首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Upon delivery into gastric epithelial cells, Helicobacter pylori cytotoxin-associated gene A (CagA) binds and deregulates cellular proteins such as Src homology 2 domain-containing protein tyrosine phosphatase 2 and partitioning-defective 1 (PAR1), thereby acting as an epigenetic oncoprotein that promotes early phases of gastric cancer development. To elucidate the spatial and temporal contribution of CagA to carcinogenesis, it is crucial to know the stability of CagA in host cells. Here we show that the biological half-life of CagA is about 200 min in gastric epithelial cells. Furthermore, deletion of the PAR1-binding sequence accelerates CagA degradation. Thus, CagA is a relatively short half-life protein whose stability may be modulated through complex formation with PAR1.  相似文献   

2.
Pathogenic strains of Helicobacter pylori use a type IV secretion system (T4SS) to deliver the toxin CagA into human host cells. The T4SS, along with the toxin itself, is coded into a genomic insert, which is termed the cag pathogenicity island. The cag pathogenicity island contains about 30 open-reading frames, for most of which the exact function is not well characterized or totally unknown. We have determined the crystal structure of one of the proteins coded by the cag genes, CagD, in two crystal forms. We show that the protein is a covalent dimer in which each monomer folds as a single domain that is composed of five β-strands and three α-helices. Our data show that in addition to a cytosolic pool, CagD partially associates with the inner membrane, where it may be exposed to the periplasmic space. Furthermore, CagA tyrosine phosphorylation and interleukin-8 assays identified CagD as a crucial component of the T4SS that is involved in CagA translocation into host epithelial cells; however, it does not seem absolutely necessary for pilus assembly. We have also identified significant amounts of CagD in culture supernatants, which are not a result of general bacterial lysis. Since this localization was independent of the various tested cag mutants, our findings may indicate that CagD is released into the supernatant during host cell infection and then binds to the host cell surface or is incorporated in the pilus structure. Overall, our results suggest that CagD may serve as a unique multifunctional component of the T4SS that may be involved in CagA secretion at the inner membrane and may localize outside the bacteria to promote additional effects on the host cell.  相似文献   

3.
4.
5.
6.
ADAM23 modulates many cellular functions, alteration of expression causes a number of tumor types; however, the mechanisms controlling ADAM23 expression remain unknown. Here we have identified a SP1 binding site (−202/−190) that binds SP1 at the proximal promoter of human ADAM23 gene; furthermore, serum deprivation enhances open chromatin accessibility and help expose the SP1 binding site; finally, SP1 binding recruits RNA polymerase II, which in turn results in upregulation of endogenous ADAM23 expression. Therefore, the present study delineates the fundamental elements of a core promoter structure that will be helpful for future studies of the regulation of ADAM23 gene.  相似文献   

7.
Cross talk between unrelated cell surface receptors, such as G-protein-coupled receptors (GPCR) and receptor tyrosine kinases (RTK), is a crucial signaling mechanism to expand the cellular communication network. We investigated the ability of the GPCR formyl peptide receptor-like 1 (FPRL1) to transactivate the RTK epidermal growth factor receptor (EGFR) in CaLu-6 cells. We observed that stimulation with WKYMVm, an FPRL1 agonist isolated by screening synthetic peptide libraries, induces EGFR tyrosine phosphorylation, p47phox phosphorylation, NADPH-oxidase-dependent superoxide generation, and c-Src kinase activity. As a result of EGFR transactivation, phosphotyrosine residues provide docking sites for recruitment and triggering of the STAT3 pathway. WKYMVm-induced EGFR transactivation is prevented by the FPRL1-selective antagonist WRWWWW, by pertussis toxin (PTX), and by the c-Src inhibitor PP2. The critical role of NADPH-oxidase-dependent superoxide generation in this cross-talk mechanism is corroborated by the finding that apocynin or a siRNA against p22phox prevents EGFR transactivation and c-Src kinase activity. In addition, WKYMVm promotes CaLu-6 cell growth, which is prevented by PTX and by WRWWWW. These results highlight the role of FPRL1 as a potential target of new drugs and suggest that targeting both FPRL1 and EGFR may yield superior therapeutic effects compared with targeting either receptor separately.  相似文献   

8.
9.
10.
The pathogen Helicobacter pylori, which infects half of the world's population, is a major risk factor for the development of gastric diseases including chronic gastritis and gastric cancer. Among H. pylori's virulence factors is the cytotoxin-associated gene pathogenicity island (cagPAI), which encodes for a type IV secretion system (T4SS). The T4SS induces fast canonical nuclear factor-kappa B (NF-κB) signaling, a major factor increasing inflammation, supressing apoptotic cell death and thereby promoting the development of neoplasia. However, H. pylori's capability to mediate fast non-canonical NF-κB signaling is unresolved, despite a contribution of non-canonical NF-κB signaling to gastric cancer has been suggested.We analyzed signaling elements within non-canonical NF-κB in response to H.?pylori in epithelial cell lines by immunoprecipitation, immunoblot, electrophoretic mobility shift assay and RNA interference knockdown. In addition, tissue samples of H. pylori-infected patients were investigated by immunohistochemistry.Here, we provide evidence for a T4SS-dependent direct activation of non-canonical NF-κB signaling. We identified the lymphotoxin beta receptor (LTβR) to elicit the fast release of NF-κB inducing kinase (NIK) from the receptor complex leading to non-canonical NF-κB signaling. Further, NIK expression was increased in human biopsies of H. pylori-associated gastritis. Thus, NIK could represent a novel target to reduce Helicobacter pylori-induced gastric inflammation and pathology.  相似文献   

11.
12.
维甲酸能促进肿瘤细胞的凋亡,诱导体外胚胎干细胞的分化,但作用机制的不明使其应用受到极大限制.因此,更多更全面地了解维甲酸的作用机制具有重要意义.本文构建了信号传导与转录激活因子(STAT1和STAT3)的真核表达载体 ,通过免疫荧光染色、电泳迁移率实验以及双荧光素酶报告基因检测系统证明, 维甲酸诱导可以激活转录因子STAT1促使其进入细胞核,并且增强STAT1蛋白与靶基因启动子的结合能力,从而发挥基因表达调控作用.本文结合后续的STAT1功能分析,试图建立起一种“维甲酸-转录因子-靶基因”的研究模式,有助于维甲酸作用机制的全面、系统的研究.这为临床上使用维甲酸作为抗肿瘤药提供理论基础,同时也为胚胎干细胞多能性调控机制研究提供新思路.  相似文献   

13.
Estrogen-responsive genes in human breast cancer cells often have an estrogen response element (ERE) positioned next to an Sp1 binding site. In chromatin immunoprecipitation (ChIP) assays, we investigated the binding of estrogen receptor alpha (ER), Sp1, and Sp3 to the episomal and native estrogen-responsive trefoil factor 1 (TFF1; formerly pS2) promoter in MCF-7 breast cancer cells. Mutation of the Sp site upstream of the ERE reduced estrogen responsiveness and prevented binding of Sp1 and Sp3, but not ER to the episomal promoter. In the absence of estradiol (E2), Sp1, Sp3, histone deacetylase 1 (HDAC), and HDAC2, and low levels of acetylated H3 and H4 are associated with the native promoter, with the histones being engaged in dynamic reversible acetylation. Following E2 addition, levels of ER and acetylated H3 and H4 bound to the native promoter increases. There is clearance of Sp1, but not of Sp3, from the promoter while HDAC1 and HDAC2 remain bound. These data are consistent with a model in which Sp1 or Sp3 aid in recruitment of HDACs and histone acetyltransferases (HATs) to mediate dynamic acetylation of histones associated with the TFF1 promoter, which is in a state of readiness to respond to events occurring following the addition of estrogen.  相似文献   

14.
15.
16.
17.
Li AY  Han M  Zheng B  Wen JK 《FEBS letters》2008,582(2):243-248
Roscovitine is a potent CDK inhibitor often used as a biological tool in cell-cycle studies, but its working mechanism and real targets in vascular smooth muscle cells (VSMCs) remain unclear. In this study, we observed that ERK1/2 phosphorylation induced by Ang II was abrogated by pretreating VSMCs with roscovitine for 15h. Pretreating VSMCs with roscovitine also inhibited Ang II-induced c-Jun expression and phosphorylation. We further demonstrated that roscovitine could suppress the DNA binding activity of c-Jun and activation of angiotensinogen promoter by Ang II. These results suggest that roscovitine represses Ang II-induced angiotensinogen expression by inhibiting activation of ERK1/2 and c-Jun.  相似文献   

18.
Previous reports have indicated that Helicobacter pylori (H. pylori) causes epigenetic changes of certain genes such as cancer suppression genes, which may be associated with carcinogenesis. However, the mechanism by which it causes epigenetic changes in certain genes and not in others is unclear. Presently, we focused on a cancer suppression gene, runx3, and demonstrated the following: (1) H. pylori induces nitric oxide (NO) production in macrophages. (2) NO causes methylation of runx3 in epithelial cells. (3) H. pylori induces the methylation of epithelial cells in the presence of macrophages, which is reversed by an NO-specific inhibitor. These results indicate that H. pylori-induced methylation is mediated by NO, and suggest that NO may be a key to the mechanism of how H. pylori causes epigenetic changes in certain genes. Additionally, we demonstrated that lipopolysaccharide, as well as H. pylori, induces NO-mediated methylation, indicating that other inflammation inducers beside H. pylori might induce aberrant methylation of runx3.  相似文献   

19.
20.
Helicobacter pylori causes various gastric diseases, such as gastritis, peptic ulcerations, gastric cancer and mucosa-associated lymphoid tissue lymphoma. Hpn is a histidine-rich protein abundant in this bacterium and forms oligomers in physiologically relevant conditions. In this present study, Hpn oligomers were found to develop amyloid-like fibrils as confirmed by negative stain transition electron microscopy, thioflavin T and Congo red binding assays. The amyloid-like fibrils of Hpn inhibit the proliferation of gastric epithelial AGS cells through cell cycle arrest in the G2/M phase, which may be closely related to the disruption of mitochondrial bioenergetics as reflected by the significant depletion of intracellular ATP levels and the mitochondrial membrane potential. The collective data presented here shed some light on the pathologic mechanisms of H. pylori infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号