首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gbp1p is a putative telomere-binding protein from Chlamydomonas reinhardtii that contains two RNA recognition motifs (RRMs) which are commonly found in heterogeneous nuclear ribonucleoproteins (hnRNPs). Previously we demonstrated that Gbp1p binds single-stranded DNA (ssDNA) containing the Chlamydomonas telomeric sequence but not the RNA containing the cognate sequence. Here we show that at lower protein concentrations Gbp1 can also bind an RNA containing the cognate sequence. We found that mutation of the two RRM motifs of Gbp1p to match the highly conserved region of hnRNP RRMs did not alter the affinity of Gbp1p for either RNA or DNA. The ability of Gbp1p to associate with either of these two nucleic acids is governed by the dimerization state of the protein. Monomeric Gbp1p associates with either ssDNA or RNA, showing a small binding preference for RNA. Dimeric Gbp1p has a strong preference for binding ssDNA and shows little affinity for RNA. To the best of our knowledge, this is the first example of a protein that qualitatively shifts its nucleic acid binding preference upon dimerization. The biological implications of a telomere-binding protein that is regulated by dimerization are discussed.  相似文献   

2.
Replication protein A (RPA) is a single-stranded DNA-binding protein that has been implicated in DNA metabolism and telomere maintenance. Subunit 1 of RPA from Leishmania amazonensis (LaRPA-1) has previously been affinity-purified on a column containing a G-rich telomeric DNA. LaRPA-1 binds and co-localizes with parasite telomeres in vivo. Here we describe the purification and characterization of native recombinant LaRPA-1 (rLaRPA-1). The protein was initially re-solubilized from inclusion bodies by using urea. After dialysis, rLaRPA-1 was soluble but contaminated with DNA, which was removed by an anion-exchange chromatography of the protein solubilized in urea. However, rLaRPA-1 precipitated after dialysis to remove urea. To investigate whether the contaminating DNA was involved in chaperoning the refolding of rLaRPA-1, salmon sperm DNA or heparin was added to the solution before dialysis. The addition of either of these substances prevented the precipitation of rLaRPA-1. The resulting rLaRPA-1 was soluble, correctly folded, and able to bind telomeric DNA. This is the first report showing the characterization of rLaRPA1 and of the importance of additives in chaperoning the refolding of this protein. The availability of rLaRPA-1 should be helpful in assessing the importance of this protein as a potential drug target.  相似文献   

3.
Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 is a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres.  相似文献   

4.
BackgroundTelomeres are chromosome end structures important in the maintenance of genome homeostasis. They are replenished by the action of telomerase and associated proteins, such as the OB (oligonucleotide/oligosaccharide-binding)-fold containing telomere-end binding proteins (TEBP) which plays an essential role in telomere maintenance and protection. The nature of TEBPs is well known in higher and some primitive eukaryotes, but it remains undetermined in trypanosomatids. Previous in silico searches have shown that there are no homologs of the classical TEPBs in trypanosomatids, including Leishmania sp. However, Replication Protein A subunit 1 (RPA-1), an OB-fold containing DNA-binding protein, was found co-localized with trypanosomatids telomeres and showed a high preference for the telomeric G-rich strand.Methods and resultsWe predicted the absence of structural homologs of OB-fold containing TEBPs in the Leishmania sp. genome using structural comparisons. We demonstrated by molecular docking that the ssDNA binding mode of LaRPA-1 shares features with the higher eukaryotes POT1 and RPA-1 crystal structures ssDNA binding mode. Using fluorescence spectroscopy, protein-DNA interaction assays, and FRET, we respectively show that LaRPA-1 shares some telomeric functions with the classical TEBPs since it can bind at least one telomeric repeat, protect the telomeric G-rich DNA from 3′-5′ Exonuclease I digestion, and unfold telomeric G-quadruplex.ConclusionsOur results suggest that RPA-1 emerges as a TEBP in trypanosomatids, and in this context, we present two possible evolutionary landscapes of trypanosomatids RPA-1 that could reflect upon the evolution of OB-fold containing TEBPs from all eukaryotes.  相似文献   

5.
Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (a truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund’s Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens.  相似文献   

6.
Telomeres of nuclear chromosomes are usually composed of an array of tandemly repeated sequences that are recognized by specific Myb domain containing DNA-binding proteins (telomere-binding proteins, TBPs). Whereas in many eukaryotes the length and sequence of the telomeric repeat is relatively conserved, telomeric sequences in various yeasts are highly variable. Schizosaccharomyces pombe provides an excellent model for investigation of co-evolution of telomeres and TBPs. First, telomeric repeats of S. pombe differ from the canonical mammalian type TTAGGG sequence. Second, S. pombe telomeres exhibit a high degree of intratelomeric heterogeneity. Third, S. pombe contains all types of known TBPs (Rap1p [a version unable to bind DNA], Tay1p/Teb1p, and Taz1p) that are employed by various yeast species to protect their telomeres. With the aim of reconstructing evolutionary paths leading to a separation of roles between Teb1p and Taz1p, we performed a comparative analysis of the DNA-binding properties of both proteins using combined qualitative and quantitative biochemical approaches. Visualization of DNA-protein complexes by electron microscopy revealed qualitative differences of binding of Teb1p and Taz1p to mammalian type and fission yeast telomeres. Fluorescence anisotropy analysis quantified the binding affinity of Teb1p and Taz1p to three different DNA substrates. Additionally, we carried out electrophoretic mobility shift assays using mammalian type telomeres and native substrates (telomeric repeats, histone-box sequences) as well as their mutated versions. We observed relative DNA sequence binding flexibility of Taz1p and higher binding stringency of Teb1p when both proteins were compared directly to each other. These properties may have driven replacement of Teb1p by Taz1p as the TBP in fission yeast.  相似文献   

7.
8.
Telomeres are nucleoprotein complexes that cap and protect the ends of linear chromosomes. In humans, telomeres end in 50-300 nt of G-rich single-stranded DNA (ssDNA) overhangs. Protection of telomeres 1 (POT1) binds with nanomolar affinity to the ssDNA overhangs and forms a dimer with another telomere-end binding protein called TPP1. Whereas most previous studies utilized telomeric oligonucleotides comprising single POT1-TPP1 binding sites, here, we examined 72- to 144-nt tracts of telomeric DNA containing 6-12 POT1-TPP1 binding sites. Using electrophoretic mobility gel shift assays, size-exclusion chromatography, and electron microscopy, we analyzed telomeric nucleoprotein complexes containing POT1 alone, POT1-TPP1, and a truncated version of POT1 (POT1-N) that maintains its DNA-binding domain. The results revealed that POT1-N and POT1-TPP1 can completely coat long telomeric ssDNA substrates. Furthermore, we show that ssDNA coated with human POT1-TPP1 heterodimers forms compact, potentially ordered structures.  相似文献   

9.
The chromosomal ends of Leishmania (Leishmania) amazonensis contain conserved 5'-TTAGGG-3' telomeric repeats. Protein complexes that associate in vitro with these DNA sequences, Leishmania amazonensis G-strand telomeric protein (LaGT1-3), were identified and characterized by electrophoretic mobility shift assays and UV cross-linking using protein fractions purified from S100 and nuclear extracts. The three complexes did not form (a) with double-stranded DNA and the C-rich telomeric strand, (b) in competition assays using specific telomeric DNA oligonucleotides, or (c) after pretreatment with proteinase K. LaGT1 was the most specific and did not bind a Tetrahymena telomeric sequence. All three LaGTs associated with an RNA sequence cognate to the telomeric G-rich strand and a complex similar to LaGT1 is formed with a double-stranded DNA bearing a 3' G-overhang tail. The protein components of LaGT2 and LaGT3 were purified by affinity chromatography and identified, after renaturation, as approximately 35 and approximately 52 kDa bands, respectively. The 相似文献   

10.
Telomere-binding proteins of Arabidopsis thaliana   总被引:5,自引:0,他引:5  
  相似文献   

11.
The obligate intracellular apicomplexan parasite Eimeria tenella, one of seven species of Eimeria that infect chickens, elicits protective cell-mediated immunity against challenge infection. For this reason, recombinant E. tenella parasites could be utilised as an effective vaccine vehicle for expressing foreign antigens and inducing immunity against heterologous intracellular microbes. A stable line of E. tenella expressing foreign genes is a prerequisite, and in this work an in vivo stable transfection system has been developed for this parasite using restriction enzyme-mediated integration (REMI). Two transgenic populations of E. tenella have been obtained that express YFP-YFP constitutively throughout the parasite life cycle. Southern blotting and plasmid rescue analyses show that the introduced exogenous DNA was integrated at random into the parasite genome. Although the life cycle of the transgenic populations was delayed by at least 12 h and the output of oocysts was reduced 4-fold relative to the parental BJ strain of E. tenella, the transgenic parasites were sufficiently immunogenic to protect chickens against challenge with either transgenic or parental parasites. These results are encouraging for the development of transgenic E. tenella as a vaccine vector and for more detailed investigation of the biology of the genus Eimeria.  相似文献   

12.
Cdc13 is an essential protein from Saccharomyces cerevisiae that caps telomeres by protecting the C-rich telomeric DNA strand from degradation and facilitates telomeric DNA replication by telomerase. In vitro, Cdc13 binds TG-rich single-stranded telomeric DNA with high affinity and specificity. A previously identified domain of Cdc13 encompassing amino acids 451–694 (the 451–694 DBD) retains the single-stranded DNA-binding properties of the full-length protein; however, this domain contains a large unfolded region identified in heteronuclear NMR experiments. Trypsin digestion and MALDI mass spectrometry were used to identify the minimal DNA-binding domain (the 497–694 DBD) necessary and sufficient for full DNA-binding activity. This domain was completely folded, and the N-terminal unfolded region removed was shown to be dispensable for function. Using affinity photocrosslinking to site-specifically modified telomeric single-stranded DNA, the 497–694 DBD was shown to contact the entire 11mer required for high-affinity binding. Intriguingly, both domains bound single-stranded telomeric DNA with much greater affinity than the full-length protein. The full-length protein exhibited the same rate of dissociation as both domains, however, indicating that the full-length protein contains a region that inhibits association with single-stranded telomeric DNA.  相似文献   

13.
Eimeriatenella and Toxoplasmagondii are Apicomplexan protozoa and share many similarities in biology and genomics. While the latter parasites are easily cultured in vitro and genetically manipulated, many Eimeria species are difficult to grow in vitro. We hypothesised that molecular tools for the genetic manipulation of T. gondii could be applied to the study of Eimeria parasites. Here we show that three different promoter sequences originating from E. tenella could function effectively not only in other species of the Eimeria genus (histone H4) but also in T. gondii (histone H4, actin and tubulin). Similarly, promoters of the “housekeeping” gene (tubulin) and differentially regulated gene (surface antigen gene, sag1) of T. gondii were effective in driving the expression of the yellow fluorescent protein (YFP) maker gene in E. tenella. The transfection efficiency with heterologous regulatory sequences was similar to that with homologous promoters; while the promoter strength of heterologous vectors is slightly weaker than the homologous vectors in both E. tenella and T. gondii. The results suggest that 5′ regulatory sequences are functionally conserved not only among the Eimeria species, but also between T. gondii and E. tenella, and that T. gondii could be used as a novel transfection check system for Eimeria-rooted vectors, accelerating the development of reverse genetics in Eimeria spp.  相似文献   

14.
In Saccharomyces cerevisiae, Mre11p/Rad50p/Xrs2p (MRX) complex plays a vital role in several nuclear processes including cellular response to DNA damage, telomere length maintenance, cell cycle checkpoint control and meiotic recombination. Telomeres are comprised of tandem repeats of G-rich DNA and are incorporated into non-nucleosomal chromatin. Although the structure of the yeast telomeric DNA is poorly understood, it has been suggested that the G-rich sequences can fold into G4 DNA, which has been shown to inhibit DNA synthesis by telomerase. However, little is known about the factors and mechanistic aspects of the generation of appropriate termini for DNA synthesis by telomerase. Here, we show that S.cerevisiae Mre11 protein (ScMre11p) possesses substantially higher binding affinity for G4 DNA, over single- or double-stranded DNA, and binding was inhibited by poly(dG) or porphyrin. Binding of ScMre11p to G4 DNA was most robust, compared with G2′ DNA and the resulting protein–DNA complexes were strikingly very resistant to dissociation by NaCl. Remarkably, binding of ScMre11p to G4 DNA and G-rich single-stranded DNA was accompanied by the endonucleolytic cleavage at sites flanking the array of G residues and G-quartets in Mn2+-dependent manner. Collectively, these results suggest that ScMre11p is likely to play a major role in generating appropriate substrates for DNA synthesis by telomerase and telomere-binding proteins. We discuss the implications of these findings with regard to telomere length maintenance by telomerase-dependent and independent mechanisms.  相似文献   

15.
Telomeric DNA-binding proteins (TBPs) are crucial components that regulate the structure and function of eukaryotic telomeres and are evolutionarily conserved. We have identified two homologues of AtTBP1 (for Arabidopsis thaliana telomeric DNA binding protein 1), designated as AtTBP2 and AtTRP2, which encode proteins that specifically bind to the telomeric DNA of this plant. These proteins show extensive homology with other known plant TBPs. The isolated C-terminal segments of these proteins were capable of sequence-specific binding to duplex telomeric plant DNA in vitro. DNA bending assays using the Arabidopsis TBPs revealed that AtTBP1 and AtTBP2 have DNA-bending abilities comparable to that of the human homologue hTRF1, and higher than those of AtTRP1 and AtTRP2.  相似文献   

16.
The anti-tumour drug, cisplatin, preferentially forms adducts at G-rich DNA sequences. Telomeres are found at the ends of chromosomes and, in humans, contain the repeated DNA sequence (GGGTTA)n that is expected to be targeted by cisplatin. Using a plasmid clone with 17 tandem telomeric repeats, (GGGTTA)17, the DNA sequence specificity of cisplatin was investigated utilising the linear amplification procedure that pin-pointed the precise sites of cisplatin adduct formation. This procedure used a fluorescently labelled primer and capillary electrophoresis with laser-induced fluorescence detection to determine the DNA sequence specificity of cisplatin. This technique provided a very accurate analysis of cisplatin-DNA adduct formation in a long telomeric repeat DNA sequence. The DNA sequence specificity of cisplatin in a long telomeric tandem repeat has not been previously reported. The results indicated that the 3′-end of the G-rich strand of the telomeric repeat was preferentially damaged by cisplatin and this suggests that the telomeric DNA repeat has an unusual conformation.  相似文献   

17.
Different species of Leishmania can cause a variety of medically important diseases, whose control and treatment are still health problems. Telomere binding proteins (TBPs) have potential as targets for anti-parasitic chemotherapy because of their importance for genome stability and cell viability. Here, we describe LaTBP1 a protein that has a Myb-like DNA-binding domain, a feature shared by most double-stranded telomeric proteins. Binding assays using full-length and truncated LaTBP1 combined with spectroscopy analysis were used to map the boundaries of the Myb-like domain near to the protein only tryptophan residue. The Myb-like domain of LaTBP1 contains a conserved hydrophobic cavity implicated in DNA-binding activity. A hypothetical model helped to visualize that it shares structural homology with domains of other Myb-containing proteins. Competition assays and chromatin immunoprecipitation confirmed the specificity of LaTBP1 for telomeric and GT-rich DNAs, suggesting that LaTBP1 is a new TBP.  相似文献   

18.
19.
The telomeric DNA of vertebrates consists of d(TTAGGG)n tandem repeats, which can form quadruplex DNA structures in vitro and likely in vivo. Despite the fact that the G-rich telomeric DNA is susceptible to oxidation, few biochemical studies of base excision repair in telomeric DNA and quadruplex structures have been done. Here, we show that telomeric DNA containing thymine glycol (Tg), 8-oxo-7,8-dihydroguanine (8-oxoG), guanidinohydantoin (Gh), or spiroiminodihydantoin (Sp) can form quadruplex DNA structures in vitro. We have tested the base excision activities of five mammalian DNA glycosylases (NEIL1, NEIL2, mNeil3, NTH1, and OGG1) on these lesion-containing quadruplex substrates and found that only mNeil3 had excision activity on Tg in quadruplex DNA and that the glycosylase exhibited a strong preference for Tg in the telomeric sequence context. Although Sp and Gh in quadruplex DNA were good substrates for mNeil3 and NEIL1, none of the glycosylases had activity on quadruplex DNA containing 8-oxoG. In addition, NEIL1 but not mNeil3 showed enhanced glycosylase activity on Gh in the telomeric sequence context. These data suggest that one role for Neil3 and NEIL1 is to repair DNA base damages in telomeres in vivo and that Neil3 and Neil1 may function in quadruplex-mediated cellular events, such as gene regulation via removal of damaged bases from quadruplex DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号