首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plankton samples from three inland embayments and several outer coastal sites of Washington State were collected from 1997 through 1999 and were examined for the presence of diatoms of the genus Pseudo‐nitzschia and levels of the toxin, domoic acid (DA). Seven species were observed, including Pseudo‐nitzschia pungens (Grunow ex Cleve) Hasle, P. multiseries (Hasle) Hasle, P. australis Frenguelli, P. fraudulenta (Cleve) Hasle, P. cf. heimii Manguim, P. pseudodelicatissima (Hasle) Hasle, and P. delicatissima (Cleve) Heiden. The coastal Pseudo‐nitzschia species assemblages differed significantly from those observed within embayments. The dominant species observed at coastal sites were P. pseudodelicatissima and P. cf. heimii. Pseudo‐nitzschia assemblages found in embayments included one or more of the following species: P. pungens, P. multiseries, P. australis, P. pseudodelicatissima, and P. fraudulenta. The nuclear large subunit rRNA gene was sequenced for six of the seven species identified. This sequence revealed that P. multiseries, P. pungens, P. australis, and P. heimii were genetically similar to those found in California, whereas P. delicatissima and P. pseudodelicatissima were distinct from the California isolates. Although the concentrations of DA in razor clams along Washington State coasts have exceeded regulatory limits several times since 1991, levels of DA in shellfish from Washington State embayments have not yet exceeded regulatory limits. The widespread presence of toxin‐producing Pseudo‐nitzschia species suggests, however, that toxic blooms are likely to occur within embayments in the future. In conjunction with the monitoring of environmental conditions conducive to toxic bloom formation, the development of species‐specific probes for rapid and accurate detection of potentially toxic Pseudo‐nitzschia species in this region would enable the forecasting of a toxic event before DA accumulates in shellfish, thereby reducing the impacts to coastal communities.  相似文献   

2.
Large-subunit ribosomal RNA-targeted probes for Pseudo-nitzschia australis Frenguelli, P. multiseries (Hasle) Hasle, P. pseudodelicatissima (Hasle) Hasle, and P. pungens (Grunow) Hasle were applied to cultured and natural samples using whole-cell and sandwich hybridization. Testing of the latter method is emphasized here, and technique refinements that took place during 1996–1997 are documented. Application of the sandwich hybridization test showed that the signal intensity obtained for a given number of target cells remained constant as batch cultures of these organisms progressed from active through stationary growth phases. This suggests that cellular rRNA content for each target species remained relatively stable despite changes in growth state. Application of whole-cell and sandwich hybridization assays to natural samples showed that both methods could be used to detect wild P. australis, P. pseudodelicatissima, and to a lesser degree P. multiseries, but detection of P. pungens was prone to error. A receptor-binding assay for domoic acid (DA) enabled detection of this toxin activity associated with a particulate fraction of the plankton and provided a context in which to view results of the rRNA probe tests. In one case, the probe for P. australis cross-reacted with P. cf. delicatissima. The sample that contained the latter species also contained a low amount of DA activity. Under certain field conditions, results of whole-cell and sandwich hybridization tests disagreed. Detailed analysis of selected field samples illustrates how such situations arose. Collectively, the rRNA probe and toxin analyses suggest that manifestation of DA in the environment is possible in the absence of readily recognizable intact cells.  相似文献   

3.
The qualitative and quantitative composition of phytoplankton in the area of a sea farm in Vostok Bay (Sea of Japan) was investigated from July 2001 to May 2002. The overall numbers of phytoplankton were 0.008 to 5.3 million cells/liter, and the biomass was 0.02 to 20.5 g/m3. The maximum density and biomass of phytoplankton were observed in summer, fall, and winter. Ten species known to be toxic were recorded. Of these, Pseudo-nitzschia multiseries (Hasle) Hasle, Alexandrium acatenella (Whedon et Kofoid) Balech, and Chattonella marina (Subrahmanyan) Hara et Chihara were found in Vostok Bay for the first time. For the diatom Skeletonema costatum (Greville) Cleve, which is an indicator of extremely eutrophic waters, the cell density was positively correlated with the area of the culture site.Original Russian Text Copyright © 2005 by Biologiya Morya, Morozova, Orlova.  相似文献   

4.
The genetic structure of phytoplankton populations is largely unknown. In this study we developed nine polymorphic microsatellite markers for the domoic acid–producing marine diatom Pseudo‐nitzschia multiseries (Hasle) Hasle. We then used them in the genotyping of 25 physiologically diverse field isolates and six of their descendants: 22 field isolates originated from eastern Canadian waters, two from European waters, and one from Russian waters. The numbers of alleles per locus ranged from three to seven and the observed heterozygosities from 0.39 to 0.70. A substantial degree of genetic variation was observed within the field isolates, with 23 different genotypes detected. The Russian isolate was the most genetically distinct, although there was also evidence of genetic differentiation at a more local scale. Mating experiments demonstrated that alleles were inherited in a Mendelian manner. Pseudo‐nitzschia multiseries primer pairs were tested on DNA from four congeners: P. calliantha Lundholm, Moestrup et Hasle; P. fraudulenta (P. T. Cleve) Hasle; P. pungens (Grunow ex P. T. Cleve) Hasle; and P. seriata (P. T. Cleve) H. Peragallo. Cross‐reactivity was only observed in P. pungens. Our results are a first step in understanding the genetic variation present at the Pseudo‐nitzschia“species” level and in determining the true biogeographic extent of Pseudo‐nitzschia species.  相似文献   

5.
ThePseudo-nitzschia flora of the Skagerrak, North Atlantic, and adjacent waters, comprisingP. pungens, P. multiseries, P. seriata, P. fraudulenta, P. heimii, P. delicatissima, andP. pseudodelicatissima, has been examined. Except forP. australis, allPseudo-nitzschia species shown to produce the toxin domoic acid are present in the area although an outbreak of amnesic shellfish poisoning has never been reported. For comparison of morphological and taxonomic characters,Pseudo-nitzschia seriata f.obtusa, P. australis, P. subfraudulenta, P. subpacifica, P. lineola, P. inflatula, andP. cuspidata have been included in this investigation. Fine details of band structure and poroid occlusions, previously ignored or unresolved, have proven to add to the morphological distinction betweenP. pungens andP. multiseries, P. seriata andP. fraudulenta, P. seriata andP. australis, andP. delicatissima andP. pseudodelicatissima. Additional information on the structure of the proximal mantle compared to that of the valve face has revealed similarities in most of the species but differences betweenP. pungens andP. multiseries. The species seasonal and long-term distributional patterns during the sampling period (October 1978 through September 1993) in the Skagerrak area are outlined. The greatest abundances ofP. seriata, a cold-water species most likely restricted to the northern hemisphere, occurred in the spring, and those of the presumably cosmopolitan diatomsP. pungens, P. multiseries andP. pseudodelicatissima, in the autumn. WhereasP. multiseries seems to have decreased in abundance in the 1990s,P. pseudodelicatissima has apparently increased.  相似文献   

6.
Separate polyclonal antibodies have previously been developed against the domoic-acid-producingPseudonitzschia multiseries (=Pseudo-nitzschia pungens f.multiseries) and the non-toxicP. pungens (=P. pungens f.pungens). These antibodies bind to the surface of the diatoms as shown by immunofluorescence studies. Here we examine the molecular nature of the antigens by Western blotting (electro-immunoblotting) analysis. The major antigens for both polyclonal antibodies migrated as high molecular-weight diffuse bands, mostly remaining in the stacking gel, using an SDS-PAGE system. The antibodies prepared againstP. multiseries strongly labelled the high molecular-weight antigens of allP. multiseries strains tested and showed little reactivity towardsP. pungens extracts on Western blots.P. pungens antibodies strongly labelled high molecular-weightP. pungens antigens and faintly labelled a fewP. multiseries antigens. The selectivity of the antibodies for their respective species correlates with the results of the immunofluorescence experiments, suggesting that the antigens examined in this study are responsible for the selective labelling in immunofluorescence studies. The electrophoretic mobility and the antibody labelling of antigens were not altered by proteolytic digestion of cell pellets. However, disruption of carbohydrates in the pellets by treatment with periodic acid resulted in loss of the antigen. These data suggest that the major antigens of toxicP. multiseries and non-toxicP. pungens are high molecular-weight (°>100kDa) polysaccharides located on the surface of these diatoms.Author for correspondence  相似文献   

7.
8.
Hargraves  P.E.  Zhang  J.  Wang  R.  Shimizu  Y. 《Hydrobiologia》1993,269(1):207-212
Interest in the biology of planktonic, chain-forming Pseudonitzschia species has grown recently after the discovery of toxin production in Pseudonitzschia pungens and related taxa, following the outbreak of shellfish toxicity in Canada in 1987. As part of a broader study on the effects of enhanced ultraviolet light on the growth of bloom-forming phytoplankton, we have examined the growth rates and production of the toxin domoic acid and two additional chemicals [bacillariolides I and II] by Pseudonitzschia pungens varieties and Pseudonitzschia fraudulenta from Narragansett Bay, Rhode Island. Growth of P. fraudulenta is significantly inhibited by enhanced UV, P. pungens var. pungens shows slight inhibition, and P. pungens var. multiseries is unaffected. Production of bacillariolides I and II by P. pungens var. multiseries is similar in enhanced and deleted UV light. Tolerance of UV light by P. pungens var. multiseries appears to be acquired, and persistent. If ambient UV light continues to increase as a result of global ozone depletion, one may expect UV-resistant taxa such as P. pungens var. multiseries to become more prominent in coastal phytoplankton communities.  相似文献   

9.
Some, but not all, marine pennate diatoms of the genus Pseudo-nitzschia H. Peragallo are associated with the production of domoic acid, a naturally occurring amino acid responsible for amnesic shellfish poisoning. Distinguishing between potentially toxic and nontoxic representatives of this genus is time-consuming and difficult because it demands scanning electron microscopy of cleaned frustules. The objective of this work is to speed and ease identification of these organisms by using whole-cell (in situ) hybridization and species-specific large-subunit ribosomal RNA (LSU rRNA)-targeted oligonucleotide probes. Toward that end, cultures of P. australis Frenguelli, P. pungens (Grunow) Hasle, P. multiseries (Hasle) Hasle, P. fraudulenta (P. T. Cleve) Heiden, P. heimii Manguin, P. delicatissima (P. T. Cleve) Heiden, P. pseudo-delicatissima (Hasle) Hasle, and P. americana (Hasle) Fryxell were screened with a suite of 15 putative species-specific probes. Of those, a subset of eight probes was found that distinguished each species tested. In addition, Pseudo-nitzschia chloroplasts were labeled with a probe directed against a eubacterial-conserved sequence. Identification of new cultures based on their reactivity toward a set of probes agreed with species designations as defined by morphological criteria. Whole-cell hybridization is a rapid, simple, and cost-effective technique for discriminating among cultured Pseudo-nitzschia species.  相似文献   

10.
Comparison of two domoic acid-producing diatoms: a review   总被引:1,自引:1,他引:0  
Villac  M.C.  Roelke  D.L.  Villareal  T.A.  Fryxell  G.A. 《Hydrobiologia》1993,269(1):213-224
In the past five years, awareness of domoic acid has increased from localized problems in Canada to outbreaks along both North American coasts. The phycotoxin domoic acid causes Amnesic Shellfish Poisoning (ASP) in humans and can be fatal. The known species of phytoplankton responsible for production of domoic acid include some pennate diatom species of the genus Nitzschia, sensu latu, which form stepped chains typical of the Pseudonitzschia. These diatoms are widely distributed, but their life histories and population dynamics are poorly understood. This review addresses histories of occurrences, morphology, geographical distributions, seasonal patterns, growth requirements, domoic acid production, and trophic interactions, with emphasis on a comparison of Pseudonitzschia pungens f. multiseries (Hasle) Hasle and Pseudonitzschia australis Frenguelli. Through continued research it will become possible to provide guidelines for regulatory agencies that protect both the consumer and the seafood industry.  相似文献   

11.
12.
The interaction between bacteria and phytoplankton is increasingly becoming recognised as an important factor in the physiology of toxin production and the dynamics of harmful algal blooms (HABs). Bacteria can play a direct or indirect role in the production of biotoxins once solely attributed to microalgae. Evidence implicating bacteria as an autonomous source paralytic shellfish poisoning biotoxins raises the question of autonomous bacterial toxigenesis of the neurotoxin domoic acid (DA), the cause of amnesic shellfish poisoning. Here, we examine whether the previously observed bacterial enhancement of DA production by Pseudo-nitzschia multiseries (Hasle) Hasle may be attributable to independent biotoxin production by the extra-cellular bacteria associated with this diatom. The growth and toxicity of six cultures of xenic P. multiseries clone CLN-1 were followed for 24 days. Up to day 14 (mid-stationary phase), DA production was not statistically different among culture flasks. On day 14, P. multiseries cells were removed by gentle filtration from a set of triplicate flasks, leaving the bacteria in the filtrate. Following the removal of the algal cells, DA in the filtrate ceased to increase. Instead, DA levels continuously declined. A follow-up experiment determined that this was likely caused by photodegradation rather than by bacterial degradation. We conclude that after removing P. multiseries cells, the extra-cellular bacteria remaining in the filtrate were incapable of autonomous DA toxigenesis, even in the presence of P. multiseries exudates. However, scanning electron microscopy revealed that P. multiseries cells harboured epiphytic bacteria, the importance of which can still not be ruled out in DA production.  相似文献   

13.
In 1987, there was an episode of shellfish poisoning in Canada with human fatalities caused by the diatom Pseudo-nitzschia multiseries, which produced the toxin domoic acid. In order to examine whether domoic acid in this diatom serves as a grazing deterrent for copepods, we compared feeding rates, egg production rates, egg hatching success and mortality of the calanoid copepods Acartia tonsa and Temora longicornis feeding on unialgal diets of the toxic diatom P. multiseries and the similarly-sized non-toxic diatom Pseudo-nitzschia pungens. Copepods were collected in summers of 1994, 1995 and 1996 from Shediac Bay, New Brunswick, Canada, near Prince Edward Island, the site of the 1987 episode of domoic acid shellfish poisoning. Rates of ingestion of the toxic versus the non-toxic diatom by A. tonsa and T. longicornis were similar, with only one significantly different pair of values obtained in 1994, for which A. tonsa had a higher mean rate of ingestion of the toxic than the non-toxic diatom. Thus, domoic acid did not appear to retard grazing. Analyses of copepods with high performance liquid chromatography (HPLC) revealed that copepods accumulated domoic acid when feeding on P. multiseries. Egg production rates of copepods when feeding on P. multiseries and P. pungens were very low, ranging from 0 to 2.79 eggs female–1 d–1. There did not appear to be differential egg production or egg hatching success on diets of the toxic and non-toxic diatoms. Mortality of females on the toxic diet was low, ranging from 0 to 20%, with a mean of 13%, and there was no apparent difference between mortality of copepods feeding on toxic versus non-toxic diatoms. Egg hatching success on both diets, although based on few eggs, ranged between 22% and 76%, with a mean percentage hatching of 45%. Diets of the non-toxic diatom plus natural seawater assemblages supplemented with dissolved domoic acid, revealed similar rates and percentages when compared to previous experiments. In summary, none of the variables measured indicated adverse effects on copepods feeding on the toxic compared to the non-toxic diatom.  相似文献   

14.
Salinity varies widely in coastal areas that often have a high abundance of Pseudo‐nitzschia H. Peragallo. Pseudo‐nitzschia is abundant in Louisiana waters, and high cellular domoic acid has been observed in natural samples but no human illness has been reported. To assess the threat of amnesic shellfish poisoning (ASP), we examined the effect of salinity on Pseudo‐nitzschia occurrence in the field and growth in the laboratory with special emphasis on the salinity range where oysters are harvested (10–20 psu). In Louisiana coastal waters, Pseudo‐nitzschia spp. occurred over a salinity range of 1 to >35 psu, but they occurred more frequently at higher rather than lower salinities. Seven species were identified, including toxigenic species occurring at low salinities. In culture studies, seven clones of three species grew over a salinity range of 15 to 40 psu, some grew at salinities down to 6.25 psu, and most grew at salinities up to 45 psu. Tolerance of low salinities decreased from Pseudo‐nitzschia delicatissima (Cleve) Heiden to P. multiseries (Hasle) Hasle to P. pseudodelicatissima (Hasle) Hasle emend. Lundholm, Hasle et Moestrup. In conclusion, although Pseudo‐nitzschia was more prevalent in the field and grew better in the laboratory at higher salinities, it grew and has been observed at low salinities. Therefore, the probability of ASP from consumption of oysters harvested from the low salinity estuaries of the northern Gulf of Mexico is low but not zero; animal mortality events from toxin vectors other than oysters at higher salinity on the shelf are more likely.  相似文献   

15.
A bloom of the pennate diatom Pseudonitzschia australis Frenguelli (= Nitzschia pseudoseriata Hasle) occurring in Monterey Bay, California, in early September 1991 coincided with an episode of mortality in brown pelicans (Pelicanus occidentalis) and Brandt's cormorants (Phalacrocorax penicillatus). High levels of domoic acid (DA), the amnesic shellfish poisoning toxin, were recorded in the plankton samples. Furthermore, high levels of DA, as well as numerous remnants of P. australis frustules, were found in the stomach contents of affected birds and in the visceral contents of local anchovies, a principal food source of seabirds. This is the first confirmed report of DA poisoning since the original 1987 episode in Atlantic Canada caused by Nitzschia pungens Grunow forma multiseries Hasle. It suggests another species of planktonic pennate diatom is capable of producing DA and that herbivorous finfish can act as vectors for this toxin.  相似文献   

16.
The first finding of the hydromedusa Hydractinia minima (Trinci, 1903) in plankton of Peter the Great Bay (Sea of Japan) is reported. The hydromedusae are 0.24–0.51 mm in bell diameter and 0.25–0.53 mm in height. The size characteristics of the nematocysts of this species (desmonemes and microbasic euryteles) are given. H. minima is present in the plankton of Peter the Great Bay from June through October at water temperatures of 16.4 to 22°C with the highest mean monthly density of 151 ind./m3. The finding of H. minima in Peter the Great Bay extends the area of this species in the North Pacific to the low-boreal subzone.Original Russian Text Copyright © 2005 by Biologiya Morya, Chaplygina, Dautova.  相似文献   

17.
18.
19.
The population dynamics of Pseudo-nitzschia in relation to environmental factors was investigated from March 2002 to July 2008 in Lim Bay, in the north-eastern Adriatic Sea. Domoic acid was monitored in the breeding population of Mytilus galloprovincialis from 2005 to 2008. The principal-component analysis of environmental parameters showed that the system is mostly temperature driven. The phytoplankton community was mainly composed of diatoms. Pseudo-nitzschia was the dominant diatom, present in 60% of samples, with a maximum (1.6 × 106 cells L−1) contribution up to 97% of the total diatom abundance. Morphological analysis revealed Pseudo-nitzschia manii and potentially toxic Pseudo-nitzschia pseudodelicatissima, Pseudo-nitzschia pungens, Pseudo-nitzschia fraudulenta and Pseudo-nitzschia calliantha as the dominant species in blooms. Pseudo-nitzschia abundance positively correlated to temperature, phosphate and ammonia in accordance with its maximal abundance in the summer/autumn period when fish farms had a maximum impact on the environment. Domoic acid was detected in M. galloprovincialis in concentrations below regulatory limits, ranging from 0.097 to 0.8721 μg g−1 in five cases from April to October 2005 in Lim Bay, but so far it is not clear which of the species was responsible for DA production. This study is also the first record of P. manii, P pungens and P. fraudulenta species in the Adriatic Sea.  相似文献   

20.
At present 8 species of Alexandrium genus have been found in seas and adjacent waters of Russia: A. acatenella, A. catenella, A. insuetum, A. margalefii, A. ostenfeldii, A. pseudogonyaulax, A. tamarense, and A. tamutum. The distribution and population density of Alexandrium species varied within the surveyed area of the Pacific: in the Sea of Japan and Sea of Okhotsk, 7 species were recorded; 3 species were recorded along the Pacific coast of Kamchatka; and 2 species were found in the Bering Sea. A. tamarense was the most widespread and abundant species over the area. A. insuetum was recorded only in the Sea of Japan, and A. catenella, in the Sea of Okhotsk (Terpeniya Bay). The highest concentration of Alexandrium spp. (2–7 million cells/l) was recorded along the Pacific coast of Kamchatka and in the Bering Sea; in the Sea of Okhotsk, a rather high concentration (51000 cells/l) was registered in Aniva Bay; in the Sea of Japan, the highest concentration was recorded in Peter the Great Bay (6000 cells/l). The distribution of cysts (spores) in surface sediments of the Pacific coast of Russia as a whole reflected the pattern of distribution of vegetative cells of Alexandrium. Cysts of Alexandrium cf. tamarense prevailed all over the area, with the maximum concentration along the Pacific coast of Kamchatka. Beyond that type of cysts, insignificant numbers of cysts of Alexandrium cf. minutum were recorded in Peter the Great Bay and Aniva Bay. Analysis of seasonal dynamics revealed that cells of Alexandrium spp. occurred in Peter the Great Bay from June up to September, and along the Pacific coast of Kamchatka from April to October. In the first region, the maximum density was recorded in August; it was provided by A. pseudogonyaulax (59% of the total density of Alexandrium), A. tamarense (35%), and A. insuetum (6%). In the second region, it was recorded in July, thanks only to development of A. tamarense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号