首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During central nervous system development, growth factors and their associated receptor protein tyrosine kinases regulate many neuronal functions such as neurite extension and dendrite maturation. Hepatocyte growth factor (HGF) and its receptor, c-Met, can promote formation of neurites and enhance elaboration of dendrites in mature neurons, but their effects on the early stages of dendrite maturation in hippocampal neurons and the signaling pathways by which they promote dendrite formation have not been studied. Exogenous HGF treatment effectively enhanced the phosphorylation and activation of c-Met in cultured hippocampal neurons at 4 days in vitro. HGF treatment increased the number of dendrites and promoted dendrite elongation in these neurons. Consistent with these results, HGF activated Akt, which phosphorylates glycogen synthase kinase-3beta (GSK-3beta) to inactivate it, and reduced phosphorylation of microtubule-associated protein 2 (MAP2), which can promote microtubule polymerization and dendrite elongation when dephosphorylated. Conversely, pharmacological inhibition of c-Met with its specific inhibitor, PHA-665752, or genetic knock-down of c-Met with short hairpin RNAs (shRNAs) suppressed HGF-induced phosphorylation of Akt and GSK-3beta, increased phosphorylation of MAP2, and reduced dendrite number and length in cultured hippocampal neurons. Moreover, suppressing c-Met with PHA-665752 or by shRNA decreased MAP2 expression. Inhibiting Akt activity with the phosphoinositide-3-kinase inhibitor LY294002 or Akt inhibitor X suppressed HGF-induced phosphorylation of GSK-3beta, increased MAP2 phosphorylation, and blocked the ability of HGF to enhance dendritic length. These observations indicate that HGF and c-Met can regulate the early stages of dendrite maturation via activation of the Akt/GSK-3beta pathway.  相似文献   

2.
Cancer cells with MET overexpression are paradoxically more sensitive to MET inhibition than cells with baseline MET expression. The underlying molecular mechanisms are incompletely understood. Here, we have traced early responses of SNU5, a MET-overexpressing gastric cancer cell line, exposed to sublethal concentration of PHA-665752, a selective MET inhibitor, using iTRAQ-based quantitative proteomics. More than 1900 proteins were quantified, of which >800 proteins were quantified with at least five peptides. Proteins whose expression was perturbed by PHA-665752 included oxidoreductases, transfer/carrier proteins, and signaling proteins. Strikingly, 38% of proteins whose expression was confidently assessed to be perturbed by MET inhibition were mitochondrial proteins. Upon MET inhibition by a sublethal concentration of PHA-665752, mitochondrial membrane potential increased and mitochondrial permeability transition pore was inhibited concomitant with widespread changes in mitochondrial protein expression. We also showed the presence of highly activated MET in mitochondria, and striking suppression of MET activation by 50 nm PHA-665752. Taken together, our data indicate that mitochondria are a direct target of MET kinase inhibition, in addition to plasma membrane MET. Effects on activated MET in the mitochondria of cancer cells that are sensitive to MET inhibition might constitute a novel and critical noncanonical mechanism for the efficacy of MET-targeted therapeutics.Recent improvements in survival of some malignancies owe much to advances in uncovering aberrantly active molecular pathways, against which molecularly targeted agents have been developed as new strategies to control cancers (1, 2). However, molecular mechanisms underlying the curious dependence of some cancer cells, which contain multiple genomic, genetic, and epigenetic abnormalities, on a single oncogenic molecule (the phenomenon of “oncogene addiction”) are incompletely understood (35).Receptor tyrosine kinases are the most extensively studied oncogenic targets and receptor tyrosine kinase inhibitors have proven anticancer therapeutic efficacy. A receptor tyrosine kinase, MET, whose ligand is hepatocyte growth factor (HGF), is frequently amplified and overexpressed (6, 7) in gastric cancer, the second highest cause of cancer mortality globally (8, 9). Human gastric cancer cell lines harboring MET amplicons and overexpressing MET are readily induced to apoptosis by selective inhibitors of MET (10, 11), several of which are under active development for clinical use (12). One of the selective small molecular inhibitors, PHA-665752, designed chemically as (3Z)-5-[(2,6-dichlorobenzyl)sulfonyl]-3-[(3,5-dimethyl-4-{[(2R)-2-(pyrrolidin-1-ylmethyl)pyrrolidin-1-yl]carbonyl}-1H-pyrrol-2-yl)methylene]-1,3-dihydro-2H-indol-2-one (molecule weight of 641.61), specifically suppresses tyrosine phosphorylation of MET. PHA-665752 has >50-fold higher selectivity for MET than for other tyrosine and serine/threonine kinases (13). The inhibition of MET kinase function by PHA-665752 on cancer cells had been confirmed with siRNA knockdown of MET, and a number of downstream effectors of MET signaling pathways were confirmed to be effectively abrogated by this compound (10, 13). PHA-665752 has been widely used as a potent and selective tool for the evaluation of MET-dependent cellular functions and signal transduction (10, 1423).The fact that only a subset of cancers is sensitive to killing by MET-directed therapeutics (hereafter referred to as sensitive cells) (12), raises an unexplained paradox. MET-overexpressing cancer cells could reasonably be expected to be more tolerant of MET kinase inhibition compared with cancer cells that do not overexpress MET. In reality, the opposite occurs. The underlying molecular mechanisms are incompletely understood.To investigate this paradox we undertook a systematic exploration of responses of a MET-overexpressing gastric cancer cell line, SNU5, to sublethal MET inhibition using the iTRAQ-based quantitative proteomics approach. Our results unexpectedly showed a predominant perturbation of mitochondrial proteins in response to MET inhibition. Next, we found that MET inhibition was rapidly associated with altered mitochondrial functions. These observations raised the possibility that mitochondria might be a direct target of MET inhibition. Both protein immunoblotting and confocal microscopy showed the presence of highly activated MET in the mitochondria of sensitive cancer cells. Furthermore, we observed that activating phosphorylation of tyrosine residues of mitochondrial MET was critically modulated by sublethal PHA-665752 treatment.  相似文献   

3.
Medulloblastoma is the most common pediatric posterior fossa malignancy, with a 5-year overall survival of only 60% and many survivors experiencing treatment-related morbidity secondary to current therapeutic regimens. With an improved understanding of the molecular basis for this disease, the opportunity to develop novel treatments with more tolerable toxicity profiles that target key molecular pathways, now exists. Recently, the hepatocyte growth factor (HGF)/MET signaling pathway has been implicated in medulloblastoma pathogenesis. Several therapeutic strategies targeting this pathway exist, including small molecule inhibitor therapy against the MET receptor tyrosine kinase. We examined the in vitro efficacy of targeting the MET receptor using the highly specific small molecule inhibitor PHA665752 as a novel treatment strategy in medulloblastoma. MET inhibition using PHA665752 was effective at reducing the proliferative capacity of the D283, ONS76, and MED8A medulloblastoma cell lines as assessed by MTS assay. Furthermore, PHA665752 treatment reduced D283 and ONS76 cell motility and impaired the growth of D283 cells in soft agar. Pretreatment of D283, ONS76, and MED8A cells with PHA665752 blocked exogenous recombinant human HGF-induced up-regulation of the downstream RAS/mitogen-activated protein kinase signaling pathway in D283, ONS76 and MED8A cell lines. Similarly, PHA665752 prevented HGF-induced phosphatidylinositol 3-kinase/AKT signaling in ONS76 and MED8A cells. These results highlight the efficacy of targeting the MET receptor tyrosine kinase therapeutically in medulloblastoma and provide support for further preclinical testing of small molecule inhibitors targeting the MET receptor in medulloblastoma.  相似文献   

4.
Research that pertains to the molecular mechanisms involved in retinal pigment epithelial (RPE) development can significantly contribute to cell therapy studies. The effects of periocular mesenchymal cells on the expansion of RPE cells remain elusive. We have examined the possible proliferative role of hepatocyte growth factor (HGF) as a mesenchymal cell secretory factor against human embryonic stem cell derived RPE (hESC-RPE). We found that the conditioned medium of human mesenchymal stem cells from apical papilla and/or exogenous HGF promoted proliferation of the hESC-RPE cells as single cells and cell sheets, in addition to rabbit RPE sheets in vitro. Blockage of HGF signaling by HGF receptor inhibitor, PHA-665752, inhibited proliferation of hESC-RPE cells. However, differentiation of hESCs and human-induced pluripotent stem cells to a rostral fate and eye-field specification was unaffected by HGF. Our in vivo analysis showed HGF expression in periocular mesenchymal cells after optic cup formation in chicken embryos. Administration of HGF receptor inhibitor at this developmental stage in chicken embryos led to reduced eye size and disorganization of the RPE sheet. These findings suggested that HGF administration could be beneficial for obtaining higher numbers of hESC-RPE cells in human preclinical and clinical trials.  相似文献   

5.
Cabozantinib is known as an inhibitor of receptor tyrosine kinases mainly targeting AXL receptor tyrosine kinase (AXL), MET proto-oncogene-encoded receptor tyrosine kinase (MET), and vascular endothelial growth factor receptor 2. Growth arrest-specific 6 (GAS6) and hepatocyte growth factor (HGF), the natural ligands of AXL and MET, respectively, are associated with the induction of cancer cell proliferation or metastasis. Currently, it is still unclear how cabozantinib regulates cancer cell migration and invasion by inhibiting AXL and MET. This study was conducted to investigate the mechanism underlying the anti-cancer effects of cabozantinib through regulation of AXL and MET signaling.The results of Boyden chamber assays showed that cancer cell migration was induced by GAS6 and HGF in SKOV3 cells in serum-free medium. Combinatorial treatment with GAS6 and HGF exerted an additive effect on cell migration. Furthermore, we examined the role of AXL and MET signaling in cell migration. Short interfering RNA targeting AXL and MET inhibited GAS6- and HGF-induced migration, respectively. Double knockdown of AXL and MET completely suppressed cell migration induced by combination treatment with GAS6 and HGF compared to AXL or MET inhibition alone. Finally, we investigated the effects of cabozantinib on cell migration and invasion. Cabozantinib inhibited AXL and MET phosphorylation and downregulated the downstream mediators, phosphorylated SRC in the presence of both GAS6 and HGF in SKOV3 cells. The cell migration and invasion induced by combined GAS6 and HGF treatment were suppressed by cabozantinib, but not by capmatinib, a selective MET inhibitor.Our data indicate that the GAS6-AXL and HGF-MET signal pathways markedly contribute to cancer cell migration and invasion in an independent manner, suggesting that simultaneous inhibition of these two pathways contributes to the anti-cancer effects of cabozantinib.  相似文献   

6.
7.
Radioresistance‐induced residual and recurrent tumours are the main cause of treatment failure in nasopharyngeal carcinoma (NPC). Thus, the mechanisms of NPC radioresistance and predictive markers of NPC prognosis and radioresistance need to be investigated and identified. In this study, we identified RPA3 as a candidate radioresistance marker using RNA‐seq of NPC samples. In vitro studies further confirmed that RPA3 affected the radiosensitivity of NPC cells. Specifically, the overexpression of RPA3 enhanced radioresistance and the capacity for DNA repair of NPC cells, whereas inhibiting RPA3 expression sensitized NPC cells to irradiation and decreased the DNA repair capacity. Furthermore, the overexpression of RPA3 enhanced RAD51 foci formation in NPC cells after irradiation. Immunohistochemical assays in 104 NPC specimens and 21 normal epithelium specimens indicated that RPA3 was significantly up‐regulated in NPC tissues, and a log‐rank test suggested that in patients with NPC, high RPA3 expression was associated with shorter overall survival (OS) and a higher recurrence rate compared with low expression (5‐year OS rates: 67.2% versus 86.2%; 5‐year recurrence rates: 14.8% versus 2.3%). Moreover, TCGA data also indicated that high RPA3 expression correlated with poor OS and a high recurrence rate in patients with head and neck squamous cell carcinoma (HNSC) after radiotherapy. Taken together, the results of our study demonstrated that RPA3 regulated the radiosensitivity and DNA repair capacity of NPC cells. Thus, RPA3 may serve as a new predictive biomarker for NPC prognosis and radioresistance to help guide the diagnosis and individualized treatment of patients with NPC.  相似文献   

8.
The hepatocyte growth factor (HGF)/c‐Met signalling pathway is deregulated in most cancers and associated with a poor prognosis in breast cancer. Cardiotoxin III (CTX III), a basic polypeptide isolated from Naja naja atra venom, has been shown to exhibit anticancer activity. In this study, we use HGF as an invasive inducer to investigate the effect of CTX III on MDA‐MB‐231 cells. When cells were treated with non‐toxic doses of CTX III, CTX III inhibited the HGF‐promoted cell migration and invasion. CTX III significantly suppressed the HGF‐induced c‐Met phosphorylation and downstream activation of phosphatidylinositol 3‐kinase (PI3k)/Akt and extracellular signal‐regulated kinase (ERK) 1/2. Additionally, CTX III similar to wortmannin (a PI3K inhibitor) and U0126 (an upstream kinase regulating ERK1/2 inhibitor) attenuated cell migration and invasion induced by HGF. This effect was paralleled by a significant reduction in phosphorylation of IκBα kinase and IκBα and nuclear translocation of nuclear factor κB (NF‐κB) as well as a reduction of matrix metalloproteinase‐9 (MMP‐9) activity. Furthermore, the c‐Met inhibitor PHA665752 inhibited HGF‐induced MMP‐9 expression, cell migration and invasion, as well as the activation of ERK1/2 and PI3K/Akt, suggesting that ERK1/2 and PI3K/Akt activation occurs downstream of c‐Met activation. Taken together, these findings suggest that CTX III inhibits the HGF‐induced invasion and migration of MDA‐MB‐231 cells via HGF/c‐Met‐dependent PI3K/Akt, ERK1/2 and NF‐κB signalling pathways, leading to the downregulation of MMP‐9 expression. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Osteosarcoma is a common malignant bone tumor. Cisplatin (CDDP) achieves a high response rate in osteosarcoma. However, osteosarcoma usually exhibits cisplatin resistance. Many members of receptor tyrosine kinases (RTKs)(1) have been demonstrated to be overexpressed and constitutively activated in various tumors including osteosarcoma, resulting in malignant progression and insensitivity to chemotherapy. Hepatocyte growth factor receptor (HGFR/c-Met) also appears overexpressed and activated in osteosarcoma cells. Nevertheless, which role of c-Met activation in cisplatin efficacy against osteosarcoma cells remains still elusive. This study found that inhibition of c-Met activity by PHA-665752 or blockade of the interaction of autocrined HGF with c-Met with neutralizing anti-HGF antibody promoted cisplatin efficacy in osteosarcoma cells, while addition of recombinant human HGF (rh-HGF) counteracts cisplatin cytotoxicity. Specifically, we demonstrated that inhibition of c-Met activity led to suppression of the PI3K-Akt pathway, thus enhancing cisplatin chemosensitivity. Our study clearly suggests that inhibition of c-Met activity can effectively sensitize osteosarcoma cells to cisplatin via suppression of the PI3K-Akt signaling.  相似文献   

10.
The MET tyrosine kinase signaling pathway is upregulated in many cancers, including lung cancer. The pathway normally promotes mitosis, cell motility and cell survival; but in cancer it can also promote cell proliferation, invasion, metastasis, and angiogenesis. The activating ligand, hepatocyte growth factor, is normally secreted by fibroblasts and smooth muscle cells, but can also be produced by tumor cells. MET upregulation in lung cancer is caused by overexpression and mutation. These mutations can vary with ethnicity. MET signaling affects cytoskeletal proteins such as paxillin, which participates in cell adhesion, growth and motility. Therapeutic approaches that block MET signaling are being studied, and include the use of: small interference RNA, Geldanamycin, competitive HGF homologues, decoy receptors, and direct MET inhibitors such as K252a, SU11274, PHA665752 and PF2341066. It is hoped that blocking MET signaling may one day become an effective treatment for some lung cancers.  相似文献   

11.
Studies have indicated that dysfunction of autophagy is involved in the initiation and progression of multiple tumors and their chemoradiotherapy. Epstein–Barr virus (EBV) is a lymphotropic human gamma herpes virus that has been implicated in the pathogenesis of nasopharyngeal carcinoma (NPC). EBV encoded latent membrane protein1 (LMP1) exhibits the properties of a classical oncoprotein. In previous studies, we experimentally demonstrated that LMP1 could increase the radioresistance of NPC. However, how LMP1 contributes to the radioresistance in NPC is still not clear. In the present study, we found that LMP1 could enhance autophagy by upregulating the expression of BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3). Knockdown of BNIP3 could increase the apoptosis and decrease the radioresistance mediated by protective autophagy in LMP1-positive NPC cells. The data showed that increased BNIP3 expression is mediated by LMP1 through the ERK/HIF1α signaling axis, and LMP1 promotes the binding of BNIP3 to Beclin1 and competitively reduces the binding of Bcl-2 to Beclin1, thus upregulating autophagy. Furthermore, knockdown of BNIP3 can reduce the radioresistance promoted by protective autophagy in vivo. These data clearly indicated that, through BNIP3, LMP1 induced autophagy, which has a crucial role in the protection of LMP1-positive NPC cells against irradiation. It provides a new basis and potential target for elucidating LMP1-mediated radioresistance.Subject terms: Oncogenes, Head and neck cancer  相似文献   

12.
13.
Hepatocyte growth factor (HGF) is a neurotrophic factor and its role in peripheral nerves has been relatively unknown. In this study, biological functions of HGF and its receptor c-met have been investigated in the context of regeneration of damaged peripheral nerves. Axotomy of the peripheral branch of sensory neurons from embryonic dorsal root ganglia (DRG) resulted in the increased protein levels of HGF and phosphorylated c-met. When the neuronal cultures were treated with a pharmacological inhibitor of c-met, PHA665752, the length of axotomy-induced outgrowth of neurite was significantly reduced. On the other hand, the addition of recombinant HGF proteins to the neuronal culture facilitated axon outgrowth. In the nerve crush mouse model, the protein level of HGF was increased around the injury site by almost 5.5-fold at 24 h post injury compared to control mice and was maintained at elevated levels for another 6 days. The amount of phosphorylated c-met receptor in sciatic nerve was also observed to be higher than control mice. When PHA665752 was locally applied to the injury site of sciatic nerve, axon outgrowth and injury mediated induction of cJun protein were effectively inhibited, indicating the functional involvement of HGF/c-met pathway in the nerve regeneration process. When extra HGF was exogenously provided by intramuscular injection of plasmid DNA expressing HGF, axon outgrowth from damaged sciatic nerve and cJun expression level were enhanced. Taken together, these results suggested that HGF/c-met pathway plays important roles in axon outgrowth by directly interacting with sensory neurons and thus HGF might be a useful tool for developing therapeutics for peripheral neuropathy.  相似文献   

14.
Hepatocyte growth factor (HGF) activation of the MET receptor tyrosine kinase influences multiple neurodevelopmental processes. Evidence from human imaging and mouse models shows that, in the forebrain, disruptions in MET signaling alter circuit formation and function. One likely means of modulation is by controlling neuron maturation. Here, we examined the signaling mechanisms through which MET exerts developmental effects in the neocortex. In situ hybridization revealed that hgf is located near MET‐expressing neurons, including deep neocortical layers and periventricular zones. Western blot analyses of neocortical crude membranes demonstrated that HGF‐induced MET autophosphorylation peaks during synaptogenesis, with a striking reduction in activation between P14 and P17 just before pruning. In vitro analysis of postnatal neocortical neurons assessed the roles of intracellular signaling following MET activation. There is rapid, HGF‐induced phosphorylation of MET, ERK1/2, and Akt that is accompanied by two major morphological changes: increases in total dendritic growth and synapse density. Selective inhibition of each signaling pathway altered only one of the two distinct events. MAPK/ERK pathway inhibition significantly reduced the HGF‐induced increase in dendritic length, but had no effect on synapse density. In contrast, inhibition of the PI3K/Akt pathway reduced HGF‐induced increases in synapse density, with no effect on dendritic length. The data reveal a key role for MET activation during the period of neocortical neuron growth and synaptogenesis, with distinct biological outcomes mediated via discrete MET‐linked intracellular signaling pathways in the same neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1160–1181, 2016  相似文献   

15.
Although the treatment of acute myeloid leukemia (AML) has improved substantially in the past three decades, more than half of all patients develop disease that is refractory to intensive chemotherapy. Functional genomics approaches offer a means to discover specific molecules mediating the aberrant growth and survival of cancer cells. Thus, using a loss-of-function RNA interference genomic screen, we identified the aberrant expression of hepatocyte growth factor (HGF) as a crucial element in AML pathogenesis. We found HGF expression leading to autocrine activation of its receptor tyrosine kinase, MET, in nearly half of the AML cell lines and clinical samples we studied. Genetic depletion of HGF or MET potently inhibited the growth and survival of HGF-expressing AML cells. However, leukemic cells treated with the specific MET kinase inhibitor crizotinib developed resistance resulting from compensatory upregulation of HGF expression, leading to the restoration of MET signaling. In cases of AML where MET is coactivated with other tyrosine kinases, such as fibroblast growth factor receptor 1 (FGFR1), concomitant inhibition of FGFR1 and MET blocked this compensatory HGF upregulation, resulting in sustained logarithmic cell killing both in vitro and in xenograft models in vivo. Our results show a widespread dependence of AML cells on autocrine activation of MET, as well as the key role of compensatory upregulation of HGF expression in maintaining leukemogenic signaling by this receptor. We anticipate that these findings will lead to the design of additional strategies to block adaptive cellular responses that drive compensatory ligand expression as an essential component of the targeted inhibition of oncogenic receptors in human cancers.  相似文献   

16.
Sevoflurane (SEV) preconditioning plays a protective effect against liver ischemia reperfusion (IR) injury, while the role of autophagy in SEV-mediated hepatoprotection and the precise mechanism is unclear. In the current study, mice were pretreated with SEV or autophagy inhibitor before liver IR injury. In vitro, primary rat hepatocytes were pretreated with SEV and then exposed to hypoxia/reoxygenation (H/R). Liver function was measured by biochemical and histopathological examinations, and markers associated with inflammation, oxidation, apoptosis and autophagy were subsequently measured. We found that SEV preconditioning dramatically reduced hepatic damage, alleviated cell inflammatory response, oxidative stress and apoptosis in mice suffering hepatic IR injury, whereas these protective effects were abolished by the autophagy inhibitor 3-MA. In addition, pretreatment with SEV markedly activated HGF/Met signaling pathway regulation. Besides, pretreatment with an hepatocyte growth factor (HGF) inhibitor or knocking down HGF expression significantly downregulated phosphorylated met (p-met) and autophagy levels, and abolished the protective effects of SEV against hepatic IR or hepatocyte H/R injury. Conversely, HGF overexpression efficiently increased the p-met and autophagy levels and strengthened the protective effects of SEV. These results indicated that sevoflurane preconditioning ameliorates hepatic IR injury by activating HGF/Met-mediated autophagy.  相似文献   

17.
Nasopharyngeal carcinoma (NPC) is a common malignant tumor with high invasive and metastatic potential. The hepatocyte growth factor (HGF)-Met signaling pathway has a critical role in mediating the invasive growth of many different types of cancer, including head and neck squamous cell carcinoma. HGF also stimulates NPC cell growth and invasion in the cell line model. In this study, we determined the inhibitory effect of Met, using a Met-targeting monoclonal antibody (SAIT301), on the invasive and growth potential of NPC cell lines. Met inhibition by SAIT301 resulted in highly significant inhibition of cell migration and invasion in both the HONE1 and HNE1 cell lines. In addition, we also found that co-treatment of SAIT301 and HGF decreased the anchorage-independent growth induced by HGF in HNE1 cell lines. After SAIT301 treatment, Met, together with its downstream signaling proteins, showed downregulation of p-Met and p-ERK, but not p-AKT, in both HONE1 and HNE1 cell lines. Interestingly, we found that HGF treatment of NPC cell lines induced early growth response protein (EGR-1) expression, which is involved in cell migration and invasion. In addition, co-treatment with SAIT301 and HGF inhibited the HGF-induced expression of EGR-1. Next, knockdown of EGR-1 using small-interfering RNA inhibited HGF-induced cell invasion in NPC cell lines, suggesting that the expression level of EGR-1 is important in HGF-induced cell invasion of NPC cells. Therefore, the results support that SAIT301 inhibited Met activation as well as the downstream EGR-1 expression and could have therapeutic potential in NPC. Taken together, we suggest that Met is an anticancer therapeutic target for NPC that warrants further investigation and clinical trials and SAIT301 may be a promising tool for NPC therapy.  相似文献   

18.
Cdc7激酶抑制剂PHA-767491是最新发现的一类抗肿瘤新药.本实验利用不同浓度的PHA-767491对肿瘤细胞进行抑制研究.实验结果显示,PHA-767491对肿瘤细胞有很强的生长抑制作用,且抑制效果随着药物浓度或时间的增加而增强;通过和化疗药物5-氟尿嘧啶对比发现,PHA-767491只需较低剂量就能发挥出抑制肿瘤的作用,且疗效远高于5-氟尿嘧啶.研究进一步还发现,PHA-767491可通过促使PARP和casepase3蛋白的剪切诱导肿瘤细胞凋亡,同时PHA-767491还可以引起肿瘤细胞自噬.综上研究表明,PHA-767491可以通过诱导细胞凋亡和引起细胞自噬作用对多种肿瘤细胞有较好的治疗效果,而对正常细胞毒性很低.因此该实验研究为今后抗肿瘤新药PHA-767491的进一步应用于癌症的临床治疗提供了重要的实验依据.  相似文献   

19.
BACKGROUND: This investigation sought to elucidate the relationship between hepatocyte growth factor (HGF)–induced metastatic behavior and the tyrosine kinase inhibitors (TKIs) crizotinib and dasatinib in canine osteosarcoma (OS). Preliminary evidence of an apparent clinical benefit from adjuvant therapy with dasatinib in four dogs is described. METHODS: The inhibitors were assessed for their ability to block phosphorylation of MET; reduce HGF-induced production of matrix metalloproteinase (MMP); and prevent invasion, migration, and cell viability in canine OS cell lines. Oral dasatinib (0.75 mg/kg) was tested as an adjuvant therapy in four dogs with OS. RESULTS: Constitutive phosphorylation of MET was detected in two cell lines, and this was unaffected by 20-nM incubation with either dasatinib or crizotinib. Incubation of cell lines with HGF (MET ligand) increased cell migration and invasion in both cell lines and increased MMP-9 activity in one. Dasatinib suppressed OS cell viability and HGF-induced invasion and migration, whereas crizotinib reduced migration and MMP-9 production but did not inhibit invasion or viability. CONCLUSIONS: Invasion, migration, and viability of canine OS cell lines are increased by exogenous HGF. HGF induces secretion of different forms of MMP in different cell lines. The HGF-driven increase in viability and metastatic behaviors we observed are more uniformly inhibited by dasatinib. These observations suggest a potential clinical benefit of adjuvant dasatinib treatment for dogs with OS.  相似文献   

20.
The receptor for hepatocyte growth factor, also known as scatter factor (HGF/SF), has recently been identified as the 190-kDa heterodimeric tyrosine kinase encoded by the MET proto-oncogene (p190MET). The signaling pathway(s) triggered by HGF/SF are unknown. In A549 cells, a lung epithelial cell line, nanomolar concentrations of HGF/SF induced tyrosine phosphorylation of the p190MET receptor. The autophosphorylated receptor coprecipitated with phosphatidylinositol 3-kinase (PI 3-kinase) activity. In GTL16 cells, a cell line derived from a gastric carcinoma, the p190MET receptor, overexpressed and constitutively phosphorylated on tyrosine, coprecipitated with PI 3-kinase activity and with the 85-kDa PI 3-kinase subunit. In these cells activation of protein kinase C or the increase of intracellular [Ca2+] inhibits tyrosine phosphorylation of the p190MET receptor as well as the association with both PI 3-kinase activity and the 85-kDa subunit of the enzyme. In an in vitro assay, tyrosine phosphorylation of the immobilized p190MET receptor was required for binding of PI 3-kinase from cell lysates. These data strongly suggest that the signaling pathway activated by the HGF/SF receptor includes generation of D-3-phosphorylated inositol phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号