首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
2.
The two specialized C. elegans distal tip cells (DTCs) provide an in vivo model system for the study of developmentally regulated cell migration. We identified cacn-1/cactin, a well-conserved, novel regulator of cell migration in a genome-wide RNAi screen for regulators of DTC migration. RNAi depletion experiments and analysis of the hypomorphic allele cacn-1(tm3126) indicate that CACN-1 is required during DTC migration for proper pathfinding and for cessation of DTC migration at the end of larval morphogenesis. Strong expression of CACN-1 in the DTCs, and data from cell-specific RNAi depletion experiments, suggest that CACN-1 is required cell-autonomously to control DTC migration. Importantly, genetic interaction data with Rac GTPase activators and effectors suggest that CACN-1 acts specifically to inhibit the mig-2/Rac pathway, and in parallel to ced-10/Rac, to control DTC pathfinding.  相似文献   

3.
4.
Motility of sperm is crucial for their directed migration to the egg. The acquisition and modulation of motility are regulated to ensure that sperm move when and where needed, thereby promoting reproductive success. One specific example of this phenomenon occurs during differentiation of the ameboid sperm of Caenorhabditis elegans as they activate from a round spermatid to a mature, crawling spermatozoon. Sperm activation is regulated by redundant pathways to occur at a specific time and place for each sex. Here, we report the identification of the solute carrier 6 (SLC6) transporter protein SNF-10 as a key regulator of C. elegans sperm activation in response to male protease activation signals. We find that SNF-10 is present in sperm and is required for activation by the male but not by the hermaphrodite. Loss of both snf-10 and a hermaphrodite activation factor render sperm completely insensitive to activation. Using in vitro assays, we find that snf-10 mutant sperm show a specific deficit in response to protease treatment but not to other activators. Prior to activation, SNF-10 is present in the plasma membrane, where it represents a strong candidate to receive signals that lead to subcellular morphogenesis. After activation, it shows polarized localization to the cell body region that is dependent on membrane fusions mediated by the dysferlin FER-1. Our discovery of snf-10 offers insight into the mechanisms differentially employed by the two sexes to accomplish the common goal of producing functional sperm, as well as how the physiology of nematode sperm may be regulated to control motility as it is in mammals.  相似文献   

5.
Coenzyme Q (CoQ, ubiquinone) is an essential component of the respiratory chain, a cofactor of pyrimidine biosynthesis and acts as an antioxidant in extra mitochondrial membranes. More recently CoQ has been identified as a modulator of apoptosis, inflammation and gene expression. CoQ deficient Caenorhabditis elegans clk-1 mutants show several phenotypes including a delayed postembryonic growth. Using wild type and two clk-1 mutants, here we established an experimental set-up to study the consequences of endogenous CoQ deficiency or exogenous CoQ supply on gene expression and growth. We found that a deficiency of endogenous CoQ synthesis down-regulates a cluster of genes that are important for growth (i.e., RNA polymerase II, eukaryotic initiation factor) and up-regulates oxidation reactions (i.e., cytochrome P450, superoxide dismutase) and protein interactions (i.e., F-Box proteins). Exogenous CoQ supply partially restores the expression of these genes as well as the growth retardation of CoQ deficient clk-1 mutants. On the other hand exogenous CoQ supply does not alter the expression of a further sub-set of genes. These genes are involved in metabolism (i.e., succinate dehydrogenase complex), cell signalling or synthesis of lectins. Thus, our work provides a comprehensive overview of genes which can be modulated in their expression by endogenous or exogenous CoQ. As growth retardation in CoQ deficiency is linked to the gene expression profile we suggest that CoQ promotes growth via gene expression.  相似文献   

6.
PAR-6 is a conserved protein important for establishment and maintenance of cell polarity in a variety of metazoans. PAR-6 proteins function together with PAR-3, aPKC and CDC-42. Mechanistic details of their interactions, however, are not fully understood. We studied the biochemical interactions between C. elegans PAR-6 and its binding partners and tested the requirements of these interactions in living worms. We show that PB1 domain-mediated binding of PAR-6 to PKC-3 is necessary for polarity establishment and PAR-6 cortical localization in C. elegans embryos. We also show that binding of PAR-6 and PAR-3 is mediated in vitro by a novel type of PDZ-PDZ interaction; the βC strand of PAR-6 PDZ binds the βD strand of PAR-3 PDZ1. However, this interaction is dispensable in vivo for PAR-6 function throughout the life of C. elegans. Mutations that specifically abolish conventional ligand binding to the PAR-6 PDZ domain also failed to affect PAR-6 function in vivo. We conclude that PAR-6 binding to PKC-3, but not to PAR-3 nor to a conventional PDZ ligand, is required for PAR-6 cortical localization and function in C. elegans.  相似文献   

7.
8.
Natural killer cells recognize and induce apoptosis in foreign, transformed or virus-infected cells through the release of perforin and granzymes from secretory lysosomes. Clinically, NK-cell mediated killing is a major limitation to successful allo- and xenotransplantation. The molecular mechanisms that regulate the fusion of granzyme B-containing secretory lysosomes to the plasma membrane in activated NK cells, prior to target cell killing, are not fully understood. Using the NK cell line YT-Indy as a model, we have investigated the expression of SNAP REceptors (SNAREs), both target (t-) and vesicular (v-) SNAREs, and their function in granzyme B-mediated target cell killing. Our data showed that YT-Indy cells express VAMP-7 and SNAP-23, but not VAMP-2. VAMP-7 was associated with granzyme B-containing lysosomal granules. Using VAMP-7 small interfering RNA (siRNA), we successfully knocked down the expression of VAMP-7 protein in YT-Indy to less than 10% of untreated cells in 24 h. VAMP7-deficient YT-Indy cells activated via co-culture with Jurkat cells released <1 ng/mL of granzyme B, compared to 1.5-2.5 μg/mL from controls. Using Jurkat cells as targets, we showed a 7-fold reduction in NK cell-mediated killing by VAMP-7 deficient YT-Indy cells. Our results show that VAMP-7 is a crucial component of granzyme B release and target cell killing in the NK cell line YT-Indy. Thus, targeting VAMP-7 expression specifically with siRNA, following transplantation, may be a viable strategy for preventing NK cell-mediated transplant rejection, in vivo.  相似文献   

9.
10.
Detergent extracts of whole cells of the Gram-positive bacterium Tsukamurella inchonensis ATCC 700082, which belongs to the mycolata, were studied for the presence of ion-permeable channels using lipid bilayer experiments. One channel with a conductance of about 4.5 nS in 1 M KCl was identified in the extracts. The channel-forming protein was purified to homogeneity by preparative SDS-PAGE. The protein responsible for channel-forming activity had an apparent molecular mass of about 33 kDa as judged by SDS-PAGE. Interestingly, the protein showed cross-reactivity with polyclonal antibodies raised against a polypeptide derived from MspA of Mycobacterium smegmatis similarly as the cell wall channel of Mycobacterium phlei. Primers derived from mspA were used to clone and sequence the gene of the cell wall channels of T. inchonensis (named tipA for T. inchonensis porin A) and M. phlei (named mppA for M. phlei porin A). Surprisingly, both genes, tipA and mppA, were found to be identical to mspA of M. smegmatis, indicating that the genomes of T. inchonensis, M. phlei and M. smegmatis contain the same genes for the major cell wall channel. RT-PCR revealed that tipA is transcribed in T. inchonensis and mppA in M. phlei. The results suggest that despite a certain distance between the three organisms, their genomes contain the same gene coding for the major cell wall channel, with a molecular mass of 22 kDa for the monomer.  相似文献   

11.
12.
The tumor suppressor p16(INK4a) has earned widespread attention in cancer studies since its discovery as an inhibitor of cyclin-dependent kinases (CDKs) 4/6. Structurally, it consists of four complete ankyrin repeats, believed to be involved in CDK4 interaction. According to the previous disparities concerning the importance of domains and inactivating mutations in p16, we aimed to search for the domain possessing the functional properties of the full length protein. Upon our in silico screening analyses followed by experimental assessments, we have identified the novel minimum functional domain of p16 to be the C-terminal half including ankyrin repeats III, IV and the C-terminal flanking region accompanied by loops 2 and 3. Transfection of this truncated form into HT-1080 human fibrosarcoma cells, lacking endogenous p16, revealed that it is able to inhibit cell growth and proliferation equivalent to p16(INK4a). The functional analysis showed that this fragment like p16 can interact with CDK4/6, block the entry into S phase of the cell cycle and suppress growth as indicated by colony formation assay. Identification of p16 minimum functional domain can be of benefit to the future peptidomimetic drug design as well as gene transfer for cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号