首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
CRISPR-Cas immune systems function to defend prokaryotes against potentially harmful mobile genetic elements including viruses and plasmids. The multiple CRISPR-Cas systems (Types I, II, and III) each target destruction of foreign nucleic acids via structurally and functionally diverse effector complexes (crRNPs). CRISPR-Cas effector complexes are comprised of CRISPR RNAs (crRNAs) that contain sequences homologous to the invading nucleic acids and Cas proteins specific to each immune system type. We have previously characterized a crRNP in Pyrococcus furiosus (Pfu) that contains Cmr (Type III-B) Cas proteins associated with one of two size classes of crRNAs and cleaves complementary target RNAs. Here, we have isolated and characterized two additional native Pfu crRNPs containing either Csa (Type I-A) or Cst (Type I-G) Cas proteins and distinct profiles of associated crRNAs. For each complex, the Cas proteins were identified by mass spectrometry and immunoblotting and the crRNAs by RNA sequencing and Northern blot analysis. The crRNAs associated with both the Csa and Cst complexes originate from all seven Pfu CRISPR loci and contain identical 5′ ends (8-nt repeat-derived 5′ tag sequences) but heterogeneous 3′ ends (containing variable amounts of downstream repeat sequences). These crRNA forms are distinct from Cmr-associated crRNAs, indicating different 3′ end processing pathways following primary cleavage of common pre-crRNAs. Like other previously characterized Type I CRISPR-Cas effector complexes, we predict that the newly identified Pfu Csa and Cst crRNPs each function to target invading DNA, adding an additional layer of protection beyond that afforded by the previously characterized RNA targeting Cmr complex.  相似文献   

2.
Koo Y  Jung DK  Bae E 《PloS one》2012,7(3):e33401
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute a microbial immune system against invading genetic elements, such as plasmids and phages. Csn2 is an Nmeni subtype-specific Cas protein, and was suggested to function in the adaptation process, during which parts of foreign nucleic acids are integrated into the host microbial genome to enable immunity against future invasion. Here, we report a 2.2 Å crystal structure of Streptococcus pyogenes Csn2. The structure revealed previously unseen calcium-dependent conformational changes in its tertiary and quaternary structure. This supports the proposed double-stranded DNA-binding function of S. pyogenes Csn2.  相似文献   

3.
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins form an RNA-mediated microbial immune system against invading foreign genetic elements. Cas5 proteins constitute one of the most prevalent Cas protein families in CRISPR–Cas systems and are predicted to have RNA recognition motif (RRM) domains. Cas5d is a subtype I-C-specific Cas5 protein that can be divided into two distinct subgroups, one of which has extra C-terminal residues while the other contains a longer insertion in the middle of its N-terminal RRM domain. Here, we report crystal structures of Cas5d from Streptococcus pyogenes and Xanthomonas oryzae, which respectively represent the two Cas5d subgroups. Despite a common domain architecture consisting of an N-terminal RRM domain and a C-terminal β-sheet domain, the structural differences between the two Cas5d proteins are highlighted by the presence of a unique extended helical region protruding from the N-terminal RRM domain of X. oryzae Cas5d. We also demonstrate that Cas5d proteins possess not only specific endoribonuclease activity for CRISPR RNAs but also nonspecific double-stranded DNA binding affinity. These findings suggest that Cas5d may play multiple roles in CRISPR-mediated immunity. Furthermore, the specific RNA processing was also observed between S. pyogenes Cas5d protein and X. oryzae CRISPR RNA and vice versa. This cross-species activity of Cas5d provides a special opportunity for elucidating conserved features of the CRISPR RNA processing event.  相似文献   

4.
The CRISPR (clustered regularly interspaced short palindromic repeats) system is a prokaryotic RNA-based adaptive immune system against extrachromosomal genetic elements. Cas2 is a universally conserved core CRISPR-associated protein required for the acquisition of new spacers for CRISPR adaptation. It was previously characterized as an endoribonuclease with preference for single-stranded (ss)RNA. Here, we show using crystallography, mutagenesis, and isothermal titration calorimetry that the Bacillus halodurans Cas2 (Bha_Cas2) from the subtype I-C/Dvulg CRISPR instead possesses metal-dependent endonuclease activity against double-stranded (ds)DNA. This activity is consistent with its putative function in producing new spacers for insertion into the 5′-end of the CRISPR locus. Mutagenesis and isothermal titration calorimetry studies revealed that a single divalent metal ion (Mg2+ or Mn2+), coordinated by a symmetric Asp pair in the Bha_Cas2 dimer, is involved in the catalysis. We envision that a pH-dependent conformational change switches Cas2 into a metal-binding competent conformation for catalysis. We further propose that the distinct substrate preferences among Cas2 proteins may be determined by the sequence and structure in the β1–α1 loop.  相似文献   

5.
Mre11 nuclease plays a central role in the repair of cytotoxic and mutagenic DNA double-strand breaks. As X-ray structural information has been available only for the Pyrococcus furiosus enzyme (PfMre11), the conserved and variable features of this nuclease across the domains of life have not been experimentally defined. Our crystal structure and biochemical studies demonstrate that TM1635 from Thermotoga maritima, originally annotated as a putative nuclease, is an Mre11 endo/exonuclease (TmMre11) and the first such structure from eubacteria. TmMre11 and PfMre11 display similar overall structures, despite sequence identity in the twilight zone of only ∼20%. However, they differ substantially in their DNA-specificity domains and in their dimeric organization. Residues in the nuclease domain are highly conserved, but those in the DNA-specificity domain are not. The structural differences likely affect how Mre11 from different organisms recognize and interact with single-stranded DNA, double-stranded DNA and DNA hairpin structures during DNA repair. The TmMre11 nuclease active site has no bound metal ions, but is conserved in sequence and structure with the exception of a histidine that is important in PfMre11 nuclease activity. Nevertheless, biochemical characterization confirms that TmMre11 possesses both endonuclease and exonuclease activities on single-stranded and double-stranded DNA substrates, respectively.  相似文献   

6.
CRISPR-Cas9介导的基因组编辑技术的研究进展   总被引:1,自引:0,他引:1  
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins)系统为细菌与古生菌中抵御外源病毒或质粒DNA入侵的获得性免疫系统。该系统在crRNA的指导下,使核酸酶Cas识别并降解外源DNA。其中,Ⅱ型CRISPR-Cas系统最为简单,仅包括一个核酸酶Cas9与tracrRNA:crRNA二聚体便可完成其生物功能。基于CRISPR-Cas9的基因组编辑技术的核心为将tracrRNA:crRNA设计为引导RNA,在引导RNA的指导下Cas9定位于特定DNA序列上,进行DNA双链切割,实现基因组的定向编辑。CRISPR-Cas9系统以设计操纵简便、编辑高效与通用性广等优势成为新一代基因组编辑技术,为基因组定向改造调控与应用等带来突破性革命。从CRISPR-Cas9介导的基因组编辑技术的发展与应用等方面综述其最新研究进展,并着重介绍该技术的关键影响因素,为相关研究者提供参考。  相似文献   

7.
8.
大多数古生菌及半数细菌都含有成簇有规律间隔的短回文重复序列(clustered regularly interspaced short palindromic repeats,CRISPR)和CRISPR相关(CRISPR-associated,Cas)蛋白质构成的适应性免疫系统,来抵御外界噬菌体的入侵.而噬菌体为了对...  相似文献   

9.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and the associated proteins (Cas) comprise a system of adaptive immunity against viruses and plasmids in prokaryotes. Cas1 is a CRISPR-associated protein that is common to all CRISPR-containing prokaryotes but its function remains obscure. Here we show that the purified Cas1 protein of Escherichia coli (YgbT) exhibits nuclease activity against single-stranded and branched DNAs including Holliday junctions, replication forks and 5'-flaps. The crystal structure of YgbT and site-directed mutagenesis have revealed the potential active site. Genome-wide screens show that YgbT physically and genetically interacts with key components of DNA repair systems, including recB, recC and ruvB. Consistent with these findings, the ygbT deletion strain showed increased sensitivity to DNA damage and impaired chromosomal segregation. Similar phenotypes were observed in strains with deletion of CRISPR clusters, suggesting that the function of YgbT in repair involves interaction with the CRISPRs. These results show that YgbT belongs to a novel, structurally distinct family of nucleases acting on branched DNAs and suggest that, in addition to antiviral immunity, at least some components of the CRISPR-Cas system have a function in DNA repair.  相似文献   

10.
Iskra Katic  Helge Gro?hans 《Genetics》2013,195(3):1173-1176
We have achieved targeted heritable genome modification in Caenorhabditis elegans by injecting mRNA of the nuclease Cas9 and Cas9 guide RNAs. This system rapidly creates precise genomic changes, including knockouts and transgene-instructed gene conversion.  相似文献   

11.
Dps proteins contain a ferroxidase site that binds and oxidizes iron, thereby preventing hydroxyl radical formation by Fenton reaction. Although the involvement of a di-iron ferroxidase site has been suggested, X-ray crystal structures of various Dps members have shown either one or two iron cations with various occupancies despite the high structural conservation of the site. Similarly, structural studies with zinc, a redox-stable replacement for iron, have shown the binding of either one or two zinc ions. Here, the crystal structure of Streptococcus pyogenes Dpr in complex with zinc reveals the binding of two zinc cations in the ferroxidase center and an additional zinc-binding site at the surface of the protein. The results suggest a structural basis for the protection of Streptococcus pyogenes in zinc stress conditions and provide a clear evidence for a di-zinc and di-iron ferroxidase site in Streptococcus pyogenes Dpr protein.  相似文献   

12.
The RNA-targeting type VI CRISPR-Cas effector complexes are widely used in biotechnology applications such as gene knockdown, RNA editing, and molecular diagnostics. Compared with Cas13a from mesophilic organisms, a newly discovered Cas13a from thermophilic bacteria Thermoclostridium caenicola (TccCas13a) shows low sequence similarity, high thermostability, and lacks pre-crRNA processing activity. The thermostability of TccCas13a has been harnessed to make a sensitive and robust tool for nucleic acid detection. Here we present the structures of TccCas13a-crRNA binary complex at 2.8 Å, and TccCas13a at 3.5 Å. Although TccCas13a shares a similarly bilobed architecture with other mesophilic organism-derived Cas13a proteins, TccCas13a displayed distinct structure features. Specifically, it holds a long crRNA 5′-flank, forming extensive polar contacts with Helical-1 and HEPN2 domains. The detailed analysis of the interaction between crRNA 5′-flank and TccCas13a suggested lack of suitable nucleophile to attack the 2′-OH of crRNA 5′-flank may explain why TccCas13a fails to cleave pre-crRNA. The stem-loop segment of crRNA spacer toggles between double-stranded and single-stranded conformational states, suggesting a potential safeguard mechanism for target recognition. Superimposition of the structures of TccCas13a and TccCas13a-crRNA revealed several conformational changes required for crRNA loading, including dramatic movement of Helical-2 domain. Collectively, these structural insights expand our understanding into type VI CRISPR-Cas effectors, and would facilitate the development of TccCas13a-based applications.  相似文献   

13.
14.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and CRISPR-associated (Cas) proteins are involved in bacterial acquired immunity against incoming hazardous genetic materials. Cas1 is ubiquitous in CRISPR-containing microorganisms and supposed to recognize and cleave a foreign nucleic acid, and integrate the cleaved fragment into host genome using a yet unidentified mechanism. However, all the reported Cas1s did not show the nucleolytic activity, which makes its role still obscure. The elucidated crystal structure of Cas1 from Archaeoglobus fulgidus (AfCas1) shows a butterfly-like dimeric structure. The Asp out of three confirmed nucleolytic residues of Glu, His, and Asp in other Cas1s is replaced with Glu in AfCas1. Further, insertion of five residues into one of two loops, which are close to the catalytic center of and disordered in other Cas1 structures, partially covers the active site of AfCas1. Nonetheless, in vitro assays show that its nucleic acid-binding activity was not impaired against the tested single-stranded (ss) DNA, various forms of double-stranded (ds) DNA, or ssRNA with a hydrolyzing activity against ssRNA and dsDNA in a metal ion-dependent way. These results support the proposed Cas1’s function at the early step of this bacterial immune system.  相似文献   

15.
Prokaryotic CRISPR–Cas systems provide an RNA-guided mechanism for genome defense against mobile genetic elements such as viruses and plasmids. In type III-A CRISPR–Cas systems, the RNA-guided multisubunit Csm effector complex targets both single-stranded RNAs and double-stranded DNAs. In addition to the Csm complex, efficient anti-plasmid immunity mediated by type III-A systems also requires the CRISPR-associated protein Csm6. Here we report the crystal structure of Csm6 from Thermus thermophilus and show that the protein is a ssRNA-specific endoribonuclease. The structure reveals a dimeric architecture generated by interactions involving the N-terminal CARF and C-terminal HEPN domains. HEPN domain dimerization leads to the formation of a composite ribonuclease active site. Consistently, mutations of invariant active site residues impair catalytic activity in vitro. We further show that the ribonuclease activity of Csm6 is conserved across orthologs, suggesting that it plays an important functional role in CRISPR–Cas systems. The dimer interface of the CARF domains features a conserved electropositive pocket that may function as a ligand-binding site for allosteric control of ribonuclease activity. Altogether, our work suggests that Csm6 proteins provide an auxiliary RNA-targeting interference mechanism in type III-A CRISPR–Cas systems that operates in conjunction with the RNA- and DNA-targeting endonuclease activities of the Csm effector complex.  相似文献   

16.
The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas) system is a prokaryotic defense mechanism against foreign genetic elements. A plethora of CRISPR-Cas versions exist, with more than 40 different Cas protein families and several different molecular approaches to fight the invading DNA. One of the key players in the system is the CRISPR-derived RNA (crRNA), which directs the invader-degrading Cas protein complex to the invader. The CRISPR-Cas types I and III use the Cas6 protein to generate mature crRNAs. Here, we show that the Cas6 protein is necessary for crRNA production but that additional Cas proteins that form a CRISPR-associated complex for antiviral defense (Cascade)-like complex are needed for crRNA stability in the CRISPR-Cas type I-B system in Haloferax volcanii in vivo. Deletion of the cas6 gene results in the loss of mature crRNAs and interference. However, cells that have the complete cas gene cluster (cas1–8b) removed and are transformed with the cas6 gene are not able to produce and stably maintain mature crRNAs. crRNA production and stability is rescued only if cas5, -6, and -7 are present. Mutational analysis of the cas6 gene reveals three amino acids (His-41, Gly-256, and Gly-258) that are essential for pre-crRNA cleavage, whereas the mutation of two amino acids (Ser-115 and Ser-224) leads to an increase of crRNA amounts. This is the first systematic in vivo analysis of Cas6 protein variants. In addition, we show that the H. volcanii I-B system contains a Cascade-like complex with a Cas7, Cas5, and Cas6 core that protects the crRNA.  相似文献   

17.
18.
19.
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins provide prokaryotes with nucleic acid–based adaptive immunity against infections of mobile genetic elements, including phages. To counteract this immune process, phages have evolved various anti-CRISPR (Acr) proteins which deactivate CRISPR-Cas–based immunity. However, the mechanisms of many of these Acr-mediated inhibitions are not clear. Here, we report the crystal structure of AcrIF13 and explore its inhibition mechanism. The structure of AcrIF13 is unique and displays a negatively charged surface. Additionally, biochemical studies identified that AcrIF13 interacts with the type I-F CRISPR-Cas surveillance complex (Csy complex) to block target DNA recognition and that the Cas5f-8f tail and Cas7.6f subunit of the Csy complex are specific binding targets of AcrIF13. Further mutational studies demonstrated that several negatively charged residues of AcrIF13 and positively charged residues of Cas8f and Cas7f of the Csy complex are involved in AcrIF13–Csy binding. Together, our findings provide mechanistic insights into the inhibition mechanism of AcrIF13 and further suggest the prevalence of the function of Acr proteins as DNA mimics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号