首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Rösner H  Wassermann T  Möller W  Hanke W 《Protoplasma》2006,229(2-4):225-234
Summary. Human SH-SY5Y neuroblastoma cells were used to study the effects of altered gravity on the actin and microtubule cytoskeleton dynamics. A cholinergic stimulation of the cells during a 6 min period of changing gravity (3 parabolas) resulted in an enhanced actin-driven protrusion of evoked lamellipodia. Likewise, the spontaneous protrusive activity of nonactivated cells was promoted during exposure to changing gravity (6 up to 31 parabolas). Ground-based experiments revealed a similar enhancement of the spontaneous and evoked lamellar protrusive activity when the cells were kept at 2 g hypergravity for at least 6 min. This gravity response was independent of the direction of the acceleration vector in respect to the cells. Exposure of the cells to “simulated weightlessness” (clinorotation) had no obvious influence on this type of lamellar actin cytoskeleton dynamics. A 20 min exposure of the cells to simulated weightlessness or to changing gravity (6 to 31 parabolas) – but not to 2 g (hypergravity, centrifugation) – resulted in an altered arrangement of microtubules indicated by bending, turning, and loop formation. A similar altered arrangement was shown by microtubules which had polymerized into lamellipodia after release from a taxol block at simulated weightlessness (clinorotation) or during changing gravity (5 parabolas). Our data suggest that in human SH-SY5Y neuroblastoma cells, microgravity affects the dynamics and spatial arrangement of microtubules but has no influence on the Rac-controlled lamellar actin cytoskeleton dynamics and cell spreading. The latter, however, seems to be promoted at hypergravity. Correspondence and reprints: Cell and Developmental Neurobiology, Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Federal Republic of Germany.  相似文献   

4.
5.
Zebrafish gastrulation and particularly epiboly that involves coordinated movements of several cell layers is a dynamic process for which regulators remain to be identified. We show here that Flotillin 1 and 2, ubiquitous and highly conserved proteins, are required for epiboly. Flotillins knockdown compromised embryo survival, strongly delayed epiboly and impaired deep cell radial intercalation and directed collective migration without affecting enveloping layer cell movement. At the molecular level, we identified that Flotillins are required for the formation of E‐cadherin‐mediated cell–cell junctions. These results provide the first in vivo evidence that Flotillins regulate E‐cadherin‐mediated cell–cell junctions to allow epiboly progression.  相似文献   

6.
E-cadherin is a member of the classical cadherin family and is known to be involved in cell-cell adhesion and the adhesion-dependent morphogenesis of various tissues. We isolated a zebrafish mutant (cdh1(rk3)) that has a mutation in the e-cadherin/cdh1 gene. The mutation rk3 is a hypomorphic allele, and the homozygous mutant embryos displayed variable phenotypes in gastrulation and tissue morphogenesis. The most severely affected embryos displayed epiboly delay, decreased convergence and extension movements, and the dissociation of cells from the embryos, resulting in early embryonic lethality. The less severely affected embryos survived through the pharyngula stage and showed flattened anterior neural tissue, abnormal positioning and morphology of the hatching gland, scattered trigeminal ganglia, and aberrant axon bundles from the trigeminal ganglia. Maternal-zygotic cdh1(rk3) embryos displayed epiboly arrest during gastrulation, in which the enveloping layer (EVL) and the yolk syncytial layer but not the deep cells (DC) completed epiboly. A similar phenotype was observed in embryos that received antisense morpholino oligonucleotides (cdh1MO) against E-cadherin, and in zebrafish epiboly mutants. Complementation analysis with the zebrafish epiboly mutant weg suggested that cdh1(rk3) is allelic to half baked/weg. Immunohistochemistry with an anti-beta-catenin antibody and electron microscopy revealed that adhesion between the DCs and the EVL was mostly disrupted but the adhesion between DCs was relatively unaffected in the MZcdh1(rk3) mutant and cdh1 morphant embryos. These data suggest that E-cadherin-mediated cell adhesion between the DC and EVL plays a role in the epiboly movement in zebrafish.  相似文献   

7.
The cordon-bleu (Cobl) gene is widely conserved in vertebrates, with developmentally regulated axial and epithelial expression in mouse and chick embryos. In vitro, Cobl can bind monomeric actin and nucleate formation of unbranched actin filaments, while in cultured cells it can modulate the actin cytoskeleton. However, an essential role for Cobl in vivo has yet to be determined. We have used zebrafish as a model to assess the requirements for Cobl in embryogenesis. We find that cobl shows enriched expression in ciliated epithelial tissues during zebrafish organogenesis. Cobl protein is enriched in the apical domain of ciliated cells, in close proximity to the apical actin cap. Reduction of Cobl by antisense morpholinos reveals an essential role in development of motile cilia in organs such as Kupffer's vesicle and the pronephros. In Kupffer's vesicle, the reduction in Cobl coincides with a reduction in the amount of apical F-actin. Thus, Cobl represents a molecular activity that couples developmental patterning signals with local intracellular cytoskeletal dynamics to support morphogenesis of motile cilia.  相似文献   

8.
Summary Changes in the actin filament and microtubule cytoskeleton were examined during heat- and cytochalasin D-induced embryogenesis in microspores ofBrassica napus cv. Topas by rhodamine phalloidin and immunofluorescence labelling respectively. The nucleus was displaced from its peripheral to a more central position in the cell, and perinuclear actin microfilaments and microtubules extended onto the cytoplasm. Heat treatment induced the formation of a preprophase band of microtubules in microspores; preprophase bands are not associated with the first pollen mitosis. Actin filament association with the preprophase band was not observed. The orientation and position of the mitotic spindle were altered, and it was surrounded with randomly oriented microfilaments. The phragmoplast contained microfilaments and microtubules, as in pollen mitosis I, but it assumed a more central position. Cytoskeletal reorganisation also occurred in microspores subjected to a short cytochalasin D treatment, in the absence of a heat treatment. Cytochalasin D treatment of microspores resulted in dislocated mitotic spindles, disrupted phragmoplasts, and symmetric divisions and led to embryogenesis, confirming that a normal actin cytoskeleton has a role in preventing the induction of embryogenesis.Abbreviations CD cytochalasin D - MF actin microfilament - MT microtubule - PPB preprophase band  相似文献   

9.
As the zebrafish embryo undergoes gastrulation and epiboly, the cells of the enveloping layer (EVL) expand, covering the entire yolk cell. During the epiboly process, the EVL cells move as a coherent layer, remaining tightly attached to each other and to the underlying yolk syncytial layer (YSL). In view of the central role of the actin cytoskeleton, in both cell motility and cell-cell adhesion, we have labeled these cells in situ with fluorescent phalloidin and anti-actin antibodies. We show that, throughout their migration, the EVL cells retain a conspicuous cortical actin cytoskeletal belt coinciding with cell surface cadherins. At the margins approaching the YSL, the EVL cells extend, from their apicolateral domains, actin-rich filopodial protrusions devoid of detectable cadherin. We have studied the role of the actin cytoskeleton in the maintenance of EVL cohesion during epiboly. Cytochalasin treatment of embryos induces EVL dissociation accompanied by general detachment of the rest of the embryonic cells. In the dissociating EVL cells, the cortical actin belt undergoes fragmentation with the formation of actin aggregates; cadherins, on the other hand, remain evenly distributed at the junctional cell surface. Removal of Ca2+ by ethyleneglycolbis (amino-ethyl-ether)-tetraacetic acid (EGTA) treatment also induces cell dissociation without visible disruption of the cortical actin belt. The protein kinase inhibitor (1-isoquinolinylsulfonyl)-2-methyl-piperazine dihydrochloride (H-7), which blocks acto-myosin contractility and disrupts actin cables in cultured cells, also potentiates cytochalasin-induced dissociation and promotes the projection of numerous actin-rich lamellipodial extensions. The fact that EVL cells produce microspike-like structures towards the YSL and are capable of lamellipodial activity lend further support to the suggestion (R.W. Keller and J.P. Trinkaus. 1987. Dev. Biol. 120: 12-24) that the EVL cells are not passively mobilized on the expanding YSL but actively participate in epiboly.  相似文献   

10.
Epiboly, the first morphogenetic cell movement that occurs in the zebrafish embryo, is the process by which the blastoderm thins and spreads to engulf the yolk cell. This process requires the concerted actions of the deep cells, the enveloping layer (EVL) and the extra-embryonic yolk syncytial layer (YSL). The EVL is mechanically coupled to the YSL which acts as an epiboly motor, generating the force necessary to draw the blastoderm towards the vegetal pole though actomyosin flow and contraction of the actomyosin ring. However, it has been proposed that the endocytic removal of yolk cell membrane just ahead of the advancing blastoderm may also play a role. To assess the contribution of yolk cell endocytosis in driving epiboly movements, we used a combination of drug- and dominant-negative-based approaches to inhibit Dynamin, a large GTPase with a well-characterized role in vesicle scission. We show that Dynamin-dependent endocytosis in the yolk cell is dispensable for epiboly of the blastoderm. However, global inhibition of Dynamin function revealed that Dynamin plays a fundamental role within the blastoderm during epiboly, where it maintains epithelial integrity and the transmission of tension across the EVL. The epithelial defects were associated with disrupted tight junctions and a striking reduction of cortically localized phosphorylated ezrin/radixin/moesin (P-ERM), key regulators of epithelial integrity in other systems. Furthermore, we show that Dynamin maintains EVL and promotes epiboly progression by antagonizing Rho A activity.  相似文献   

11.
Hypaphorine, an indole alkaloid from the ectomycorrhizal fungus Pisolithus tinctorius Coker & Couch., counteracts indole-3-acetic acid (IAA) activity and controls the rate of root hair elongation in Eucalyptus globulus ssp. bicostata. The present investigation shows that hypaphorine changes cytoskeletal organisation in elongating root hairs of the host. The actin cytoskeleton was investigated by two different fixation and labelling procedures, which gave similar results. In control root hairs, actin organisation was characterised by (i) an actin cap at the very tip region, (ii) a subapical region with reduced labelling and containing fine actin filaments, and (iii) axial bundles of actin filaments running from the subapical part to the base of the root hair. In the hypaphorine-treated root hairs no actin cap was distinguished. The fine actin filaments occurring in the subapical region were replaced by a few thick actin filament bundles that extended from the subapical region toward the root hair tip. In the hypaphorine-treated hairs the total number of actin filament bundles along most of the root hair length was significantly reduced, presumably due to aggregation of pre-existing actin filaments. The first signs of alteration to the cytoskeleton could be detected as soon as 15 min after hypaphorine treatment. In hypaphorine-treated, but not in control root hairs, a patch of aggregated microtubules regularly occurred at a distance of approximately 10 m from the tip, possibly as a consequence of changes induced by hypaphorine in the actin cytoskeleton. The hypaphorine-induced aggregations in the actin and microtubule cytoskeletons could stabilise the structure of cytoskeletal elements, which in turn could hinder the vesicle delivery at the tip necessary for elongation. Such cytoskeletal alterations may be a consequence of the antagonism between IAA and hypaphorine. The latter view was supported by restoration of the actin cytoskeleton in hypaphorine-treated root hairs by IAA application.  相似文献   

12.
Diaphanous-related formins (DRFs) are actin nucleators that mediate rearrangements of the actin cytoskeleton downstream of specific Rho GTPases. The DRF Formin Homology 2 Domain containing 1 (FHOD1) interacts with the Rac1 GTPase and induces the formation of and associates with bundled actin stress fibers. Here we report that active FHOD1 also coordinates microtubules with these actin stress fibers. Expression of a constitutive active FHOD1 variant in HeLa cells not only resulted in pronounced formation of FHOD1-actin fibers but also caused marked cell elongation and parallel alignment of microtubules without affecting cytokinesis of these cells. The analysis of deletions in the FH1 and FH2 functional regions revealed that the integrity of both domains was strictly required for FHOD1's effects on the cytoskeleton. Dominant-negative approaches demonstrated that filament coordination and cell elongation depended on the activity of the Rho-ROCK cascade, but did not involve Rac or Cdc42 activity. Experimental depolymerization of actin filaments or microtubules revealed that the formation of FHOD1-actin fibers was a prerequisite for the polarization of microtubules. However, only simultaneous disruption of both filament systems reversed the cell elongation induced by activated FHOD1. Thus, sustained cell elongation was a consequence of FHOD1-mediated actin-microtubule coordination. These results suggest filament coordination as a conserved function of mammalian DRFs.  相似文献   

13.
Vasopressin-induced trafficking of aquaporin-2 (AQP2) water channels in kidney collecting duct cells is critical to regulate the urine concentration. To better understand the mechanism of subcellular trafficking of AQP2, we examined MDCK cells expressing AQP2 as a model. We first performed double-immunolabeling of AQP2 with endosomal marker proteins, and showed that AQP2 is stored at a Rab11-positive subapical compartment. After the translocation to the plasma membrane, AQP2 was endocytosed to EEA1-positive early endosomes, and then transferred back to the original Rab11-positive compartment. When Rab11 was depleted by RNA interference, retention of AQP2 at the subapical storage compartment was impaired. We next examined the role of cytoskeleton in the AQP2 trafficking and localization. By the treatment with microtubule-disrupting agent such as nocodazole or colcemid, the distribution of AQP2 storage compartment was altered. The disruption of actin filaments with cytochalasin D or latrunculin B induced the accumulation of AQP2 in EEA1-positive early endosomes. Altogether, our data suggest that Rab11 and microtubules maintain the proper distribution of the subapical AQP2 storage compartment, and actin filaments regulate the trafficking of AQP2 from early endosomes to the storage compartment.  相似文献   

14.
The origin of the eukaryotic cell is one of the greatest mysteries in modern biology. Eukaryotic-wide specific biological processes arose in the lost ancestors of eukaryotes. These distinctive features, such as the actin cytoskeleton, define what it is to be a eukaryote. Recent sequencing, characterization, and isolation of Asgard archaea have opened an intriguing window into the pre-eukaryotic cell. Firstly, sequencing of anaerobic sediments identified a group of uncultured organisms, Asgard archaea, which contain genes with homology to eukaryotic signature genes. Secondly, characterization of the products of these genes at the protein level demonstrated that Asgard archaea have related biological processes to eukaryotes. Finally, the isolation of an Asgard archaeon has produced a model organism in which the morphological consequences of the eukaryotic-like processes can be studied. Here, we consider the consequences for the Asgard actin cytoskeleton and for the evolution of a regulated actin system in the archaea-to-eukaryotic transition.  相似文献   

15.
The cytoskeleton is required for multiple cellular events including endocytosis and the transfer of cargo within the endocytic system. Polarized epithelial cells are capable of endocytosis at either of their distinct apical or basolateral plasma membrane domains. Actin plays a role in internalization at both cell surfaces. Microtubules and actin are required for efficient transcytosis and delivery of proteins to late endosomes and lysosomes. Microtubules are also important in apical recycling pathways and, in some polarized cell types, basolateral recycling requires actin. The microtubule motor proteins dynein and kinesin and the class I unconventional myosin motors play a role in many of these trafficking steps. This review examines the endocytic pathways of polarized epithelial cells and focuses on the emerging roles of the actin cytoskeleton in these processes.  相似文献   

16.
We have cloned and characterized an intronic fragment of zebrafish lymphocyte cytosolic protein 1 (lcp1, also called L-plastin) that drives expression to the zebrafish enveloping layer (EVL). L-plastin is a calcium-dependent actin-bundling protein belonging to the plastin/fimbrin family of proteins, and is necessary for the proper migration and attachment of several adult cell types, including leukocytes and osteoclasts. However, in zebrafish lcp1 is abundantly expressed much earlier, during differentiation of the EVL. The cells of this epithelial layer migrate collectively, spreading vegetally over the yolk. L-plastin expression persists into the larval periderm, a transient epithelial tissue that forms the first larval skin. This finding establishes that L-plastin is activated in two different embryonic waves, with a distinct regulatory switch between the early EVL and the later leukocyte. To better study L-plastin expressing cells we attempted CRISPR/Cas9 homology-driven recombination (HDR) to insert a self-cleaving peptide (Cre-P2A-EGFP-CAAX) downstream of the native lcp1 promoter. This produced a stable zebrafish line expressing Cre recombinase in EVL nuclei and green fluorescence in EVL cell membranes. In vivo tracking of these labeled cells provided enhanced views of EVL migration behavior, membrane extensions, and mitotic events. Finally, we experimentally dissected key elements of the targeted lcp1 locus, discovering a ∼300 bp intronic sequence sufficient to drive EVL expression. The lcp1: Cre-P2A-EGFP-CAAX zebrafish should be useful for studying enveloping layer specification, gastrulation movements and periderm development in this widely used vertebrate model. In addition, the conserved regulatory sequences we have isolated predict that L-plastin orthologs may have a similar early expression pattern in other vertebrate embryos.  相似文献   

17.
Summary The reorganization of the actin and microtubule (MT) cytoskeleton was immunocytochemically visualized by confocal laser scanning microscopy throughout the photomorphogenetic differentiation of tip-growing characean protonemata into multicellular green thalli. After irradiating dark-grown protonemata with blue or white light, decreasing rates of gravitropic tip-growth were accompanied by a series of events leading to the first cell division: the nucleus migrated towards the tip; MTs and plastids invaded the apical cytoplasm; the polar zonation of cytoplasmic organelles and the prominent actin patch at the cell tip disappeared and the tip-focused actin microfilaments (MFs) were reorganized into a homogeneous network. During prometaphase and metaphase, extranuclear spindle microtubules formed between the two spindle poles. Cytoplasmic MTs associated with the apical spindle pole decreased in number but did not disappear completely during mitosis. The basal cortical MTs represent a discrete MT population that is independent from the basal spindle poles and did not redistribute during mitosis and cytokinesis. Preprophase MT bands were never detected but cytokinesis was characterized by higher-plant-like phragmoplast MT arrays. Cytoplasmic actin MFs persisted as a dense network in the apical cytoplasm throughout the first cell division. They were not found in close contact with spindle MTs, but actin MFs were clearly coaligned along the MTs of the early phragmoplast. The later belt-like phragmoplast was completely depleted of MFs close to the time of cell plate fusion except for a few actin MF bundles that extended to the margin of the growing cell plate. The cell plate itself and young anticlinal cell walls showed strong actin immunofluorescence. After several anticlinal cell divisions, basal cells of the multicellular protonema produced nodal cell complexes by multiple periclinal divisions. The apical-dome cell of the new shoot which originated from a nodal cell becomes the meristem initial that regularly divides to produce a segment cell. The segment cell subsequently divides to produce a single file of alternating internodal cells and multicellular nodes which together form the complexly organized characean thallus. The actin and MT distribution of nodal cells resembles that of higherplant meristem cells, whereas the internodal cells exhibit a highly specialized cortical system of MTs and streaming-generating actin bundles, typical of highly vacuolated plant cells. The transformation from the asymmetric mitotic spindle of the polarized tip-growing protonema cell to the symmetric, higher-plant-like spindle of nodal thallus cells recapitulates the evolutionary steps from the more primitive organisms to higher plants.Abbreviations FITC fluorescein isothiocyanate - MF microfilament - MT microtubule - MSB microtubule-stabilizing buffer - PBS phosphate-buffered saline  相似文献   

18.
Knowledge of the dynamics of actin-based structures is a major key to understanding how cells move and respond to their environment. The ability to reorganize actin filaments in a spatial and temporal manner to integrate extracellular signals is at the core of cell adhesion and cell migration. Several proteins have been described as regulators of actin polymerization: this review will focus on the role of WASP-interacting protein (WIP), an actin-binding protein that participates in actin polymerization regulation and signal transduction. WIP is widely expressed and interacts with Wiskott-Aldrich syndrome protein (WASP) (a hematopoietic-specific protein) and its more widely expressed homologue neural WASP (N-WASP), to regulate WASP/N-WASP function in Arp2/3-mediated actin polymerization. WIP also interacts with profilin, globular and filamentous actin (G- and F-actin, respectively) and stabilizes actin filaments. In vivo WIP participates in filopodia and lamellipodia formation, in T and B lymphocyte activation, in mast cell degranulation and signaling through the Fcepsilon receptor (FcepsilonR), in microbial motility and in Syk protein stability.  相似文献   

19.
The Nodal-related subgroup of the TGFbeta superfamily of secreted cytokines regulates the specification of the mesodermal and endodermal germ layers during gastrulation. Two Nodal-related proteins - Squint (Sqt) and Cyclops (Cyc) - are expressed during germ-layer specification in zebrafish. Genetic sqt mutant phenotypes have defined a variable requirement for zygotic Sqt, but not for maternal Sqt, in midline mesendoderm development. However a comparison of phenotypes arising from oocytes or zygotes injected with Sqt antisense morpholinos has suggested a novel requirement for maternal Sqt in dorsal specification. In this study we examined maternal-zygotic mutants for each of two sqt alleles and we also compared phenotypes of closely related zygotic and maternal-zygotic sqt mutants. Each of these approaches indicated there is no general requirement for maternal Sqt. To better understand the dispensability of maternal and zygotic Sqt, we sought out developmental contexts that more rigorously demand intact Sqt signalling. We found that sqt penetrance is influenced by genetic modifiers, by environmental temperature, by levels of residual Activin-like activity and by Heat-Shock Protein 90 (HSP90) activity. Therefore, Sqt may confer an evolutionary advantage by protecting early-stage embryos against detrimental interacting alleles and environmental challenges.  相似文献   

20.
The Ras protein activates at least three different pathways during early development. Two of them regulate mesodermal gene expression and the third is thought to participate in the control of actin cytoskeleton dynamics via the Ral protein. From a yeast two-hybrid screen of a Xenopus maternal cDNA library, we identified the Xenopus orthologue of the Ral interacting protein (RLIP, RIP1 or RalBP1), a putative effector of small G protein Ral. Previously, we observed that a constitutively activated form of Ral GTPase (XralB G23V) induced bleaching of the animal hemisphere and disruption of the cortical actin cytoskeleton. To demonstrate that RLIP is the effector of RalB in early development, we show that the artificial targeting of RLIP to the membrane induces a similar phenotype to that of activated RalB. We show that overexpression of the Ral binding domain (RalBD) of XRLIP, which binds to the effector site of Ral, acts in competition with the endogenous effector of Ral and protects against the destructive effect of XralB G23V on the actin cytoskeleton. In contrast, the XRLIP has a synergistic effect on the activated form of XralB, which is dependent on the RalBD of RLIP. We provide evidence for the involvement of RLIP by way of its RalBD on the dynamics of the actin cytoskeleton and propose that signalling from Ral to RLIP is required for gastrulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号