首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The majority of the mutations induced by ICR-170 in both the CYC1 gene (J. F. Ernst et al. Genetics 111:233-241, 1985) and the HIS4 gene (L. Mathison and M. R. Culbertson, Mol. Cell. Biol. 5:2247-2256, 1985) of the yeast Saccharomyces cerevisiae were recently shown to be single G . C base-pair insertions at monotonous runs of two or more G . C base pairs. However, not all sites were equally mutable; in both the CYC1 and HIS4 genes there is a single highly mutable site where a G . C base pair is preferentially inserted at a [sequence in text]. Here we report the ICR-170 mutagen specificity at the SUP4-o tyrosine tRNA gene of yeast. Genetic fine structure analysis and representative DNA sequence determination of ICR-170-induced mutations revealed that there is also a single highly mutable site in SUP4-o and that the mutation is a G . C base-pair insertion at a monotonous run of G . C base pairs. Analysis of DNA sequences encompassing the regions of highly mutable sites for all three genes indicated that the mutable sites are at the bases of potential hairpin structures; this type of structure could not be found at any of the other, less mutable G . C runs in SUP4, CYC1, and HIS4. Based on these results and recent information regarding novel DNA structural conformations, we present a mechanism for ICR-170-induced mutagenesis. (i) ICR-170 preferentially binds to DNA in the beta conformation; factors that increase the temporal stability of this structure, such as adjacent stem-and-loop formation, increase the frequency of ICR-170 binding; (ii) the observed mutagen specificity reflects formation of a preferred ICR-170 intercalative geometry at [sequence in text] sites; (iii) during replication or repair, ICR-170 remains associated with the single-stranded template; (iv) stuttering or strand slippage by the polymerization complex as it encounters the mutagen results in nucleotide duplication; (v) subsequent replication or mismatch repair fixes the insertion into the genome. This mechanism accounts for both the IRC-170 mutagenic specificity and the molecular basis of the highly mutable sites in S. cerevisiae.  相似文献   

2.
Fifteen independent ICR-170-induced his4 mutations in Saccharomyces cerevisiae were examined by DNA sequence analysis. All of the mutations contained a +1 G-C base pair addition in the HIS4 coding region. Eleven different sites of insertion were identified. Combined with previous DNA sequence data, 21 ICR-170-induced his4 mutations distributed at 16 different sites were analyzed. The insertions were always located in a consecutive run of two or more G-C base pairs, with all base pairs in each run having identical orientation. Long consecutive G-C runs were preferred target sites over short runs. Although some consecutive G-C runs appeared to be preferred target sites over others of identical length, such preference was not due to any particular type of nucleotide pair immediately adjacent to a given target site. In addition, DNA sequence analyses of the his4 mutations provided a basis for examining the mechanism of mRNA sequence recognition by extragenic suppressors of ICR-170-induced mutations. The implications of these results for mechanisms of frameshift suppression are discussed.  相似文献   

3.
Nakamura T  Amanuma K  Aoki Y 《Mutation research》2005,578(1-2):272-283
To determine whether frameshift mutations can be detected in rpsL transgenic zebrafish (Brachydanio rerio), embryos, and adult fish were treated with 6-chloro-9-[3-(2-chloroethylamino)-propylamino]-2-methoxyacridine (ICR-191). Embryos exposed to 0, 10, or 20 microM ICR-191 in a water bath for 18 h exhibited induced mutant frequencies (MFs) of 14 x 10(-5), 16 x 10(-5), and 25 x 10(-5), respectively. Only embryos exposed to 20 microM ICR-191 showed a significant increase in MF. The mutational spectra differed between the control and ICR-191-treated groups and single G:C pair insertions, which are a marked characteristic of ICR-191 mutagenesis, were observed in both 10 and 20 microM-treated embryos. In adult fish treated with 1 microM ICR-191 in a water bath for 18 h, a significant increase in MFs was observed in both gill (12 x 10(-5) and 44 x 10(-5) in control and treated fish, respectively), and hepatopancreas (5 x 10(-5) and 29 x 10(-5), respectively) 2 weeks after exposure. Sequence analysis showed that 58% of mutations in gill and 94% of mutations in hepatopancreas were single G:C pair insertions, which is typical of mutations induced by ICR-191. Additionally, these mutations occurred predominantly at a single site (CC sequence at bps 140-141) in the rpsL gene. Three weeks after exposure, however, the increased MFs and prominent mutational spectra of ICR-treated fish were undetectable. These findings suggest that using our protocols the rpsL transgenic zebrafish mutation assay is more effective for adult fish than for embryos, but that frameshift mutations can be detected in both embryos and adults at appropriate sampling times after treatment with ICR-191.  相似文献   

4.
The proteins coded by bacteriophate T4 replication genes 32, 41, 43, 44, 45, 61, and 62 together can replicate phi X174 DNA templates very efficiently. The fidelity of this in vitro replication reaction has been measured using an infectivity assay. The product molecules have the same specific infectivity as the template DNA. When an amber mutant DNA template is used, no increase in the frequency of revertants is seen even after more than 60 duplications in vitro. By using imbalances in the concentrations of deoxynucleotide substrates, the error rate during DNA replication in vitro can be greatly increased. Control experiments indicate that the increased mutagenesis is not due to the presence of dITP or dUTP as contaminants in the deoxynucleotide substrates used. The increase in the frequency of revertants is linearly related to the ratio of the correct and the incorrect deoxynucleotides. Determination of the DNA sequence of the revertants induced shows that a change in DNA sequence of the amber site predicted from the nucleotide bias occurs. DNA synthesis in vitro resembles in vivo replication in that the error rate depends not only upon the base change required for reversion but also upon the neighboring DNA sequences. The error rate is estimated to be 5 X 10(-6) at am3 site, 6.4 X 10(-7) at am86 site, and less than 2.9 X 10(-7) at am9 site. Comparison of the frequency of G-T and A-C mispairs reveals that most AT leads to GC transition mutations occur through G-T mispairs. Measurement of the frequency of the mispairs required to induce transversion mutations reveals that these occur primarily through purine-purine mispairs. Transition mutations are more frequent than transversion mutations at both the am3 and the am86 sites. These observations support the models for base pairing errors proposed by Watson and Crick ((1953) Nature 171, 964-967) and Topal and Fresco ((1976) Nature 263, 285-289).  相似文献   

5.
ICR-170-induced mutations in the CYC1 gene of the yeast Saccharomyces cerevisiae were investigated by genetic and DNA sequence analyses. Genetic analysis of 33 cyc1 mutations induced by ICR-170 and sequence analysis of eight representatives demonstrated that over one-third were frameshift mutations that occurred at one site corresponding to amino acid positions 29-30, whereas the remaining mutations were distributed more-or-less randomly, and a few of these were not frameshift mutations. The sequence results indicate that ICR-170 primarily induces G.C additions at sites containing monotonous runs of three G.C base pairs. However, some (Formula: see text) sites within the CYC1 gene were not mutated by ICR-170. Thus, ICR-170 is a relatively specific mutagen that preferentially acts on certain sites with monotonous runs of G.C base pairs.  相似文献   

6.
An attempt to assess the frequencies of mutations of the base-pair substitution type and of the addition/deletion type was undertaken in 64 ICR-170-, 28 MNNG- and 50 EMS-induced ad-1 mutant strains of Schizosaccharomyces pombe.By using temperature sensitivity, osmotic remediability, and interallelic complementation, sensitivity to nonsense suppressors and revertibility tests with 2-methoxy- 6-chloro-9-[3-(ethyl-2-chloroethyl)aminopropylamino]acridine dihydrochloride (ICR-170) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) as diagnostic criteria to distinguish between the two types of alterations, the following conclusions were reached: (1) The mutational alteration in all of the MNNG-induced and in at least 74% of the ethyl methanesulfonate(EMS)-induced mutant strains is of the base-pair substitution type; (2) Both types of mutation were found amongst ICR-170-induced strains.  相似文献   

7.
The germination and outgrowth of Saccharomyces cerevisiae ascospores were studied by determining the sensitivity of the ascospores to the action of chemical mutagens. Survival of the ascospores after N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment was low during the first 2 h of germination and then increased and remained constant. Survival of the ascospores after 2-methoxy-6-chloro-9-(3-[ethyl-2-chloroethyl]aminopropylamino)acridine-2HC1 (ICR-170) treatment was constant from 0 to 5 h, but as the ascospores completed outgrowth at 6 h they became more sensitive to killing by ICR-170. Survival of the ascospores remained high during treatment with 2-methoxy-6-chloro-9-(3-[ethyl-2-hydroxyethyl]aminopropylamino)acridine-2HC1 (ICR-170-OH) or 2,7-diamino-10-ethyl-9-phenyl-phenanthridinium bromide. The main classes of mutations screened for were petites and auxotrophs. The induction of petites and auxotrophs by MNNG was independent of the stage of germination and outgrowth treated. Petite induction by ICR-170 was dependent upon the stage of germination and outgrowth treated. The early hours of germination (0 to 3 h) were not sensitive to petite induction. However, there was maximal petite induction at 5 h into germination and outgrowth, followed by a decline. During this same time period, ICR-170 induced less than 1% auxotrophic colonies. This finding is very unusual because ICR-170 induced 15% auxotrophic colonies in starved log-phase cultures of S. cerevisiae. The acridine ICR-170-OH induced no mutations during germination and outgrowth of the ascospores. Ethidium bromide induced petites, and the petite frequency became maximal at 5 h of germination and outgrowth, a result similar to that obtained with ICR-170.  相似文献   

8.
A 3′ splice site consensus sequence mutation in the cystic fibrosis gene   总被引:11,自引:4,他引:7  
Summary In the cystic fibrosis (CF) gene, recently cloned, a three base pair deletion (ΔF508) has been identified in a majority of CF patients. This deletion has been found in 80% of CF chromosomes in families from north west Brittany. In order to identify new mutations we have selected 43 chromosomes negative for the three base pair deletion from these families and directly sequenced exon 11 after DNA amplification by the polymerase chain reaction. We have detected a base change (G→A) at the 3′ end of the consensus sequence of intron ten (namely 1717-1). This mutation destroys a splice site in the cystic fibrosis gene which probably produces a mutant allele. This single nucleotide mutation has been reported on two other CF chromosomes.  相似文献   

9.
Structural studies have been extended to dual lesions where an exocyclic adduct is positioned opposite an abasic site in the center of a DNA oligomer duplex. NMR and energy minimization studies were performed on the 1,N2-propanodeoxyguanosine exocyclic adduct (X) positioned opposite a tetrahydrofuran abasic site (F) with the dual lesions located in the center of the (C1-A2-T3-G4-X5-G6-T7-A8-C9).(G10-T11-A12-C-13-F14-C15 -A16-T17-G-18) X.F 9-mer duplex. Two-dimensional NMR experiments establish that the X.F 9-mer helix is right-handed with Watson-Crick A.T and G.C base pairing on either side of the lesion site. NOEs are detected from the methylene protons of the exocyclic ring of X5 to the imino protons of G4.C15 and G6.C13 which flank the lesion site, as well as to the H1' and H1" protons of the cross strand F14 tetrahydrofuran moiety. These NMR results establish that the exocyclic adduct X5 is positioned between flanking G4.C15 and G6.C13 base pairs and directed toward the abasic lesion F14 on the partner strand. These studies establish that the exocyclic ring of the 1,N2-propanodeoxyguanosine adduct fits into the cavity generated by the abasic site.  相似文献   

10.
A circular DNA plasmid, pSR1, isolated from Zygosaccharomyces rouxii has a pair of inverted repeats consisting of completely homologous 959-base pair (bp) sequences. Intramolecular recombination occurs frequently at the inverted repeats in cells of Saccharomyces cerevisiae, as well as in Z. rouxii, and is catalyzed by a protein encoded by the R gene of its own genome. The recombination is, however, independent of the RAD52 gene of the host genome. A site for initiation of the intramolecular recombination in the S. cerevisiae host was delimited into, at most, a 58-bp region in the inverted repeats by using mutant plasmids created by linker insertion. The 58-bp region contains a pair with 14-bp dyad symmetry separated by a 3-bp spacer sequence. The recombination initiated at this site was accompanied by a high frequency of gene conversion (3 to 50% of the plasmid clones examined). Heterogeneity created by the linker insertion or by a deletion (at most 153 bp so far tested) at any place on the inverted repeats was converted to a homologous combination by the gene conversion, even in the rad52-1 mutant host. A mechanism implying branch migration coupled with DNA replication is discussed.  相似文献   

11.
We have used DNA-mediated gene transfer to study homologous recombination in cultured mammalian cells. A family of plasmids with insertion and deletion mutations in the coding region of the herpes simplex type 1 thymidine kinase (tk) gene served as substrates for DNA-mediated gene transfer into mouse Ltk- cells by the calcium phosphate technique. Intermolecular recombination events were scored by the number of colonies in hypoxanthine-aminopterin-thymidine selective medium. We used supercoiled plasmids containing tk gene fragments to demonstrate that an overlap of 62 base pairs (bp) of homologous DNA was sufficient for intermolecular recombination. Addition of 598 bp of flanking homology separated from the region of recombination by a double-strand gap, deletion, or insertion of heterologous DNA increased the frequency of recombination by 300-, 20-, or 40-fold, respectively. Linearizing one of the mutant plasmids in a pair before cotransfer by cutting in the area of homology flanking a deletion of 104 bp or an insertion of less than 24 bp increased the frequency of recombination relative to that with uncut plasmids. However, cutting an insertion mutant of greater than or equal to 24 bp in the same manner did not increase the frequency. We show how our data are consistent with models that postulate at least two phases in the recombination process: homologous pairing and heteroduplex formation.  相似文献   

12.
A I Bukhari  S Froshauer 《Gene》1978,3(4):303-314
We have isolated mutants of bacteriophage Mu carrying the X mutations caused by the insertion of cam (Tn9), a transposon for chloramphenicol resistance. The Mu X cam mutants were obtained by selecting for heat-resistant survivors of a Mucts62, P1cam dilysogen. Like the previously described X mutants, Mu X cam mutants are defective prophages which can be excised from the host DNA at a frequency of 10(-5) to 10(-7) per cell. Tn9 insertions in Mu X cam mutants are located within 5000 base pairs of the left end of Mu DNA in a region that controls early replication functions of Mu. There is one EcoRI cleavage site in Tn9. The Tn9 transposon itself can be excised precisely from the Mu X cam mutants to generate wild type Mu. In most Mu X cam mutants, precise excision of Tn9 occurs at a low frequency (10(-6) per cell), whereas in some, the frequency is higher (10(-4) per cell). Mu X cam prophages can replicate after induction with the help of wild type Mu. The lysates containing Mu X cam particles, however, fail to transduce chloramphenicol resistance at a high frequency; Mu X cam mutants apparently have a cis dominant defect in integration.  相似文献   

13.
We describe an assay for the quantification of reverse mutations at the hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus in Chinese hamster ovary cells utilizing the selective agent L-azaserine (AS). Conditions are defined in terms of optimal AS concentration, cell density, and phenotypic expression time. After treatment, replicate cultures of 106 cells are allowed a 48-h phenotypic expression time in 100-mm plates. AS (10 μM) is then added directly to the growing culture and AS-resistant (ASr) cells form visible colonies. This assay is used to quantify ICR-191-, ICR-170-, and N-ethyl-N-nitrosourea-induced reversion of independently isolated HGPRT? clones. The ASr phenotype is characterized both physiologically and biochemically. All ASr clones isolated are stably resistant to AS and aminopterin but sensitive to 6-thioguanine. They also have re-expressed HGPRT enzyme. In addition, several revertants are shown to contain altered HGPRT. The data provide further evidence that ICR-191 and ICR-170 cause structural gene mutations in mammalian cells and also suggest that ICR-191, ICR-170, and N-ethyl-N-nitrosourea induce similar types of mutations in Chinese hamster ovary cells.  相似文献   

14.
The genetic effects of MNNG, 4NQO and ICR-170 have been compared on 5 different UV-sensitive strains and a standard wild-type strain of Neurospora crassa with regard to inactivation and the induction of forward-mutations at the ad-3A and ad-3B loci. Whereas all UV-sensitive strains (upr-1, uvs-2, uvs-3, uvs-5 and uvs-6) are more sensitive to inactivation by MNNG and ICR-170 than wild-type, only uvs-5 shows survival comparable to wild-type after 4NQO treatment, all other strains are more sensitive to 4NQO. In contrast to the effects on inactivation, a wide variety of effects were found for the induction of ad-3A and ad-3B mutations: higher forward-mutation frequencies than were found in wild-type were obtained after treatment with MNNG or 4NQO for upr-1 and uvs-2, no significant increase over the spontaneous mutation frequency was found with uvs-3 after MNNG, 4NQO or ICR-170 treatment; mutation frequencies comparable to that found in wild-type were obtained with uvs-6 after MNNG, 4NQO or ICR-170 treatment and with upr-1 after ICR-170 treatment. Lower forward-mutation frequencies than were found in wild-type were obtained with uvs-2 after ICR-170 treatment and with uvs-5 after MNNG, 4NQO or ICR-170 treatment. These data clearly show that the process of forward-mutation at the ad-3A and ad-3B loci is under genetic control by mutations at other loci (e.g. upr-1, uvs-2, uvs-3, uvs-5 and uvs-6) and that the effect is markedly mutagen-dependent.  相似文献   

15.
The mutD (dnaQ) gene of Escherichia coli codes for the epsilon subunit of the DNA polymerase III holoenzyme which is involved in 3'----5' exonuclease proofreading activity. We determined the mutational specificity of the mutator allele, mutD5, in the lacI gene of E. coli. The mutD5 mutation preferentially produces single base substitutions as judged from the enhanced fraction of lacI nonsense mutations and the spectrum of sequenced dominant lacI (lacId) and constitutive lacO (lacOc) mutations which were predominantly (69/71) single nucleotide substitutions. The distribution of amber lacI and sequenced lacId mutations revealed that transitions occur more frequently than transversions. A . T----G . C and G . C----A . T transitions were equally frequent and, with one major exception, evenly distributed among numerous sites. Among the transversions, A . T----T . A events were the most common, A . T----C . G substitutions were rare, and G . C----C . G changes were not detected. Transversions were unequally distributed among a limited number of sites with obvious hotspots. All 11 sequenced transversions had a consensus neighboring sequence of 5'-C-C-(mutated G or A)-C-3'. Although no large deletions or complex mutational events were recovered, sequencing revealed that mutD5 induced single nucleotide deletions within consecutive G X C sequences. An extraordinary A . T----G . C transition hotspot occurred at nucleotide position +6 in the lac operator region; the mutD5 mutation frequency of this single base pair was calculated to be 1.2 X 10(-3).  相似文献   

16.
Most cell divisions in the mouse brain have ceased by 14 days after birth. Therefore, spontaneous mutations that occur in brain cells can be assumed to be fixed by replication during brain development. Spontaneous and ethylnitrosourea (ENU)-induced reverse mutations at a single AT base pair were measured in brain tissue by using mice transgenic for PhiX174 am3, cs70. The line (am54) has 50 PhiX genomes per haploid genome integrated in a tandem array and is maintained by random breeding on a C57BL/6 background. For mutagenesis studies, homozygous am54 males were mated to non-transgenic C57BL6/J females. Four-day old offspring from this cross were treated with 50 mg/kg ENU and were euthanized at 68-80 days of age. The ENU-treated animals had a significantly higher frequency of am3 revertants in brain than did concurrent controls. In a second experiment, hemizygous male offspring (85 to 94 days old) were treated with 150 mg/kg ENU and euthanized at various post-injection intervals (3, 10 and 110 days). The revertant frequencies 3 and 10 days after treatment were not significantly different from control values. At the 110 days post-injection interval, however, the average revertant frequency in the treated group was significantly lower than controls. In a second study animals were euthanized 3, 10 and 74 days after treatment. Two groups (3 and 74 days post-injection) also showed a significant decrease in the revertant frequency as compared to controls. Additional sets of adult animals were treated with 50 and 150 mg/kg ENU and were euthanized 195 to 201 days after treatment. The average revertant frequency of the animals that were treated with 50 or 150 mg/kg ENU was not significantly different from the control value. Thus, although an increase in mutant frequency is detected in the PhiX174 system when neonatal mice are treated with ENU, treatment of mature mice with ENU did not result in an increase in the mutant frequency. Moreover, under certain conditions, ENU-produced a significantly lower mutant frequency than was observed in the control animals. This decrease in the revertant frequency among the treated animals was likely due to selective killing of cells with a higher spontaneous revertant frequency than cells with lower frequency.  相似文献   

17.
The 5' processing of rat pre-tRNA(Lys) and a series of mutant derivatives by rat cytosolic RNase P was examined. In standard, non-kinetic assays, mutant precursors synthesized in vitro with 5' leader sequences of 10, 17, 24, 25, and 46 nucleotides were processed to approximately equal levels and yielded precisely cleaved 5' processed intermediates with the normal 7-base pair aminoacyl stems. The construct containing the tRNA(Lys) with the 46-nucleotide leader was modified by PCR to give a series of pre-tRNA(Lys) mutants designed to measure the effect on processing by (1) substituting the nucleotide at the +1 position, (2) pairing and unpairing the +1 and +72 bases, (3) elongating the aminoacyl stem, and (4) disrupting the helix of the aminoacyl stem. Comparative kinetic analyses revealed that changing the wild type +1G to A, C, or U was well tolerated by the RNase P provided that compensatory changes at +72 created a base pair or a G.U noncanonical pair. Mutants with elongated aminoacyl stems that were produced either by inserting an additional base pair at +3:a + 69:a or by pairing the -1A with a +73U, were processed to yield 7-base pair aminoacyl stems, but with different efficiencies. The efficiency seen with the double insertion mutant was higher than even the wild type precursor, but the -1A-U + 73 mutant was a relatively poor substrate. Disrupting the aminoacyl stem helix by introducing a +7G G + 66 mispairing or by inserting a single G at the +3:a position dramatically reduced the processing efficiency, although the position of cleavage occurred precisely at the wild type cleavage site. However, the single insertion of a C at the +69:a position resulted in an efficiently cleaved precursor, but permitted a minor, secondary cleavage within the leader between the -6 and -5 nucleotides in addition to the dominant wild type scission.  相似文献   

18.
The relative mutagenicities of O-alkylthymine-DNA adducts were analyzed in vivo by site-specific mutagenesis. Purified DNA polymerases were used to incorporate O4-methyl (Me)-, O4-ethyl (Et)-, O4-isopropyl (iPr)-, or O2-Me-dTTP onto the 3' terminus of a synthetic oligonucleotide (15-mer) hybridized to phi X174 am3 DNA. The product oligonucleotides were further extended in the presence of unmodified dNTPs to yield 21-mers containing single O-alkylthymine adducts opposite the adenine residue of the bacteriophage amber codon. Polyacrylamide gel electrophoresis and nearest-neighbor analyses confirmed the identities and nucleotide positions of the adducts. Transfection and replication of the site-specifically alkylated DNAs in ada- Escherichia coli (defective in the alkyltransferase capable of repairing O4-alkylthymine-DNA adducts) yielded mutant progeny phage with reversion frequencies of: O4-Me-dThd (19.5 X 10(-6) ) greater than O4-Et-dThd (7.5 X 10(-6) ) greater than O4-iPr-dThd (3.0 X 10(-6) ) greater than or equal to O2-Me-dThd (1.0 X 10(-6) ) approximately equal to dThd (2.0 X 10(-6) ). None of the adducts produced mutations above background following replication in ada+ E. coli. DNA sequence analyses of 40 independently isolated mutant phage derived from the O4-Me- or O4-Et-dThd-containing DNAs showed that all mutants contained guanine residues opposite the original site of the alkylthymines. These data are consistent with a mechanism of mutagenesis involving the formation of O4-alkyl-T.G base pairs during DNA replication in E. coli and suggest that the formation of A.T----G.C transition mutations is characteristic of mutagenesis by O4-Me- and O4-Et-dThds in vivo.  相似文献   

19.
20.
The mutagenic specificities of ethylnitrosourea (ENU), X-rays (+/-)7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7, 8,9,10-tetrahydrobenzo[a]pyrene (BPDE), ICR-191, and N-acetoxy-2-acetylaminofluorene (N-AcO-AAF) were analyzed and compared in diploid human fibroblasts and Salmonella typhimurium. In the human fibroblasts, we compared the frequency of diphtheria toxin (DT)-resistant mutants, presumably induced in the gene coding for elongation factor-2, with the frequency of 6-thioguanine (TG) resistance induced by mutations in the gene coding for hypoxanthine(guanine)phosphoribosyltransferase (HPRT). Recovery of DT-resistant (DTr) cells requires that the mutant EF-2 retain the ability to carry on protein synthesis since the normal EF-2 will be inactivated by DT selection. Therefore, the DTr mutation cannot involve major changes in the gene. In contrast, cells can acquire TG resistance by any mechanism which eliminates HPRT activity, e.g., base substitution, frameshift, deletion, loss of chromosomes. Each agent was assessed by calculating the ratio of the slopes of the dose-response plots (induced variant frequency as a function of dose of the agent used) for the two markers (DTr/TGr variants.). In S. typhimurium we examined the reversion frequency in four histidine-requiring strains bearing forward mutations of the frameshift (TA1538, TA98) or missense (TA1535, TA100) type. ENU, which was predominantly a base substitution mutagen in the bacteria, gave a ratio of DTr to TGr variants of 1.5. As expected of an agent inducing gross chromosomal changes, X-rays induced no revertants in bacteria and in human cells gave a ratio of 0.1. ICR-191 which was predominantly a frameshift mutagen in bacteria gave a ratio of 0.15. In the set of bacterial strains containing the plasmid pKM101, BPDE reverted both frameshift and base substitution mutations. It did not cause reversions in the other set of strains. In human cells BPDE gave a response similar to ENU, i.e., a ratio of DTr/TGr variants of 1.5. As reported by others, N-AcO-AAF was predominantly a frameshift mutagen in bacteria. However, in the human cells it gave a ratio of DTr/TGr variants of 1.5, similar to ENU and BPDE. These results suggest that in human cells, BPDE and N-AcO-AAF, like ENU, yield predominantly base substitutions, while ICR-191 and X-rays largely produce mutations by mechanisms which result in more extensive alterations in the gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号