首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cumulative studies on human immunodeficiency virus (HIV)-infected individuals have shown association of major histocompatibility complex class I (MHC-I) polymorphisms with lower viral load and delayed AIDS progression, suggesting that HIV replication can be controlled by potent CD8+ T-cell responses. We have previously established an AIDS model of simian immunodeficiency virus (SIV) infection in Burmese rhesus macaques and found a potent CD8+ T cell targeting the Mamu-A1*065:01-restricted Gag241-249 epitope, which is located in a region corresponding to the HIV Gag240-249 TW10 epitope restricted by a protective MHC-I allele, HLA-B*57. In the present study, we determined a T cell receptor (TCR) of this Gag241-249 epitope-specific CD8+ T cell. cDNA clones encoding TCR-α and TCR-β chains were obtained from a Gag241-249-specific CD8+ T-cell clone. Coexpression of these TCR-α and TCR-β cDNAs resulted in reconstitution of a functional TCR specifically detected by Gag241-249 epitope-Mamu-A1*065:01 tetramer. Two of three previously-reported CD8+ T-cell escape mutations reduced binding affinity of Gag241-249 peptide to Mamu-A1*065:01 but the remaining one not. This is consistent with the data obtained by molecular modeling of the epitope-MHC-I complex and TCR. These results would contribute to understanding how viral CD8+ T-cell escape mutations are selected under structural constraint of viral proteins.  相似文献   

2.
For development of an effective T cell-based AIDS vaccine, it is critical to define the antigens that elicit the most potent responses. Recent studies have suggested that Gag-specific and possibly Vif/Nef-specific CD8+ T cells can be important in control of the AIDS virus. Here, we tested whether induction of these CD8+ T cells by prophylactic vaccination can result in control of simian immunodeficiency virus (SIV) replication in Burmese rhesus macaques sharing the major histocompatibility complex class I (MHC-I) haplotype 90-010-Ie associated with dominant Nef-specific CD8+ T-cell responses. In the first group vaccinated with Gag-expressing vectors (n = 5 animals), three animals that showed efficient Gag-specific CD8+ T-cell responses in the acute phase postchallenge controlled SIV replication. In the second group vaccinated with Vif- and Nef-expressing vectors (n = 6 animals), three animals that elicited Vif-specific CD8+ T-cell responses in the acute phase showed SIV control, whereas the remaining three with Nef-specific but not Vif-specific CD8+ T-cell responses failed to control SIV replication. Analysis of 18 animals, consisting of seven unvaccinated noncontrollers and the 11 vaccinees described above, revealed that the sum of Gag- and Vif-specific CD8+ T-cell frequencies in the acute phase was inversely correlated with plasma viral loads in the chronic phase. Our results suggest that replication of the AIDS virus can be controlled by vaccine-induced subdominant Gag/Vif epitope-specific CD8+ T cells, providing a rationale for the induction of Gag- and/or Vif-specific CD8+ T-cell responses by prophylactic AIDS vaccines.  相似文献   

3.
Induction of durable cellular immune responses by vaccination is an important strategy for the control of persistent pathogen infection. Viral vectors are promising vaccine tools for eliciting antigen-specific T-cell responses. Repeated vaccination may contribute to durable memory T-cell induction, but anti-vector antibodies could be an obstacle to its efficacy. We previously developed a Sendai virus (SeV) vector vaccine and showed the potential of this vector for efficient T-cell induction in macaques. Here, we examined whether repeated SeV vector vaccination with short intervals can enhance antigen-specific CD8+ T-cell responses. Four rhesus macaques possessing the MHC-I haplotype 90-120-Ia were immunized three times with intervals of three weeks. For the vaccination, we used replication-defective F-deleted SeV vectors inducing CD8+ T-cell responses specific for simian immunodeficiency virus Gag206–216 and Gag241–249, which are dominant epitopes restricted by 90-120-Ia-derived MHC-I molecules. All four animals showed higher Gag206–216-specific and Gag241–249-specific CD8+ T-cell responses after the third vaccination than those after the first vaccination, indicating enhancement of antigen-specific CD8+ T-cell responses by the second/third SeV vector vaccination even with short intervals. These results suggest that repeated SeV vector vaccination can contribute to induction of efficient and durable T-cell responses.  相似文献   

4.
Despite many efforts to develop AIDS vaccines eliciting virus-specific T-cell responses, whether induction of these memory T cells by vaccination before human immunodeficiency virus (HIV) exposure can actually contribute to effective T-cell responses postinfection remains unclear. In particular, induction of HIV-specific memory CD4+ T cells may increase the target cell pool for HIV infection because the virus preferentially infects HIV-specific CD4+ T cells. However, virus-specific CD4+ helper T-cell responses are thought to be important for functional CD8+ cytotoxic-T-lymphocyte (CTL) induction in HIV infection, and it has remained unknown whether HIV-specific memory CD8+ T cells induced by vaccination without HIV-specific CD4+ T-cell help can exert effective responses after virus exposure. Here we show the impact of CD8+ T-cell memory induction without virus-specific CD4+ T-cell help on the control of a simian immunodeficiency virus (SIV) challenge in rhesus macaques. We developed a prophylactic vaccine by using a Sendai virus (SeV) vector expressing a single SIV Gag241-249 CTL epitope fused with enhanced green fluorescent protein (EGFP). Vaccination resulted in induction of SeV-EGFP-specific CD4+ T-cell and Gag241-249-specific CD8+ T-cell responses. After a SIV challenge, the vaccinees showed dominant Gag241-249-specific CD8+ T-cell responses with higher effector memory frequencies in the acute phase and exhibited significantly reduced viral loads. These results demonstrate that virus-specific memory CD8+ T cells induced by vaccination without virus-specific CD4+ T-cell help could indeed facilitate SIV control after virus exposure, indicating the benefit of prophylactic vaccination eliciting virus-specific CTL memory with non-virus-specific CD4+ T-cell responses for HIV control.Virus-specific T-cell responses are crucial for controlling human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication (3, 4, 12, 20, 28, 36, 37). Therefore, a great deal of effort has been exerted to develop AIDS vaccines eliciting virus-specific T-cell responses (23, 27, 30, 47), but whether this approach actually results in HIV control remains unclear (1, 6). It is important to determine which T-cell responses need to be induced by prophylactic vaccination for HIV control after virus exposure.Because HIV preferentially infects HIV-specific CD4+ T cells (5), induction of HIV-specific memory CD4+ T cells by vaccination may increase the target cell pool for HIV infection and could enhance viral replication (42). However, CD4+ helper T-cell responses are important for functional CD8+ cytotoxic-T-lymphocyte (CTL) induction (11, 40, 43, 46), and it has remained unknown whether HIV-specific memory CD8+ T cells induced by vaccination with non-virus-specific CD4+ T-cell help (but without HIV-specific CD4+ T-cell help) can exert effective responses after virus exposure. Indeed, the real impact of prophylactic induction of CTL memory itself on HIV replication has not been well documented thus far.We previously developed a prophylactic AIDS vaccine consisting of DNA priming followed by boosting with a recombinant Sendai virus (SeV) vector expressing SIVmac239 Gag (26). Evaluation of this vaccine''s efficacy against a SIVmac239 challenge in Burmese rhesus macaques showed that some vaccinees contained SIV replication whereas unvaccinated animals developed AIDS (15, 27). In particular, vaccination consistently resulted in control of SIV replication in those animals possessing the major histocompatibility complex class I (MHC-I) haplotype 90-120-Ia. Gag206-216 (IINEEAADWDL) and Gag241-249 (SSVDEQIQW) epitope-specific CD8+ T-cell responses were shown to be involved in SIV control in these vaccinated macaques (14, 16).In the present study, focusing on CD8+ T-cell responses directed against one of these epitopes, we have evaluated the efficacy of a vaccine expressing the Gag241-249 epitope fused with enhanced green fluorescent protein (EGFP) against a SIVmac239 challenge in 90-120-Ia-positive rhesus macaques. The animals exhibited this single-epitope-specific CD8+ T-cell response and SeV-EGFP-specific CD4+ T-cell responses after vaccination and showed rapid, dominant induction of potent secondary Gag241-249-specific CD8+ T-cell responses after a SIV challenge. Plasma viral loads in these vaccinees were significantly reduced compared to those of naive controls. These results indicate that induction of CD8+ T-cell memory without virus-specific CD4+ T-cell help by prophylactic vaccination can result in effective CD8+ T-cell responses after virus exposure.  相似文献   

5.
CD8+ T cell responses rapidly select viral variants during acute human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection. We used pyrosequencing to examine variation within three SIV-derived epitopes (Gag386-394GW9, Nef103-111RM9, and Rev59-68SP10) targeted by immunodominant CD8+ T cell responses in acutely infected Mauritian cynomolgus macaques. In animals recognizing all three epitopes, variation within Rev59-68SP10 was associated with delayed accumulation of variants in Gag386-394GW9 but had no effect on variation within Nef103-111RM9. This demonstrates that the entire T cell repertoire, rather than a single T cell population, influences the timing of immune escape, thereby providing the first example of conditional CD8+ T cell escape in HIV/SIV infection.  相似文献   

6.
Nef-specific CD8+ T lymphocytes (CD8TL) are associated with control of simian immunodeficiency virus (SIV) despite extensive nef variation between and within animals. Deep viral sequencing of the immunodominant Mamu-B*017:01-restricted Nef165–173IW9 epitope revealed highly restricted evolution. A common acute escape variant, T170I, unexpectedly and uniquely degraded Nef''s major histocompatibility complex class I (MHC-I) downregulatory capacity, rendering the virus more vulnerable to CD8TL targeting other epitopes. These data aid in a mechanistic understanding of Nef functions and suggest means of immunity-mediated control of lentivirus replication.  相似文献   

7.
We compared the relative efficacies against simian immunodeficiency virus (SIV) challenge of three vaccine regimens that elicited similar frequencies of SIV-specific CD4+ and CD8+ T-cell responses but differed in the level of antibody responses to the gp120 envelope protein. All macaques were primed with DNA plasmids expressing SIV gag, pol, env, and Retanef genes and were boosted with recombinant modified vaccinia Ankara virus (MVA) expressing the same genes, either once (1 × MVA) or twice (2 × MVA), or were boosted once with MVA followed by a single boost with replication-competent adenovirus (Ad) type 5 host range mutant (Ad5 h) expressing SIV gag and nef genes but not Retanef or env (1 × MVA/Ad5). While two of the vaccine regimens (1 × MVA and 1 × MVA/Ad5) protected from high levels of SIV replication only during the acute phase of infection, the 2 × MVA regimen, with the highest anti-SIV gp120 titers, protected during the acute phase and transiently during the chronic phase of infection. Mamu-A*01 macaques of this third group exhibited persistent Gag CD8+CM9+ effector memory T cells with low expression of surface Programmed death-1 (PD-1) receptor and high levels of expression of genes associated with major histocompatibility complex class I (MHC-I) and MHC-II antigen. The fact that control of SIV replication was associated with both high titers of antibodies to the SIV envelope protein and durable effector SIV-specific CD8+ T cells suggests the hypothesis that the presence of antibodies at the time of challenge may increase innate immune recruiting activity by enhancing antigen uptake and may result in improvement of the quality and potency of secondary SIV-specific CD8+ T-cell responses.  相似文献   

8.
Gag-specific cytotoxic T lymphocytes (CTLs) exert strong suppressive pressure on human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. However, it has remained unclear whether they can actually contain primary viral replication. Recent trials of prophylactic vaccines inducing virus-specific T-cell responses have indicated their potential to confer resistance against primary SIV replication in rhesus macaques, while the immunological determinant for this vaccine-based viral control has not been elucidated thus far. Here we present evidence implicating Gag-specific CTLs as responsible for the vaccine-based primary SIV control. Prophylactic vaccination using a Gag-expressing Sendai virus vector resulted in containment of SIVmac239 challenge in all rhesus macaques possessing the major histocompatibility complex (MHC) haplotype 90-120-Ia. In contrast, 90-120-Ia-positive vaccinees failed to contain SIVs carrying multiple gag CTL escape mutations that had been selected, at the cost of viral fitness, in SIVmac239-infected 90-120-Ia-positive macaques. These results show that Gag-specific CTL responses do play a crucial role in the control of wild-type SIVmac239 replication in vaccinees. This study implies the possibility of Gag-specific CTL-based primary HIV containment by prophylactic vaccination, although it also suggests that CTL-based AIDS vaccine efficacy may be abrogated in viral transmission between MHC-matched individuals.  相似文献   

9.
Control of HIV replication is a rare immunological event, providing clues to understand the viral control mechanism. CD8+ T-cell responses are crucial for virus control, but it is unclear whether lasting HIV containment can be achieved after establishment of infection. Here, we describe lasting SIV containment in a macaque AIDS model. Analysis of ten rhesus macaques that controlled viremia for 2 years post-infection found accumulation of proviral gag and nef CD8+ T-cell escape mutations in four of them. These four controllers mounted CD8+ T cells targeting Gag, Nef, and other viral proteins at 4 months, suggesting that broadening of CD8+ T-cell targets can be an indicator of the beginning of viral control failure. The remaining six aviremic SIV controllers, however, harbored proviruses without mutations and showed no or little broadening of their CD8+ T-cell responses in the chronic phase. Indeed, three of the latter six exhibiting no change in CD8+ T-cell targets showed gradual decreases in SIV-specific CD8+ T-cell frequencies, implying a concomitant reduction in viral replication. Thus, stability of the breadth of virus-specific CD8+ T-cell responses may represent a status of lasting HIV containment by CD8+ T cells.  相似文献   

10.
Natural CD4+25+ and CD8+25+ regulatory T (Tr) cells have been shown to inhibit autoimmune diseases. Immune cells secrete exosomes (EXOs), which are crucial for immune regulation. However, immunomodulatory effect of natural Tr cell-secreted EXOs is unknown. In this study, we purified natural CD8+25+ Tr cells from C57BL/6 mouse naive CD8+ T cells, and in vitro amplified them with CD3/CD28 beads. EXOs (EXOTr) were purified from Tr cell’s culture supernatants by differential ultracentrifugation and analyzed by electron microscopy, Western blot and flow cytometry. Our data showed that EXOTr had a “saucer” or round shape with 50–100 nm in diameter, contained EXO-associated markers LAMP-1 and CD9, and expressed natural Tr cell markers CD25 and GITR. To assess immunomodulatory effect, we i.v. immunized C57BL/6 mice with ovalbumin (OVA)-pulsed DCs (DCOVA) plus Tr cells or EXOTr, and then assessed OVA-specific CD8+ T cell responses using PE-H-2Kb/OVA tetramer and FITC-anti-CD8 antibody staining by flow cytometry and antitumor immunity in immunized mice with challenge of OVA-expressing BL6–10OVA melanoma cells. We demonstrated that DCOVA-stimulated CD8+ T cell responses and protective antitumor immunity significantly dropped from 2.52% to 1.08% and 1.81% (p < 0.05), and from 8/8 to 2/8 and 5/8 mice DCOVA (p < 0.05) in immunized mice with co-injection of Tr cells and EXOTr, respectively. Our results indicate that natural CD8+25+ Tr cell-released EXOs, alike CD8+25+ Tr cells, can inhibit CD8+ T cell responses and antitumor immunity. Therefore, EXOs derived from natural CD4+25+ and CD8+25+ Tr cells may become an alternative for immunotherapy of autoimmune diseases.  相似文献   

11.
SARS-CoV-2 infection presents clinical manifestations ranging from asymptomatic to fatal respiratory failure. Despite the induction of functional SARS-CoV-2-specific CD8+ T-cell responses in convalescent individuals, the role of virus-specific CD8+ T-cell responses in the control of SARS-CoV-2 replication remains unknown. In the present study, we show that subacute SARS-CoV-2 replication can be controlled in the absence of CD8+ T cells in cynomolgus macaques. Eight macaques were intranasally inoculated with 105 or 106 TCID50 of SARS-CoV-2, and three of the eight macaques were treated with a monoclonal anti-CD8 antibody on days 5 and 7 post-infection. In these three macaques, CD8+ T cells were undetectable on day 7 and thereafter, while virus-specific CD8+ T-cell responses were induced in the remaining five untreated animals. Viral RNA was detected in nasopharyngeal swabs for 10–17 days post-infection in all macaques, and the kinetics of viral RNA levels in pharyngeal swabs and plasma neutralizing antibody titers were comparable between the anti-CD8 antibody treated and untreated animals. SARS-CoV-2 RNA was detected in the pharyngeal mucosa and/or retropharyngeal lymph node obtained at necropsy on day 21 in two of the untreated group but undetectable in all macaques treated with anti-CD8 antibody. CD8+ T-cell responses may contribute to viral control in SARS-CoV-2 infection, but our results indicate possible containment of subacute viral replication in the absence of CD8+ T cells, implying that CD8+ T-cell dysfunction may not solely lead to viral control failure.  相似文献   

12.
An understanding of the mechanism(s) by which some individuals spontaneously control human immunodeficiency virus (HIV)/simian immunodeficiency virus replication may aid vaccine design. Approximately 50% of Indian rhesus macaques that express the major histocompatibility complex (MHC) class I allele Mamu-B*08 become elite controllers after infection with simian immunodeficiency virus SIVmac239. Mamu-B*08 has a binding motif that is very similar to that of HLA-B27, a human MHC class I allele associated with the elite control of HIV, suggesting that SIVmac239-infected Mamu-B*08-positive (Mamu-B*08+) animals may be a good model for the elite control of HIV. The association with MHC class I alleles implicates CD8+ T cells and/or natural killer cells in the control of viral replication. We therefore introduced point mutations into eight Mamu-B*08-restricted CD8+ T-cell epitopes to investigate the contribution of epitope-specific CD8+ T-cell responses to the development of the control of viral replication. Ten Mamu-B*08+ macaques were infected with this mutant virus, 8X-SIVmac239. We compared immune responses and viral loads of these animals to those of wild-type SIVmac239-infected Mamu-B*08+ macaques. The five most immunodominant Mamu-B*08-restricted CD8+ T-cell responses were barely detectable in 8X-SIVmac239-infected animals. By 48 weeks postinfection, 2 of 10 8X-SIVmac239-infected Mamu-B*08+ animals controlled viral replication to <20,000 viral RNA (vRNA) copy equivalents (eq)/ml plasma, while 10 of 15 wild-type-infected Mamu-B*08+ animals had viral loads of <20,000 vRNA copy eq/ml (P = 0.04). Our results suggest that these epitope-specific CD8+ T-cell responses may play a role in establishing the control of viral replication in Mamu-B*08+ macaques.A few individuals spontaneously control the replication of human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) to very low levels. The precise mechanisms underlying this control are of great interest, as a clear understanding of what constitutes a successful immune response may aid in developing an AIDS vaccine. Particularly pressing questions for vaccine design include which proteins to use as immunogens, the extent to which increasing the breadth and magnitude of responses is advantageous, how immunodomination affects T-cell responses, and if biasing the immune response toward particular effector profiles is beneficial. Characterization of immune responses made by elite controllers (ECs) may reveal patterns that can then be applied to vaccine formulation and evaluation.HIV ECs are generally not infected with grossly unfit viruses (6, 42). Instead, elite control of immunodeficiency virus replication is correlated with the presence of particular major histocompatibility complex class I (MHC-I) alleles (11, 12, 18, 32, 41, 55). The association of MHC-I alleles with the control of viremia implicates CD8+ T cells as being mediators of this immune containment. Several lines of evidence support this hypothesis. These lines of evidence include the correlation between the appearance of CD8+ T-cell responses and the resolution of peak viremia during acute infection (7, 29), the finding that alleles associated with viral control restrict dominant acute-phase CD8+ T-cell responses (3), and the finding that responses directed against epitopes restricted by these alleles frequently select for viral escape variants (4, 27, 38). Perhaps most compelling is the observation that for a few HIV-infected individuals, the selection of escape variants by an immunodominant HLA-B27-restricted T-cell response temporally preceded substantial increases in viremia (17, 21, 53). While viruses exhibiting escape variants in epitopes restricted by protective alleles are often detectably less fit in vitro (10, 38, 43, 51), recent data have found normal, high levels of replication in vivo upon the transmission of some of these variants (15).The association of control with MHC-I alleles does not, of course, implicate solely CD8+ T cells. MHC-I molecules are also ligands for killer immunoglobulin receptors (KIRs), which are predominantly expressed on natural killer (NK) cells. Genetic studies of HIV-infected humans suggest a model in which individuals with particular KIR/HLA combinations are predisposed to control HIV replication more readily than those with other KIR/HLA combinations (36, 37). These data were supported by functional studies of this KIR/HLA pairing in vitro, which demonstrated an inhibition of HIV replication by such NK cells (2). The relative contributions of NK and CD8+ T-cell responses to control have yet to be elucidated and may be closely intertwined.Previously, the experimental depletion of circulating CD8+ cells from SIVmac239-infected ECs resulted in a sharp spike in viremia, which resolved as CD8+ cells repopulated the periphery (19). During the reestablishment of control of SIV replication, CD8+ T cells targeting multiple epitopes restricted by alleles associated with elite control expanded in frequency, providing strong circumstantial evidence for their role in maintaining elite control (19, 31). However, CD8 depletion antibodies used in macaques also remove NK cells, which, at least in vitro, also inhibit SIV replication (19). It was therefore difficult to make definitive conclusions regarding the separate contributions of these subsets to maintaining the control of SIV replication in vivo.Here we investigate elite control in the rhesus macaque model for AIDS. We focused on the macaque MHC-I allele most tightly associated with the control of SIVmac239, Mamu-B*08. Approximately 50% of Mamu-B*08-positive (Mamu-B*08+) animals infected with SIVmac239 become ECs (32). Peptides presented by Mamu-B*08 share a binding motif with peptides presented by HLA-B27. Although these two MHC-I genes are dissimilar in domains that are important for peptide binding, each molecule can bind peptides that are presented by the other molecule (33). This striking similarity suggests that the elite control of SIVmac239 in Mamu-B*08+ animals is a good model for the elite control of HIV.Seven SIVmac239 epitopes restricted by Mamu-B*08 accrue variation in Mamu-B*08+ rhesus macaques (30, 31). For an eighth Mamu-B*08-restricted epitope, which is also restricted by Mamu-B*03 (Mamu-B*03 differs from Mamu-B*08 by 2 amino acids in the α1 and α2 domains [9, 32]), escape has been documented only for SIV-infected Mamu-B*03+ macaques (16). Variation in these CD8+ T-cell epitopes accumulates with different kinetics, starting during acute infection for those targeted by high-magnitude responses.In this study, we addressed the question of whether the elite control of SIVmac239 in Mamu-B*08+ animals is mediated by the known high-frequency CD8+ T-cell responses targeting Mamu-B*08-restricted epitopes. To this end, we introduced point mutations into eight epitopes, with the goal of reducing or abrogating immune responses directed against these epitopes during acute infection. We hypothesized that Mamu-B*08+ macaques would be unable to control SIV replication without these Mamu-B*08-restricted T-cell responses.  相似文献   

13.
Compensatory mutations offset fitness defects resulting from CD8+ T lymphocyte (CD8TL)-mediated escape, but their impact on viral evolution following transmission to naive hosts remains unclear. Here, we investigated the reversion kinetics of Gag181–189CM9 CD8TL escape-associated compensatory mutations in simian immunodeficiency virus (SIV)-infected macaques. Preexisting compensatory mutations did not result in acute-phase escape of the SIVmac239 CD8TL epitope Gag181-189CM9 and instead required a tertiary mutation for stabilization in the absence of Gag181–189CM9 escape mutations. Therefore, transmitted compensatory mutations do not necessarily predict rapid CD8TL escape.  相似文献   

14.
T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.  相似文献   

15.
Rapid depletion of memory CD4+ T cells and delayed induction of neutralizing antibody (NAb) responses are characteristics of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections. Although it was speculated that postinfection NAb induction could have only a limited suppressive effect on primary HIV replication, a recent study has shown that a single passive NAb immunization of rhesus macaques 1 week after SIV challenge can result in reduction of viral loads at the set point, indicating a possible contribution of postinfection NAb responses to virus control. However, the mechanism accounting for this NAb-triggered SIV control has remained unclear. Here, we report rapid induction of virus-specific polyfunctional T-cell responses after the passive NAb immunization postinfection. Analysis of SIV Gag-specific responses of gamma interferon, tumor necrosis factor alpha, interleukin-2, macrophage inflammatory protein 1β, and CD107a revealed that the polyfunctionality of Gag-specific CD4+ T cells, as defined by the multiplicity of these responses, was markedly elevated in the acute phase in NAb-immunized animals. In the chronic phase, despite the absence of detectable NAbs, virus control was maintained, accompanied by polyfunctional Gag-specific T-cell responses. These results implicate virus-specific polyfunctional CD4+ T-cell responses in this NAb-triggered virus control, suggesting possible synergism between NAbs and T cells for control of HIV/SIV replication.Virus-specific CD4+ and CD8+ T-cell responses are crucial for the control of pathogenic human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) infections (5, 6, 20, 23, 30, 39, 40). However, CD4+ T cells, especially CCR5+ memory CD4+ T cells, are themselves targets for these viruses, which may be an obstacle to potent virus-specific CD4+ T-cell induction (10, 47, 52). Indeed, HIV-1/SIV infection causes rapid, massive depletion of memory CD4+ T cells (26, 31), and host immune responses fail to contain viral replication and allow persistent chronic infection, although virus-specific CD8+ T-cell responses exert suppressive pressure on viral replication (15).Recently, the importance of T-cell quality in virus containment has been high-lighted, and T-cell polyfunctionality, which is defined by their multiplicity of antigen-specific cytokine production, has been analyzed as an indicator of T-cell quality (4, 8, 11, 41). However, there has been no evidence indicating an association of polyfunctional T-cell responses in the acute phase with HIV-1/SIV control. Even in the chronic phase, whether polyfunctional CD4+ T-cell responses may be associated with virus control has been unclear, although an inverse correlation between polyfunctional CD8+ T-cell responses and viral loads has been shown in HIV-1-infected individuals (4).Another characteristic of HIV-1/SIV infections is the absence of potent neutralizing antibody (NAb) induction during the acute phase (7). This is mainly due to the unusually neutralization-resistant nature of the virus, such as masking of target epitopes in viral envelope proteins (24). Whether this lack of effective NAb response contributes to the failure to control the virus, and whether NAb induction in the acute phase can contribute to virus control, remains unclear. Previous studies documenting virus escape from NAb recognition suggested that NAbs can also exert selective pressure on viral replication to a certain extent (38, 45, 49), but it was speculated that postinfection NAb induction could have only a limited suppressive effect on primary HIV-1/SIV replication (34, 37).By passive NAb immunization of rhesus macaques after SIV challenge, we recently provided evidence indicating that the presence of NAbs during the acute phase can result in SIV control (50). In that study, passive NAb immunization 1 week after SIVmac239 challenge resulted in transient detectable NAb responses followed by reduction in set point viral loads compared to unimmunized macaques. However, the mechanism of this virus control has remained unclear. In the present study, we found rapid appearance of polyfunctional Gag-specific CD4+ T-cell responses after such passive NAb immunization postinfection. These animals maintained virus control for more than 1 year in the absence of detectable plasma NAbs, which was accompanied by potent Gag-specific T-cell responses. These results implicate virus-specific polyfunctional CD4+ T-cell responses in this NAb-triggered primary and long-term SIV control.  相似文献   

16.
Many of the factors that contribute to CD8+ T cell immunodominance hierarchies during viral infection are known. However, the functional differences that exist between dominant and subdominant epitope-specific CD8+ T cells remain poorly understood. In this study, we characterized the phenotypic and functional differences between dominant and subdominant simian immunodeficiency virus (SIV) epitope-specific CD8+ T cells restricted by the major histocompatibility complex (MHC) class I allele Mamu-A*01 during acute and chronic SIV infection. Whole genome expression analyses during acute infection revealed that dominant SIV epitope-specific CD8+ T cells had a gene expression profile consistent with greater maturity and higher cytotoxic potential than subdominant epitope-specific CD8+ T cells. Flow-cytometric measurements of protein expression and anti-viral functionality during chronic infection confirmed these phenotypic and functional differences. Expression analyses of exhaustion-associated genes indicated that LAG-3 and CTLA-4 were more highly expressed in the dominant epitope-specific cells during acute SIV infection. Interestingly, only LAG-3 expression remained high during chronic infection in dominant epitope-specific cells. We also explored the binding interaction between peptide:MHC (pMHC) complexes and their cognate TCRs to determine their role in the establishment of immunodominance hierarchies. We found that epitope dominance was associated with higher TCR:pMHC affinity. These studies demonstrate that significant functional differences exist between dominant and subdominant epitope-specific CD8+ T cells within MHC-restricted immunodominance hierarchies and suggest that TCR:pMHC affinity may play an important role in determining the frequency and functionality of these cell populations. These findings advance our understanding of the regulation of T cell immunodominance and will aid HIV vaccine design.  相似文献   

17.
CD8+ T cell responses are thought to play an important role during HIV infection, particularly in HIV controllers (HIC) in whom viral replication is spontaneously controlled without any treatment. We have demonstrated that CD8+ T cells from these subjects are able to suppress viral replication in vitro. In parallel, HIV-specific CD8+ responses were shown to be strong and of high quality, with proliferative abilities and cytotoxic capacities, in HIC. The HLA-B*57 allele, which is associated with a better clinical outcome in HIV infection, is overrepresented in HIC. However, we showed that these patients constitute a heterogeneous group that includes subjects who present weak suppression of viral replication in vitro and HIV-specific responses. We performed an extensive study of 101 HIC (49 HLA-B*57+ and 52 HLA-B*57) to determine the impact of HLA-B*57 on the HIV-specific CD8+ response. The HLA-B*57-restricted response displayed better qualitative features, such as higher functional avidity, higher proliferation capacity, and a higher level of cytokine production, than responses not restricted by HLA-B*57. However, the highest frequencies of HIV-specific CD8+ T cells were observed only in a subset of HLA-B*57+ subjects. They were tightly associated with the ability to suppress viral replication in vitro. In contrast, the subset of HLA-B*57+ subjects with a weak ability to suppress viral replication had significantly lower ultrasensitive viral loads than all the other groups of controllers. In conclusion, both HLA-B*57 and the amount of ultrasensitive viral load seem to play a role in HIV-specific CD8+ T cell responses in HIC.  相似文献   

18.
Human adenovirus (AdHu)-based candidate AIDS vaccine can provide protection from simian immunodeficiency virus (SIV) transmission and disease progression. However, their potential use may be limited by widespread preexisting immunity to the vector. In contrast, preexisting immunity to chimpanzee adenoviruses (AdC) is relatively rare. In this study, we utilized two regimens of prime-boost immunizations with AdC serotype SAd-V23 (also called AdC6) and SAd-V24 (also called AdC7) expressing SIV Gag/Tat to test their immunogenicity and ability to protect rhesus macaques (RMs) from a repeated low-dose SIVmac239 challenge. Both AdC6 followed by AdC7 (AdC6/7) and AdC7 followed by AdC6 (AdC7/6) induced robust SIV Gag/Tat-specific T cell responses as measured by tetramer staining and functional assays. However, no significant protection from SIV transmission was observed in either AdC7/6- or AdC7/6-vaccinated RMs. Interestingly, in the RMs showing breakthrough infections, AdC7/6-SIV immunization was associated with a transient but significant (P = 0.035 at day 90 and P = 0.033 at day 120 postinfection) reduction in the setpoint viral load compared to unvaccinated controls. None of the measured immunological markers (i.e., number or functionality of SIV-specific CD8+ and CD4+ T cell responses and level of activated and/or CCR5+ CD4+ target cells) at the time of challenge correlated with protection from SIV transmission in the AdC-SIV-vaccinated RMs. The robust immunogenicity observed in all AdC-immunized RMs and the transient signal of protection from SIV replication exhibited by AdC7/6-vaccinated RMs even in the absence of any envelope immunogen suggest that AdC-based vectors may represent a promising platform for candidate AIDS vaccines.  相似文献   

19.
In recent years, the prevalence of HIV-1 infection has been rapidly increasing among men who have sex with men (MSM). However, it remains unknown how the host immune system responds to the infection in this population. We assessed the quantity of HIV-specific CD8+ T-cell responses by using Elispot assay and their functionalities by measuring 5 CD8+ T-cell evaluations (IL-2, MIP-1β, CD107a, TNF-α, IFN-γ) with flow cytometry assays among 18 primarily and 37 early chronically HIV-infected MSM. Our results demonstrated that subjects at early chronic phase developed HIV-specific CD8+ T-cell responses with higher magnitudes and more diversified functionalities in comparison with those at primary infection. However, populations with IL-2+ CD107a+ or in combination with other functionality failed to develop in parallel. The multifunctional but not monofunctional HIV-specific CD8+ T cells were associated with higher CD4+ T -cell counts and lower viral loads. These data revealed that prolonged infection from primary to early chronic infection could selectively increase the functionalities of HIV-specific CD8+ T cells in HIV-infected MSM population, the failure to develop IL-2 and cytotoxic functionalities in parallel may explain why the increased HIV-specific CD8+ T cells were unable to enhance the containment of HIV-1 replication at the early chronic stage.  相似文献   

20.
Detection and elimination of virus-infected cells by CD8+ cytotoxic T lymphocytes (CTLs) depends on recognition of virus-derived peptides presented by major histocompatibility complex class I (MHC-I) molecules on the surface of infected cells. In the present study, we showed that inactivation of the activity of viral kinase Us3 encoded by herpes simplex virus 1 (HSV-1), the etiologic agent of several human diseases and a member of the alphaherpesvirinae, significantly increased cell surface expression of MHC-I, thereby augmenting CTL recognition of infected cells in vitro. Overexpression of Us3 by itself had no effect on cell surface expression of MHC-I and Us3 was not able to phosphorylate MHC-I in vitro, suggesting that Us3 indirectly downregulated cell surface expression of MHC-I in infected cells. We also showed that inactivation of Us3 kinase activity induced significantly more HSV-1-specific CD8+ T cells in mice. Interestingly, depletion of CD8+ T cells in mice significantly increased replication of a recombinant virus encoding a kinase-dead mutant of Us3, but had no effect on replication of a recombinant virus in which the kinase-dead mutation was repaired. These results indicated that Us3 kinase activity is required for efficient downregulation of cell surface expression of MHC-I and mediates evasion of HSV-1-specific CD8+ T cells. Our results also raised the possibility that evasion of HSV-1-specific CD8+ T cells by HSV-1 Us3-mediated inhibition of MHC-I antigen presentation might in part contribute to viral replication in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号