首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peptide T-11, a carboxyl terminal tryptic fragment of α2-plasmin inhibitor, inhibits the reversible first step of the reaction between plasmin and α2-plasmin inhibitor. To elucidate which amino-acid residues played a important role in the inhibitory activity of peptide T-11, we prepared the various synthetic derivatives of peptide T-11 and determined the peptide concentration that inhibited the apparent rate constant of the reaction between plasmin and α2-plasmin inhibitor by 50% (IC50). Peptide III, which lacked the residues Gly-1 to Pro-7 of peptide I (peptide T-11), had a strong inhibitory activity, like peptide I (IC50: peptide 1, 7 μM; peptide III, 13 μM). The peptides that lacked the Leu-9 and Lys-10 or Lys-26 of peptide III showed much weaker activity, and the loss of amidation of the C-terminal lysine of peptide III also markedly reduced the inhibitory activity, Peptide III competitivef inhibited the binding of [14C]tranexamic acid to kringle 1 + 2 + 3 (K1–3) and kringle 4 (K4) in a binding assay performed by the gel-diffusion method. The respectively dissociation constants (Kd) of peptide III for K1–3 and K4 were 0.85 μM and 35.2 μM. These data suggest that the amino residue of Lys-10 and the carboxylic acid of Lys-26 in peptide T-11 play crucial roles in the ionic binding of α2-plasmin inhibitor to the tranexamic acid-binding site (lysine-binding site) of plasminogen. Peptide T-11: H-G-D-K-L-F-G-P-D-L-K-L-V-P-P-M-E-E-D-Y-P-Q-F-G-S-P-K-OH.  相似文献   

2.
Purified plasminogen activator from pig heart displays weak activity toward plasminogen, with or without detergents present. The activation rate is enhanced at least 50 times upon addition of low concentrations (1 μg/ml) of many proteins following their denaturation by acid, base, or heat. No native proteins, at concentrations up to 10 mg/ ml, enhanced plasminogen activator activity. The degree of enhancement by many denatured proteins was as great as that caused by the presence of a fibrin clot, and occurred at lower protein concentrations. Similar observations with activators from human vena cava and cadaver perfusate suggest that the effect is probably general to tissue activators. None of the denatured proteins examined enhanced the activity of urokinase, streptokinase, staphylokinase, or plasmin. Small proteins known to renature rapidly, such as RNAse, and highly ordered structural proteins, such as collagen and keratin, could not be converted to stimulators of plasminogen activators by treatment with acid or base. If, as appears likely, plasminogen activator can indeed recognize and be stimulated by misfolded proteins, a possible role in selective catabolism of damaged protein in general, not solely fibrin clots, is evident. If the nature of the stimulatory peptide grouping can be elucidated, plasminogen activator may also be a valuable tool both for study of protein denaturation and clarification of the clot stimulatory effect in fibrinolysis.  相似文献   

3.
Stimulation of Lys-plasminogen (Lys-Pg) and Glu-plasminogen (Glu-Pg) activation under the action of staphylokinase and Glu-Pg activation under the action of preformed plasmin-staphylokinase activator complex (Pm-STA) by low concentrations and inhibition by high concentrations of omega-amino acids (>90-140 mM) were found. Maximal stimulation of the activation was observed at concentrations of L-lysine, 6-aminohexanoic acid (6-AHA), and trans-(4-aminomethyl)cyclohexanecarboxylic acid 8.0, 2.0, and 0.8 mM, respectively. In contrast, the Lys-Pg activation rate by Pm-STA complex sharply decreased when concentrations of omega-amino acids exceeded the above-mentioned values. It was found that formation of Pm-STA complex from a mixture of equimolar concentrations of staphylokinase and Glu-Pg or Lys-Pg is stimulated by low concentrations (maximal at 10 mM) of 6-AHA. Negligible increase in the specific activities of plasmin and Pm-STA complex was detected at higher concentrations of 6-AHA (to maximal at 70 and 50 mM, respectively). Inhibitory effects of omega-amino acids on the rate of fibrinolysis induced by staphylokinase, Pm-STA complex, and plasmin were compared. It was found that inhibition of staphylokinase-induced fibrinolysis by omega-amino acids includes blocking of the reactions of Pm-STA complex formation, plasminogen activation by this complex, and lysis of fibrin by forming plasmin as a result of displacement of plasminogen and plasmin from the fibrin surface. Thus, the slow stage of Pm-STA complex formation plays an important role in the mechanism of action of omega-amino acids on Glu-Pg activation and fibrinolysis induced by staphylokinase. In addition to alpha-->beta change of Glu-Pg conformation, stimulation of Pm-STA complex formation leads to increase in Glu-Pg activation rate in the presence of low concentrations of omega-amino acids. Inhibition of Pm-STA complex formation on fibrin surface by omega-amino acids is responsible for appearance of long lag phases on curves of fibrinolysis induced by staphylokinase.  相似文献   

4.
The plasminogen activating system is important in extracellular proteolysis. Plasmin degrades tissues and activates proteases. Plasminogen activators (tissue type; t-PA and urokinase type; u-PA) and plasminogen activator inhibitors (PAI-1, PAI-2) are found in high concentrations in gingival crevicular fluid (GCF). Previous findings indicate the significance of PAI-2 in gingival inflammation. When PAI-2 inhibits a plasminogen activator its conformation relaxes and neoepitopes can be detected with a monoclonal antibody (#2H5). Our aim was to study if and where in the gingival region PAI-2 has acted as an inhibitor. Methodological studies were performed on GCF with western blotting. Frozen sections of human gingiva were studied immunohistochemically. The methodological studies showed that our antibody #2H5 selectively detects relaxed low molecular weight non-glycosylated PAI-2. Total PAI-2 and relaxed PAI-2 were found in all gingival epithelia with a honeycomb-like staining. Relaxed PAI-2 showed the most pronounced staining in the cell layers near the surface of the epithelium and no staining in the suprabasal layers, while total PAI-2 was found throughout the epithelium, often more pronounced suprabasally. The results showed that PAI-2 indeed has acted as an inhibitor of a protease in gingival tissues, primarily in the epithelia. The results also suggest primarily an intracellular localization and thus the interaction of PAI-2 with a protein other than t-PA.  相似文献   

5.
Investigation of the influence of divalent metal cations on the induction of plasminogen catalytic activity by monoclonal antibody IV-Ic showed that the presence of metal cations in the reaction medium changes the induction by slowing down or accelerating the process. Ions of Zn2+, Mn2+, and Cu2+ completely inhibit activation. Ions of Co2+ and Ni2+ decrease the rate of the first and second phases of the reaction more than 2 times. Ca2+ ions do not have any effect on the activation rate. Ions of Mg2+, Ba2+, and Sr2+ increase the rate of the first phase of the reaction by 1.5, 2.0, and 2.0 times and the rate of the second phase by 2.0, 3.8, and 4.7 times, correspondingly. Sr2+ ions have the strongest stimulating effect on plasminogen activation by monoclonal antibody IV-Ic. Investigation of the dose dependent effect of Sr2+ on the rate of plasminogen activation by monoclonal antibody IV-Ic showed stimulating effect of Sr2+ at concentrations from 0.1 to 1.0 mM with half maximum at 0.6 mM. However, Sr2+ ions do not affect amidolytic activity of plasmin and activation of plasminogen by streptokinase. Sr2+ ions also do not affect monoclonal antibody IV-Ic binding to plasminogen. The effect of Sr2+ is specific and mediated by the IV-Ic component. The presence of metal cations affects conformational changes in the process of active site formation. Metal cations also affect structure of the plasminogen molecule active site in the complex with monoclonal antibody IV-Ic and enzyme-substrate interaction. The effect of α2-antiplasmin on the induction of plasminogen catalytic activity by monoclonal antibody IV-Ic in range of concentrations from 5 to 30 nM has been studied. α2-Antiplasmin at concentration 30 nM almost completely inhibits induction of plasminogen catalytic activity by monoclonal antibody IV-Ic at the ratio plasminogen/α2-antiplasmin of 3:1. This can be explained by competition of α2-antiplasmin and monoclonal antibody IV-Ic for the lysine-binding sites of plasminogen and inhibition of the active center in activated complex plasminogen*—mAB IV-Ic. Divalent metal cations and α2-antiplasmin are important factors in induction of plasminogen catalytic activity by monoclonal antibody IV-Ic. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 6, pp. 778–785.  相似文献   

6.
We have previously demonstrated that tissue plasminogen activator (tPA) plays an important role through the conversion of plasminogen to plasmin in the release of dopamine in the nucleus accumbens (NAc) evoked by depolarization or the systemic administration of drugs of abuse such as morphine and nicotine. In the present study, we examined the mechanisms by which drugs of abuse increase extracellular tPA activity in the NAc in vivo using in situ zymography. The dopamine D1 receptor (D1R) agonist SKF38393, but not D2 receptor agonist quinpirole, significantly increased extracellular tPA activity in the NAc. The effect of SKF38393 was blocked by pre-treatment with the dopamine D1R antagonist SCH23390. Microinjection of Rp-cAMPs, a protein kinase A inhibitor, into the NAc completely blocked the effect of SKF38393. Systemic administration of morphine and methamphetamine increased extracellular tPA activity in the NAc, and these effects were completely blocked by pre-treatment with SCH23390 and raclopride. The results suggest that activation of post-synaptic dopamine D1Rs in the NAc leads to an increase in extracellular tPA activity via protein kinase A signaling. Furthermore, dopamine D2 receptors are also involved in the release of tPA induced by morphine and methamphetamine.  相似文献   

7.
Reactions between purified plasminogen and streptokinase, labelled with 131I and 125I respectively, were investigated by polyacrylamide-gel discontinuous electrophoresis. A molecular complex consisting of both 131I-labelled plasminogen and 125I-labelled streptokinase migrated between plasminogen and streptokinase. This complex contained bovine plasminogen activator activity. The relative quantities of 131I-labelled plasminogen and 125I-labelled streptokinase in this complex were markedly affected by reaction conditions. A fragment that retained 50% or more of the parent activator activity was released from the complex after exposure to mercaptoethanol. This subcomponent had an estimated molecular weight of 70000, and contained both 131I-labelled plasminogen and 125I-labelled streptokinase.  相似文献   

8.
A perfusion-control strategy based on cellular consumption rates of oxygen and glucose was established for the production of single-chain urokinase-type plasminogen activator (scu-PA). Employing this strategy, the influences of microcarrier types and the culture media on culture performances were evaluated. In the control perfusion culture, which used a solid microcarrier and a 1% fetal bovine serum (FBS) medium, viable cell density reached 3.1?×?107?cells?ml?1. However, formation of large, heterogeneous aggregates (500–1,000?μm) resulted in a gradual decrease in viable cell density to less than 1.0?×?107?cells?ml?1. Accordingly, declines in the production of urokinase-type plasminogen activator (u-PA) and in the scu-PA portion of u-PA were observed. In the serum-free media, cell growth and u-PA production were suppressed 2–3?times, but were significantly enhanced when a porous microcarrier, Cultispheer G, was used. The cell-growth profile showed a continuous increase in cell density, reaching 5.1?×?107?cells?ml?1, and the production of u-PA remained stable throughout the culture (1586?±?247?IU?ml?1). The values of all the parameters associated with cell growth and u-PA production were fairly comparable to or even higher than those in the control culture. Moreover, a 13% higher scu-PA portion of u-PA was observed in the serum-free culture, regardless of the microcarrier type, compared with scu-PA portion of u-PA in the control culture.  相似文献   

9.
Is tissue plasminogen activator a threat to neurons?   总被引:3,自引:0,他引:3  
The clot-busting drug tissue plasminogen activator (tPA) is currently the only FDA-approved therapy for acute stroke. However, increasing evidence suggests that tPA can also contribute to excitotoxic neuronal damage in animal models of stroke.  相似文献   

10.
Acute thrombotic events frequently occur in the early morning among hyperlipidemic patients. The activity of plasminogen activator inhibitor-1 (PAI-1), a potent inhibitor of the fibrinolytic system, oscillates daily, and this is considered one mechanism that underlies the morning onset of acute thrombotic events in hyperlipidemia. Although several studies have reported the expression of the PAI-1 gene is under the control of the circadian clock system, the molecular mechanism of the circadian transactivation of PAI-1 gene under hyperlipidemic conditions remains to be elucidated. Here, the authors investigated whether hyperlipidemia induced by a high-fat diet (HFD) enhances the daily oscillation of plasma PAI-1 activity in mice. The mRNA levels of the PAI-1 gene were increased and rhythmically fluctuated with high-oscillation amplitude in the livers of wild-type mice fed with the HFD. Circadian expression of proxisome proliferator-activated receptor-α (PPARα) mRNA was also augmented as well as that of PAI-1. Chromatin immunoprecipitation showed the HFD-induced hyperlipidemia significantly increased the binding of PPARα to the PAI-1 promoter. Luciferase reporter analysis using primary hepatocytes revealed CLOCK/BMAL1-mediated PAI-1 promoter activity was synergistically enhanced by cotransfection with PPARα/retinoid X receptor-α (RXRα), and this synergistic transactivation was repressed by negative limbs of the circadian clock, PERIOD2 and CRYPTOCHROME1. As expected, HFD-induced PAI-1 mRNA expression was significantly attenuated in PPARα-null mice. These results suggest a molecular link between the circadian clock and lipid metabolism system in the regulation of PAI-1 gene expression, and provide an aid for understanding why hyperlipidemia increases the risk of acute thrombotic events in the morning.  相似文献   

11.
12.
Streptococcus pyogenes (group A streptococcus) causes human skin and throat infections as well as highly invasive diseases including necrotizing fasciitis. Group A streptococcal infections and invasive disease have made a resurgence in developed countries during the past two decades. S. pyogenes use multiple pathways for the acquisition and activation of human plasminogen, securing potent proteolytic activity on the bacterial cell surface. Recent experimental evidence using a humanized transgenic mouse model suggests a crucial role for human plasminogen in the dissemination of S. pyogenes in vivo.  相似文献   

13.
The urokinase-type plasminogen activator (uPA) in concert with other proteolytic enzymes plays a critical role in cartilage degradation during osteoarthritis. Urokinase receptor (uPAR), a glycosyl-phosphatidylinositol-linked glycoprotein present on the cell surface of various cell types such as cancer cells, fibroblasts, synoviocytes, and chondrocytes, is a key regulator of the plasmin-mediated pericellular proteolysis. Recently, in arthritic synovial tissue increased uPAR expression has been detected. By immunohistochemical analysis we observed, in addition, enhanced expression of uPAR in chondrocytes of arthritic samples of human cartilage compared to non-arthritic controls. Using in vitro cultured human chondrocytes, we analyzed whether uPAR is associated with structural proteins, which are known to be involved in cell signaling and activation. uPAR in phorbol-12-myristate-13-acetate-stimulated chondrocytes colocalized with caveolin as well as beta 1-integrin, as demonstrated by double immunostaining with specific antibodies. Furthermore, uPAR was present in caveolae-like structures of chondrocytes as detected by immunoelectron microscopy. Finally, both caveolin and beta 1-integrin were coprecipitated with uPAR-specific antibodies from cell extracts suggesting that these proteins may form functional complexes in human chondrocytes. The localization of uPAR in caveolae and its close association with caveolin and beta 1-integrin points to a significance of uPAR-mediated signaling pathways in human chondrocytes.  相似文献   

14.
Plasminogen activator inhibitor (PAI)-1 is a major fibrinolytic inhibitor. High PAI-1 is associated with increased renal and cardiovascular disease risk. Previous studies demonstrated PAI-1 down-regulation by 1,25-dihydroxyvitamin D? (1,25(OH)?D?), but the molecular mechanism remains unknown. Here we show that exposure of mouse embryonic fibroblasts to TNFα or LPS led to a marked induction of PAI-1, which was blunted by 1,25(OH)?D?, NF-κB inhibitor or p65 siRNA, suggesting the involvement of NF-κB in 1,25(OH)?D?-induced repression. In mouse Pai-1 promoter a putative cis-κB element was identified at -299. EMSA and ChIP assays showed that TNF-α increased p50/p65 binding to this κB site, which was disrupted by 1,25(OH)?D?. Luciferase reporter assays showed that PAI-1 promoter activity was induced by TNFα or LPS, and the induction was blocked by 1,25(OH)?D?. Mutation of the κB site blunted TNFα, LPS or 1,25(OH)?D? effects. 1,25(OH)?D? blocked IκBα degradation and arrested p50/p65 nuclear translocation. In mice LPS stimulated PAI-1 expression in the heart and macrophages, and the stimulation was blunted by pre-treatment with a vitamin D analog. Together these data demonstrate that 1,25(OH)?D? down-regulates PAI-1 by blocking NF-κB activation. Inhibition of PAI-1 production may contribute to the reno- and cardio-protective effects of vitamin D.  相似文献   

15.
In congenital heart block (CHB), binding of maternal anti-SSA/Ro Abs to fetal apoptotic cardiocytes impairs their removal by healthy cardiocytes and increases urokinase plasminogen activator (uPA)/uPA receptor (uPAR)-dependent plasmin activation. Because the uPA/uPAR system plays a role in TGF-β activation, we evaluated whether anti-Ro binding to apoptotic cardiocytes enhances plasmin-mediated activation of TGF-β, thereby promoting a profibrosing phenotype. Supernatants from cocultures of healthy cardiocytes and apoptotic cardiocytes bound by IgG from a mother whose child had CHB (apoptotic-CHB-IgG [apo-CHB-IgG]) exhibited significantly increased levels of active TGF-β compared with supernatants from cocultures of healthy cardiocytes and apoptotic cardiocytes preincubated with IgG from a healthy donor. Treatment of the culture medium with anti-TGF-β Ab or TGF-β inhibitor (SB431542) abrogated the luciferase response, thereby confirming TGF-β dependency. Increased uPA levels and activity were present in supernatants generated from cocultures of healthy cardiocytes and apo-CHB-IgG cardiocytes compared with healthy cardiocytes and apoptotic cardiocytes preincubated with IgG from a healthy donor, respectively. Treatment of apo-CHB-IgG cardiocytes with anti-uPAR or anti-uPA Abs or plasmin inhibitor aprotinin prior to coculturing with healthy cardiocytes attenuated TGF-β activation. Supernatants derived from cocultures of healthy cardiocytes and apo-CHB-IgG cardiocytes promoted Smad2 phosphorylation and fibroblast transdifferentiation, as evidenced by increased smooth muscle actin and collagen expression, which decreased when fibroblasts were treated with supernatants from cocultures pretreated with uPAR Abs. These data suggested that binding of anti-Ro Abs to apoptotic cardiocytes triggers TGF-β activation, by virtue of increasing uPAR-dependent uPA activity, thus initiating and amplifying a cascade of events that promotes myofibroblast transdifferentiation and scar.  相似文献   

16.

Background

HIV replication in mononuclear phagocytes is a multi-step process regulated by viral and cellular proteins with the peculiar feature of virion budding and accumulation in intra-cytoplasmic vesicles. Interaction of urokinase-type plasminogen activator (uPA) with its cell surface receptor (uPAR) has been shown to favor virion accumulation in such sub-cellular compartment in primary monocyte-derived macrophages and chronically infected promonocytic U1 cells differentiated into macrophage-like cells by stimulation with phorbol myristate acetate (PMA). By adopting this latter model system, we have here investigated which intracellular signaling pathways were triggered by uPA/uPAR interaction leading the redirection of virion accumulation in intra-cytoplasmic vesicles.

Results

uPA induced activation of RhoA, PKCδ and PKCε in PMA-differentiated U1 cells. In the same conditions, RhoA, PKCδ and PKCε modulated uPA-induced cell adhesion and polarization, whereas only RhoA and PKCε were also responsible for the redirection of virions in intracellular vesicles. Distribution of G and F actin revealed that uPA reorganized the cytoskeleton in both adherent and polarized cells. The role of G and F actin isoforms was unveiled by the use of cytochalasin D, a cell-permeable fungal toxin that prevents F actin polymerization. Receptor-independent cytoskeleton remodeling by Cytochalasin D resulted in cell adhesion, polarization and intracellular accumulation of HIV virions similar to the effects gained with uPA.

Conclusions

These findings illustrate the potential contribution of the uPA/uPAR system in the generation and/or maintenance of intra-cytoplasmic vesicles that actively accumulate virions, thus sustaining the presence of HIV reservoirs of macrophage origin. In addition, our observations also provide evidences that pathways controlling cytoskeleton remodeling and activation of PKCε bear relevance for the design of new antiviral strategies aimed at interfering with the partitioning of virion budding between intra-cytoplasmic vesicles and plasma membrane in infected human macrophages.  相似文献   

17.
18.
Expression/secretion vectors for the production of Fab′ and single-chain (sc) Fab′ by Bacillus brevis have been constructed. For the production of Fab′, the cDNAs encoding the L chain and Fd′ fragment (Fd with the hinge region) of a mouse-human chimeric Fab′ against human urokinase-type plasminogen activator were fused directly with the translation-start and signal-peptide-encoding regions of the mwp gene, the gene for one of the major cell-wall proteins of Bacillus brevis. The two fused genes were placed tandemly downstream from the promoter of the cell-wall protein gene operon (cwp) of B. brevis. For the production of scFab′, the two cDNAs were linked with a synthetic oligonucleotide encoding a flexible peptide linker of 17 or 24 amino acids, and fused with the translation start and signal-peptide-encoding regions of the mwp gene. Fab′ was efficiently produced by B. brevis, being accumulated at a level of 100 mg/l in the culture medium in a simple shake-flask culture, which is the highest level obtained so far for a gram-positive bacterium. On the other hand, the scFab′ remained at a level of a few milligrams per liter in the culture medium. The Fab′ produced by B. brevis showed comparable antigen-binding activity to that of the parental antibody. The L chain and Fd′ fragment, constituting the Fab′, had the correct N-terminal amino acid sequences. These results indicate that B. brevis is a very promising host for the production of native Ig fragments. Received: 25 April 1997 / Received revision: 3 June 1997 / Accepted: 29 June 1997  相似文献   

19.
Plasminogen activator inhibitor (PAI)-1 is a major fibrinolytic inhibitor. High PAI-1 is associated with increased renal and cardiovascular disease risk. Previous studies demonstrated PAI-1 down-regulation by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), but the molecular mechanism remains unknown. Here we show that exposure of mouse embryonic fibroblasts to TNFα or LPS led to a marked induction of PAI-1, which was blunted by 1,25(OH)2D3, NF-κB inhibitor or p65 siRNA, suggesting the involvement of NF-κB in 1,25(OH)2D3-induced repression. In mouse Pai-1 promoter a putative cis-κB element was identified at −299. EMSA and ChIP assays showed that TNF-α increased p50/p65 binding to this κB site, which was disrupted by 1,25(OH)2D3. Luciferase reporter assays showed that PAI-1 promoter activity was induced by TNFα or LPS, and the induction was blocked by 1,25(OH)2D3. Mutation of the κB site blunted TNFα, LPS or 1,25(OH)2D3 effects. 1,25(OH)2D3 blocked IκBα degradation and arrested p50/p65 nuclear translocation. In mice LPS stimulated PAI-1 expression in the heart and macrophages, and the stimulation was blunted by pre-treatment with a vitamin D analog. Together these data demonstrate that 1,25(OH)2D3 down-regulates PAI-1 by blocking NF-κB activation. Inhibition of PAI-1 production may contribute to the reno- and cardio-protective effects of vitamin D.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号