PDE in most patients. In this study molecular analysis of seven PDE Tunisian patients revealed a common missense c.1364T > C mutation in the ALDH7A1 gene. The identification of a cluster of PDE pedigrees carrying the c.1364T > C mutation in a specific area raises the question of the origin of this mutation from a common ancestor. We carried out a genotype-based analysis by way of genotyping a new generated microsatellite marker within the ALDH7A1 gene. Genotype reconstruction of all affected pedigree members indicate that all c.1364T > C mutation carriers harbored the same allele, indicating a common ancestor. The finding of a founder effect in a rare disease is essential for the genetic diagnosis and the genetic counseling of affected PDE pedigrees in Tunisia.  相似文献   

15.

Background

Functional polymorphisms in the receptor for advanced glycation end-products (RAGE) gene have been implicated in several vascular diseases. However, to date, no study investigated the association of RAGE polymorphisms with heart failure (HF).

Objective

In this study we tested the hypothesis that the 63-bp insertion/deletion, the − 374T > A (rs1800624) and the − 429T > C (rs1800625) polymorphisms in the RAGE gene might be associated with susceptibility to HF and could predict all-cause mortality in Brazilian outpatients with left ventricular systolic dysfunction.

Methods

A total of 273 consecutive HF patients (196 Caucasian- and 77 African-Brazilians) and 334 healthy blood donors (260 Caucasian- and 74 African-Brazilians) were enrolled in a tertiary care university hospital. Genotyping of RAGE polymorphisms was done by polymerase chain reaction (PCR) or PCR followed by enzyme restriction analysis.

Results

The allele, genotype and haplotype frequencies of − 374T > A and − 429T > C polymorphisms were not significantly different between HF patients and healthy blood donors in both ethnic groups. However, among African-Brazilians, the frequency of carriership of the del allele was lower in HF patients than in blood donors (2.6% vs 12.2%, respectively, p = 0.008). Patients were followed-up for a median of 38 months and the survival analysis did not reveal a consistent association between RAGE polymorphisms and all-cause death in both ethnic groups.

Conclusion

The − 374T > A and − 429T > C polymorphisms in the RAGE gene were not associated with the susceptibility and prognosis of HF. Notwithstanding, the 63-bp ins/del polymorphism might be involved in the susceptibility to HF in African-Brazilians.  相似文献   

16.
Determining the network of residues that transmit allosteric signals is crucial to understanding the function of biological nanomachines. During the course of a reaction cycle, biological machines in general, and Escherichia coli chaperonin GroEL in particular, undergo large-scale conformational changes in response to ligand binding. Normal mode analyses, based on structure-based coarse-grained models where each residue is represented by an α carbon atom, have been widely used to describe the motions encoded in the structures of proteins. Here, we propose a new Cα-side chain elastic network model of proteins that includes information about the physical identity of each residue and accurately accounts for the side-chain topology and packing within the structure. Using the Cα-side chain elastic network model and the structural perturbation method, which probes the response of a local perturbation at a given site at all other sites in the structure, we determine the network of key residues (allostery wiring diagram) responsible for the T → R and R″ → T transitions in GroEL. A number of residues, both within a subunit and at the interface of two adjacent subunits, are found to be at the origin of the positive cooperativity in the ATP-driven T → R transition. Of particular note are residues G244, R58, D83, E209, and K327. Of these, R38, D83, and K327 are highly conserved. G244 is located in the apical domain at the interface between two subunits; E209 and K327 are located in the apical domain, toward the center of a subunit; R58 and D83 are equatorial domain residues. The allostery wiring diagram shows that the network of residues are interspersed throughout the structure. Residues D83, V174, E191, and D359 play a critical role in the R″ → T transition, which implies that mutations of these residues would compromise the ATPase activity. D83 and E191 are also highly conserved; D359 is moderately conserved. The negative cooperativity between the rings in the R″ → T transition is orchestrated through several interface residues within a single ring, including N10, E434, D435, and E451. Signal from the trans ring that is transmitted across the interface between the equatorial domains is responsible for the R″ → T transition. The cochaperonin GroES plays a passive role in the R″ → T transition. Remarkably, the binding affinity of GroES for GroEL is allosterically linked to GroEL residues 350-365 that span helices K and L. The movements of helices K and L alter the polarity of the cavity throughout the GroEL functional cycle and undergo large-scale motions that are anticorrelated with the other apical domain residues. The allostery wiring diagrams for the T → R and R″ → T transitions of GroEL provide a microscopic foundation for the cooperativity (anticooperativity) within (between) the ring (rings). Using statistical coupling analysis, we extract evolutionarily linked clusters of residues in GroEL and GroES. We find that several substrate protein binding residues as well as sites related to ATPase activity belong to a single functional network in GroEL. For GroES, the mobile loop residues and GroES/GroES interface residues are linked.  相似文献   

17.
Mycobacterium tuberculosis survives in latently infected individuals, likely in a nonreplicating or dormancy-like state. The M. tuberculosis DosR regulon is a genetic program induced by conditions that inhibit aerobic respiration and prevent bacillus replication. In this study, we used a mutant incapable of DosR regulon induction to investigate the contribution of this regulon to bacterial metabolism during anaerobic dormancy. Our results confirm that the DosR regulon is essential for M. tuberculosis survival during anaerobic dormancy and demonstrate that it is required for metabolic processes that occur upon entry into and throughout the dormant state. Specifically, we showed that regulon mechanisms shift metabolism away from aerobic respiration in the face of dwindling oxygen availability and are required for maintaining energy levels and redox balance as the culture becomes anaerobic. We also demonstrated that the DosR regulon is crucial for rapid resumption of growth once M. tuberculosis exits an anaerobic or nitric oxide-induced nonrespiring state. In summary, the DosR regulon encodes novel metabolic mechanisms essential for M. tuberculosis to survive in the absence of respiration and to successfully transition rapidly between respiring and nonrespiring conditions without loss of viability.Mycobacterium tuberculosis, a major human pathogen, infects nearly one-third of the people in the world and causes two million deaths per year (8). Most infections are latent, and a substantial number of new infections are transmitted by individuals in whom latent infections are being reactivated. Latency is a clinical term describing people that are infected with M. tuberculosis but lack symptoms of active disease. Traditionally, it has been thought that bacilli in latently infected individuals reside almost exclusively inside granulomas and mature tubercle lesions. Recent studies indicate that in latently infected individuals M. tuberculosis may also be found outside granulomas in places such as endothelial cells, fibroblasts, and adipose tissue (17, 28). The evidence for M. tuberculosis metabolic activity in vivo is more limited, but two studies by Lillebaek et al. are informative (24, 25). In these studies the researchers used detailed records of tuberculosis epidemiology and strain types in the fairly static population of Denmark. They found that strains isolated from patients thought to have reactivated disease (rather than a primary infection) were nearly identical to strains present 30 years earlier in the same geographic population. The near-identity of the strains and the fact that infections were attributed to reactivation suggest that bacteria in latently infected individuals experience little genetic change during years of latent infection. The researchers concluded that during latency, M. tuberculosis divides infrequently and is likely in a minimal metabolic state.One approach to study the M. tuberculosis metabolic state during latent infection is to use in vitro models that mimic conditions thought to exist in vivo. Such conditions include hypoxia produced in avascular calcified granulomas (40) and nitric oxide (NO) (27) or carbon monoxide (CO) (33) produced by activated immune cells. A widely used model is the “Wayne model” pioneered by Lawrence Wayne. In this model, a low-inoculum culture is sealed in a tube with stirring and allowed to slowly consume oxygen until the culture is anaerobic, resulting in a nonreplicating and apparently dormant state (45, 46). Another model used to look at dormant M. tuberculosis is a constant-hypoxia model that maintains a 0.2% oxygen tension in culture flasks (31).The common theme in these in vitro models used to obtain M. tuberculosis dormancy is inhibition of respiration. The DosR regulon is a set of at least 48 coregulated genes that are induced by three conditions that inhibit aerobic respiration: hypoxia, NO, and CO (42). Induction of the DosR regulon closely mirrors inhibition of respiration, indicating that control of the regulon is linked to the aerobic respiratory state of the bacilli (43). Several studies have shown that the DosR regulon is controlled by a three-component regulatory system composed of two sensor histidine kinases, DosS and DosT, and a response regulator, DosR (42). DosS and DosT both bind the respiration-impairing gases NO and CO (19, 20, 38), further supporting the hypothesis that the DosR regulon responds to, and is important during, conditions that do not allow aerobic respiration. Although the majority of the DosR-regulated genes have not been characterized, the timing of their induction combined with the conditions under which they respond suggests that they may play a role in adaptation of M. tuberculosis to its host environment. Consistent with this notion, DosR regulon genes are induced in the lungs of M. tuberculosis-infected mice (43), as well as in interferon-gamma-activated murine macrophages (34) and guinea pigs (37).Several studies have suggested that the DosR regulon plays a role in latent infection and in persistence in animal models that resemble human infection in some respects. Leyten et al. found that latently infected humans are more likely than humans with active infections to bear T cells specific for DosR regulon antigens (23), suggesting that the regulon is expressed during latency. Two recent studies confirmed that there is an immune response to DosR regulon antigens during latent infection (4, 36). Further evidence for clinical relevance in humans comes from a study showing that M. tuberculosis in sputum expresses the DosR regulon (15). The importance of this regulon for persistence in rabbit and guinea pig models was demonstrated by data showing a 2-log decrease in recovery of a DosR mutant 2 weeks (guinea pig) and 8 weeks (rabbit) after aerosol infection (11). A DosR mutant was also found to be significantly attenuated in guinea pig infection (26), further supporting the notion that the DosR regulon is required for persistence in vivo. It should be noted that in both studies showing the DosR phenotype (11, 26), full complementation and reversion to full virulence were not observed. However, it is now known that regulation of dosR expression is quite complex. Multiple regulatory sequences exist in and upstream of Rv3134c, the gene directly upstream of dosR (8). Failure to include such a regulatory sequence in a complemented strain would likely result in misregulation of dosR and poor complementation. Studies of DosR regulon mutants for murine infection have produced inconsistent findings that vary from hypervirulent (30) to attenuated (11) and not attenuated (3, 31). When animal models are compared, it is important to remember that M. tuberculosis-induced granulomas in primates, rabbits, and guinea pigs develop caseous necrosis and are hypoxic and/or anaerobic, while M. tuberculosis induced-granulomas in mice are neither hypoxic nor anaerobic (2, 21, 41). Furthermore, M. tuberculosis divides regularly in chronic murine infections (16), in contrast to the replication during latent infections, as demonstrated in the studies of Lillebaek et al. (24, 25). Such studies underscore the significant differences between models.A previous study with a DosR mutant in a closely related Mycobacterium bovis BCG strain showed that DosR expression is required for survival in an in vitro Wayne-like model of dormancy (5). Unexpectedly, two similar studies in M. tuberculosis did not show a strong survival defect for a DosR mutant (31, 43). The most recent study showed that there was only a modest survival defect in an H37Rv DosR mutant and concluded that the DosR regulon is a short-term phenomenon and is not responsible for the adaptation necessary to survive under primarily hypoxic conditions in vitro (31, 32).In this study we showed that the DosR regulon is required for M. tuberculosis survival during anaerobic dormancy. We also used a combination of genetic and biochemical approaches to demonstrate that this regulon is necessary to shift away from oxygen consumption, maintain ATP levels, and balance the redox state (NAD/NADH ratio) of the cell as oxygen becomes scarce. Furthermore, we showed that the DosR regulon is necessary for optimal transition of M. tuberculosis back to aerobic growth from an anaerobic or nitric oxide-induced nonrespiring state.  相似文献   

18.

Background

Although dietary treatments can successfully reduce blood lipids in hypercholesterolemic subjects, individual variation in that response has on occasion been linked to allelic differences. SNP rs12449157 has shown association with HDL-C concentrations in GWAS and falls in the glucose-fructose oxidoreductase domain containing 2 (GFOD2) locus. Of interest, previous data suggest that this SNP may be under environmentally driven selection. Thus, the aim of this study was to assess if rs12449157 may mediate the response of lipid traits to a dietary supplementation (DS) with soy protein and soluble fiber in a Mexican population with hypercholesterolemia.

Methods

Forty-one subjects with hypercholesterolemia were given a low saturated fat diet (LSFD) for 1 month, followed by a LSFD + DS that included 25 g of soy protein and 15 g of soluble fiber (S/SF) daily for 2 months. Anthropometric, clinical, biochemical and dietary variables were determined. We analyzed the gene–diet interaction between the GFOD2 genotype, with the minor allele frequency of 0.24, and the DS on total cholesterol (TC) and LDL-C concentrations.

Results

Hypercholesterolemic subjects with GFOD2 rs12449157 G allele had higher serum TC and LDL-C at the baseline and showed a greater response to the LSCD + S/SF (− 83.9 and − 57.5 mg/dl, respectively) than those with GFOD2 AA genotype (− 40.1 and − 21.8 mg/dl, respectively) (P = 0.006 for TC, 0.025 for LDL-C, respectively).

Conclusion

The observed differences in allele-driven, diet-induced changes in blood lipids may be the result of a recent environmentally driven selection on the rs12449157 minor allele. Variation in the GFOD2 gene contributes to the genetic basis for a differential response to a cholesterol- or lipid-lowering diet.  相似文献   

19.
The complete mitogenomes of Asiotmethis zacharjini, Filchnerella helanshanensis and Pseudotmethis rubimarginis are 15,660 bp, 15,657 bp and 15,661 bp in size, respectively. All three mitogenomes contain a standard set of 13 protein - coding genes, 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and an A + T-rich region in the same order as those of the other analysed caeliferan species, including the rearrangement of trnAsp and trnLys. The putative initiation codon for the cox1 gene in the three species is CCG. The long polythymine stretch (T-stretch) in the A + T-rich region of the three species is not adjacent to the trnIle but inside the stem–loop sequence in the majority strand. The mitogenomes of F. helanshanensis and P. rubimarginis have higher overall similarities. The characterization of the three mitogenomes will enrich our knowledge on the Pamphagidae mitogenome. The phylogenetic analyses indicated that within the Caelifera, Pyrgomorphoidea is a sister group to Acridoidea. The species from the Pamphagidae form a monophyletic group, as is the case for Acrididae. Furthermore, the two families cluster as sister groups, supporting the monophyly of Acridoidea. The relationships among eight acridid subfamilies were (Cyrtacanthacridinae + (Calliptaminae + (Catantopinae + (Oxyinae + (Melanopline + (Acridinae + (Oedipodinae + Gomphocerinae))))))).  相似文献   

20.
A bioinformatics survey of putative globins in over 2200 bacterial and some 140 archaeal genomes revealed that over half the bacterial and approximately one fifth of archaeal genomes contain genes encoding globins that were classified into three families: the M (myoglobin-like), and S (sensor) families all exhibiting the canonical 3/3 myoglobin fold, and the T family (truncated myoglobin fold). Although the M family comprises 2 subfamilies, flavohemoglobins (FHbs) and single domain globins (SDgbs), the S family encompasses chimeric globin-coupled sensors (GCSs), single domain Pgbs (protoglobins) and SSDgbs (sensor single domain globins). The T family comprises three classes TrHb1s, TrHb2s and TrHb3s, characterized by the abbreviated 2/2 myoglobin fold. The Archaea contain only Pgbs, GCSs and TrHb1s. The smallest globin-bearing genomes are the streamlined genomes (~ 1.3 Mbp) of the SAR11 clade of alphaproteobacteria and the slightly larger (ca. 1.7 Mbp) genomes of Aquificae. The smallest genome with members of all three families is the 2.3 Mbp genome of the extremophile Methylacidiphilum infernorum (Verrumicrobia). Of the 147 possible combinations of the eight globin subfamilies, only 83 are observed. Although binary combinations are infrequent and ternary combinations are rare, the FHb + TrHb2 combination is the most commonly observed. Of the possible functions of bacterial globins we discuss the two principal ones — nitric oxide detoxification via the NO dioxygenase or denitrosylase activities and the sensing of oxygen concentration in the environmental niche. In only few cases has a physiological role been demonstrated in vivo. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号