首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MTP-3631 is a novel thiopyranopyrimidine derivative structurally different from any existent hypoglycemic agents. MTP-3631 markedly decreased basal blood glucose and improved glucose intolerance in genetically diabetic C57BL/6J ob/ob mice, which was not affected by tolbutamide. MTP-3631 also caused hypoglycemic effects in normal rats, but no change was observed in plasma insulin level. Unlike buformin, MTP-3631 did not change plasma lactate level in ob/ob mice. These results suggest that the hypoglycemic mechanism of MTP-3631 may be essentially different from those of sulfonylureas and biguanides.  相似文献   

2.
The effect of calcium channel blockers (CCBs) on type 2 diabetes is still unclear. The present study was undertaken to examine the efficacy of nifedipine, a dihydropyridine CCB, on obesity, glucose intolerance and vascular endothelial dysfunction in db/db mice (a mouse model of obesity and type 2 diabetes). db/db mice, fed high-fat diet (HFD) were treated with vehicle, nifedipine (10 mg kg(-1) day(-1)) or hydralazine (5 mg kg(-1) day(-1)) for 4 weeks, and the protective effects were compared. Although nifedipine and hydralazine exerted similar blood pressure lowering in db/db mice, neither affected body weight, fat weight, and glucose intolerance of db/db mice. However, nifedipine, but not hydralazine, significantly improved vascular endothelial function in db/db mice, being accompanied by more attenuation of vascular superoxide by nifedipine than hydralazine. These protective effects of nifedipine were attributed to the attenuation of eNOS uncoupling as shown by the prevention of vascular endothelial nitric oxide synthase (eNOS) dimer disruption, and the prevention of dihydrofolate reductase (DHFR) downregulation, the key enzyme responsible for eNOS uncoupling. Moreover, nifedipine, but not hydralazine, significantly prevented the decreases in phosphorylation of vascular akt and eNOS in db/db mice. Our work provided the first evidence that nifedipine prevents vascular endothelial dysfunction, through the inhibition of eNOS uncoupling and the enhancement of eNOS phosphorylation, independently of blood pressure-lowering effect. We propose that nifedipine may be a promising therapeutic agent for cardiovascular complications in type 2 diabetes.  相似文献   

3.
Evaluating the glucose tolerance test in mice   总被引:1,自引:0,他引:1  
The objective of this study was to determine the optimal conditions under which to assess glucose tolerance in chow- and high-fat-fed C57BL/6J mice. Mice were fed either chow or high-fat diet for 8 wk. Variables tested were fasting duration (0-, 3-, 6-, and 24-h and overnight fasting), route of administration (intraperitoneal vs. oral) load of glucose given (2, 1, or 0.5 g/kg and fixed 50-mg dose), and state of consciousness. Basal glucose concentrations were increased in high-fat- compared with chow-fed mice following 6 h of fasting (9.1 +/- 0.3 vs. 7.9 +/- 0.4 mmol/l P = 0.01). Glucose tolerance was most different and therefore significant (P = 0.001) in high-fat-fed mice after 6 h of fasting (1,973 +/- 96 vs. 1,248 +/- 83 mmol.l(-1).120 min(-1)). The difference in glucose tolerance was greater following an OGTT (142%), in contrast to an IPGTT, with a 127% difference between high fat and chow. We also found that administering 2 g/kg of glucose resulted in a greater level of significance (P = 0.0008) in glucose intolerance in high-fat- compared with chow-fed mice. A fixed dose of 50 mg glucose regardless of body weight was enough to show glucose intolerance in high-fat- vs. chow-fed mice. Finally, high-fat-fed mice showed glucose intolerance compared with their chow-fed counterparts whether they were tested under conscious or anesthetized conditions. We conclude that 2 g/kg glucose administered orally following 6 h of fasting is best to assess glucose tolerance in mice under these conditions.  相似文献   

4.
1. Plasma glucose and insulin responses to bombesin were examined in 12-15-week-old 12 hr fasted lean and genetically obese hyperglycaemic (ob/ob) mice. 2. Bombesin (1 mg/kg ip) produced a prompt but transient increase of plasma insulin in lean mice (maximum increase of 50% at 5 min), and a more slowly generated but protracted insulin response in ob/ob mice (maximum increase of 80% at 30 min). Plasma glucose concentrations of both groups of mice were increased by bombesin (maximum increases of 40 and 48% respectively in lean and ob/ob mice at 15 min). 3. When administered with glucose (2 g/kg ip), bombesin (1 mg/kg ip) rapidly increased insulin concentrations of lean and ob/ob mice (maximum increases of 39 and 63% respectively at 5 min). Bombesin did not significantly alter the rise of plasma glucose after exogenous glucose administration to these mice. 4. The results indicate that bombesin exerts an insulin-releasing effect in lean and ob/ob mice. The greater insulin-releasing effect in ob/ob mice renders bombesin a possible component of the overactive entero-insular axis in the ob/ob mutant, especially if it acts within the islets as a neurotransmitter or paracrine agent.  相似文献   

5.
Valproic acid (VLP) is a widely used anticonvulsant and mood-stabilizing drug that relieves the endoplasmic reticulum (ER) stress response, a pathogenetic process related to diabetes. The aim of the present study was to evaluate whether acute valproic acid is able to interfere with glucose intolerance in two different diabetes models: The first model was a Wfs1 mutant mouse with an elevated ER stress response and the second model a streptozocin-induced diabetic mouse. VLP (300 mg/kg, i.p.) was administered to Wfs1 knockout (KO) mice and glucose tolerance test was performed 15 min later. VLP did not have an effect on the course of the glucose tolerance test in wild-type mice, while it did normalize the glucose intolerance in Wfs1 knockout mice. Acute valproic acid also lowered the blood glucose levels in streptozocin-treated mice and potentiated the effect of insulin in these mice. Thus, acute valproic acid is effective in lowering blood glucose levels possibly by potentiating insulin action in both Wfs1 KO mice and in streptozocin-induced type 1 diabetic mice.  相似文献   

6.
The beta 3-adrenoceptor agonist, BRL 26830A, which is not inhibited by either beta 1 or beta 2-selective antagonists, has been shown to possess anti-obesity and anti-diabetic actions. However, the effects of this agent on insulin and glucagon release have not yet been substantiated. Therefore, we tested the hypothesis that BRL 26830A promotes insulin and glucagon secretion via beta 3 receptors on pancreatic islet B and A cells. In ICR mice fasted for 48 h, BRL 26830A significantly stimulated insulin secretion from 5 min after administration, markedly decreased blood glucose levels from 30 min after administration, and significantly increased glucagon secretion from 30 min after administration. The administration of a non-selective beta-receptor antagonist, at a dose of 50 mg/kg, 30 min prior to BRL 26830A injection completely abolished the effects induced by BRL 26830A. However, the administration of a beta 1-selective antagonist at doses of 50 or 100 mg/kg did not produce any significant effects. On the action of BRL 26830A, whereas the administration of a beta 2-selective antagonist at 50 mg/kg, a near maximal effective dose, partially abolished the effects of BRL 26830A. BRL 26830A had no effect on insulin, glucagon, or glucose levels in streptozocin (STZ) diabetic mice fasted for 48 h. These results suggest that, in mice, BRL 26830A may promote insulin secretion mainly via beta 3 receptors and partially via beta 2 receptors on pancreatic-islet B cells, and that glucagon may be secreted as the result of hypoglycemia induced by this agent.  相似文献   

7.
Objective: Glucose intolerance has been shown to be a better predictor of morbidity and mortality than impaired fasting glucose. However, glucose tolerance tests are inconvenient and expensive. This study evaluated the relative frequencies of glucose intolerance and impaired fasting glucose and sought to determine if 2‐hour glucose could be predicted from simple demographic and laboratory data in an obese population. Research Methods and Procedures: Eighty‐nine obese subjects (median BMI 35 kg/m2, range 30 to 40 kg/m2) underwent glucose tolerance testing. Using step‐wise linear and logistic regression analysis, fasting glucose, high‐sensitivity C‐reactive protein (hsCRP), fasting insulin, high‐density lipoprotein cholesterol, triglycerides, weight, height, BMI, waist circumference, hip circumference, waist‐to‐hip ratio, sex, and age were assessed as predictors of glucose intolerance. Results: Impaired glucose tolerance was more prevalent (27%) than impaired fasting glucose (5.6%). Only fasting glucose and hsCRP were significant (p < 0.05) independent predictors of impaired 2‐hour glucose (>140 mg/dL). A fasting glucose ≥ 100 mg/dL or an hsCRP > 0.32 mg/dL (upper quartile of the normal range) detected 81% (sensitivity) of obese subjects with impaired glucose tolerance; however, specificity was poor (46%). Fasting insulin ≥ 6 μU/mL had better sensitivity (92%) but poorer specificity (30%). Discussion: Impaired glucose tolerance is more common than impaired fasting glucose in an obese population. Possible strategies to avoid doing glucose tolerance tests in all obese patients would be to do glucose tolerance testing only in those whose fasting glucose is ≥ 100 mg/dL or whose hsCRP exceeds 0.32 mg/dL or those whose fasting insulin is ≥ 6 μU/mL.  相似文献   

8.
Silymarin is a potent antioxidant medicine and has been widely used for the treatment of liver diseases over 30 years. Recent studies suggest that silymarin may benefit patients with glucose intolerance. However, the mechanism underlying the action of silymarin is not clarified. The aim of this work was to assess the impact of silymarin on glucose intolerance in high-fat diet (HFD)-fed mice, and explore the potential therapeutic mechanisms. C57BL/6 mice were fed with HFD for 12 weeks, randomized, and treated orally with vehicle saline or silymarin (30?mg/kg) daily for 30 days. We found that silymarin significantly improved HFD-induced body weight gain, glucose intolerance, and insulin resistance in mice. Silymarin treatment reduced HFD-increased oxidative stress indicators (reactive oxygen species, lipid peroxidation, protein oxidation) and restored HFD-down-regulated activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) in the plasma and/or liver of the HFD-fed mice. Furthermore, silymarin decreased HFD-up-regulated hepatic NADPH oxidase expression and NF-κB activation in mice. Additionally, silymarin treatment mitigated HFD-increased plasma IL-1β, TNF-α levels, and HFD-enhanced hepatic NO, TLR4, and iNOS expression in mice. These novel data indicate that silymarin has potent anti-diabetic actions through alleviating oxidative stress and inflammatory response, partially by inhibiting hepatic NADPH oxidase expression and the NF-κB signaling.  相似文献   

9.
Obesity, a serious and growing health threat, is associated with low-grade inflammation that plays a role in mediating its adverse consequences. Previously, we have discovered a role for neural cholinergic signaling in controlling inflammation, and demonstrated that the cholinergic agent galantamine suppresses excessive proinflammatory cytokine release. The main objective of this study was to examine the efficacy of galantamine, a clinically-approved drug, in alleviating obesity-related inflammation and associated complications. After 8 wks on a high-fat diet, C57BL/6J mice were treated with either galantamine (4 mg/kg, intraperitoneally [i.p.]) or saline for 4 wks in parallel with mice on a low-fat diet and treated with saline. Galantamine treatment of obese mice significantly reduced body weight, food intake, abdominal adiposity, plasma cytokine and adipokine levels, and significantly improved blood glucose, insulin resistance and hepatic steatosis. In addition, galantamine alleviated impaired insulin sensitivity and glucose intolerance significantly. These results indicate a previously unrecognized potential of galantamine in alleviating obesity, inflammation and other obesity-related complications in mice. These findings are of interest for studying the efficacy of this clinically-approved drug in the context of human obesity and metabolic syndrome.  相似文献   

10.
番石榴多糖对糖尿病小鼠的血糖及胸腺、脾指数的影响   总被引:1,自引:0,他引:1  
研究采用两种不同方法提取的番石榴多糖对四氧嘧啶致糖尿病的小鼠血糖值及胸腺、脾指数的影响。通过给小鼠腹腔注射四氧嘧啶(200 mg/kg BW)建立糖尿病小鼠模型,尾端取血,采用血糖仪分别在给小鼠灌胃多糖三天和十天后检测小鼠血糖值,第十天解剖小鼠,分别对小鼠胸腺和脾脏称重。结果表明:与糖尿病对照组比较,两组灌喂番石榴多糖的小鼠的生存质量提高,血糖值显著降低,同时胸腺指数显著增加,提示番石榴多糖具有降血糖作用,是一种潜在的糖尿病治疗药物。  相似文献   

11.
The development of glucose intolerance in Aston ob/ob mice showed a gross exaggeration of the age-related changes of glucose tolerance in lean (+/+) mice. Intraperitoneal glucose tolerance in ob/ob mice was poor at 5 weeks, improved by 10 weeks, but markedly worsened by 20 weeks. A 24 hour fast further exaggerated the glucose intolerance of ob/ob mice. Unlike lean mice, tolerance improved in ob/ob mice at 40 weeks. Alterations of insulin sensitivity and the plasma insulin response to glucose accounted in part for these observations. Insulin sensitivity deteriorated until 20 weeks, but improved at 40 weeks in both fed and 24 hour fasted ob/ob mice. A positive plasma insulin response to glucose was lost after 5 weeks in fed ob/ob mice. The severity of this abnormality corresponded with the extent of the basal hyperinsulinaemia. A 24 hour fast reduced plasma insulin concentrations and restored a positive plasma insulin response to glucose in ob/ob mice. The results suggest that the plasma insulin response to glucose in ob/ob mice is related to the secretory activity of the B-cells prior to stimulation. Furthermore, it is evident that factors in addition to insulin insensitivity and the impaired plasma insulin response to glucose contribute to the development of glucose intolerance in these mice.  相似文献   

12.
Objectives: Obestatin has been initially characterized as a new peptide derived from the ghrelin precursor, which suppresses food intake and inhibits the orexigenic and prokinetic actions of ghrelin when injected peripherally or centrally in lean mice. However, reproducing these data remains controversial. Reasons for the disparity may be the use of different doses, routes, and animal models. We aimed to investigate the effects of peripheral and intracisternal (IC) injection of obestatin on feeding, gastric motility, and blood glucose in rats as well as in diet‐induced obese (DIO) mice. Research Methods and Procedures: Food intake and gastric emptying of a semi‐liquid caloric meal were measured after intraperitoneal (IP) injection of obestatin in rats and DIO mice. Gastric phasic motility and blood glucose were monitored in urethane‐anesthetized rats after IC or intravenous (IV) injection of obestatin. Results: Obestatin injected intraperitoneally at doses ranging from 0.1 to 3 mg/kg influenced neither acute food intake nor gastric emptying in rats. Obestatin injected intravenously at 0.3 or 3 mg/kg and IC at 7.5 or 30 µg/rat modified neither fasted gastric phasic motility nor blood glucose levels, while ghrelin (30 µg/kg, IV) increased and vagotomy suppressed gastric motility, and an oligosomatostatin analog (3 µg/rat, IC) decreased blood glucose. Obestatin, injected intraperitoneally (0.3 mg/kg) in DIO mice, did not alter feeding response to a fast, while urocortin 1 (10 µg/kg, IP) induced a 73.3% inhibition at 2 hours. Discussion: Our data demonstrate that peripheral administration of obestatin did not modify food intake in rats or obese mice or gastric motor function in rats.  相似文献   

13.
Li J  Lu Z  Wang Q  Su Z  Bao Y  Shi W 《Physiological genomics》2012,44(6):345-351
Bglu3 is a quantitative trait locus for fasting glucose on distal chromosome 1 identified in an intercross between C57BL/6 (B6) and C3H/HeJ (C3H) apolipoprotein E-deficient (apoE(-/-)) mice. This locus was subsequently replicated in two separate mouse intercrosses. The objective of this study was to characterize Bglu3 through construction and analysis of a congenic strain and identify underlying candidate genes. Congenic mice were constructed by introgressing a genomic region harboring Bglu3 from C3H.apoE(-/-) into B6.apoE(-/-) mice. Mice were started with a Western diet at 6 wk of age and maintained on the diet for 12 wk. Gene expression in the liver was analyzed by microarrays. Congenic mice had significantly higher fasting glucose levels and developed more significant glucose intolerance compared with B6.apoE(-/-) mice on the Western diet. Microarray analysis revealed 336 genes to be differentially expressed in the liver of congenic mice. Further pathway analysis suggested a role for acute phase response signaling in regulating glucose intolerance. Apcs, encoding an acute phase response protein serum amyloid P (SAP), is located underneath the linkage peak of Bglu3. Multiple single nucleotide polymorphisms between B6 and C3H mice were detected within and surrounding Apcs. Apcs expression in the liver was significantly higher in congenic and C3H mice compared with B6 mice. The Western diet consumption led to a gradual rise in plasma SAP levels, which was accompanied by rising fasting glucose in both B6 and C3H apoE(-/-) mice. Expression of C3H Apcs in B6.apoE(-/-) mice aggravated glucose intolerance. Bglu3 is confirmed to be a locus affecting diabetes susceptibility, and Apcs is a probable candidate gene.  相似文献   

14.
We have previously reported that normal Wistar rats fed an isocaloric, sucrose-rich (63%) diet (SRD) developed glucose intolerance and elevated triglyceride levels in plasma (P) as well as in heart (H) and liver (L) tissue. This metabolic state was accompanied by hyperinsulinism both in vivo and in vitro, suggesting that a state of insulin resistance has developed. In order to gather information on the role of hyperinsulinemia and glucose intolerance in the development of the above lipid metabolism abnormalities, diazoxide, a known insulin release blocking agent was administered (120 mg/kg/day) together with the diet (SRD + DZX) for 22 days. Control groups fed a standard chow (STD) or the STD plus diazoxide (STD + DZX) were included in the study. Under the present experimental design, DZX was able to prevent the development of hyperinsulinism, glucose intolerance and elevated levels of triacylglycerol in plasma, heart and liver present in animals fed on a sucrose rich diet. Our results suggest that mechanisms involved in the development of this nutritionally induced syndrome may include an interaction of hyperinsulinemia, with a direct effect of sucrose on several steps of lipid metabolism.  相似文献   

15.
Kim MK  Chae YN  Kim HD  Yang EK  Cho EJ  Choi SH  Cheong YH  Kim HS  Kim HJ  Jo YW  Son MH  Kim SH  Shin CY 《Life sciences》2012,90(1-2):21-29
AimTo characterize the pharmacodynamic profile of DA-1229, a novel dipeptidyl peptidase (DPP) 4 inhibitor.Main methodsEnzyme inhibition assays against DPP4, DPP8 and DPP9. Antidiabetic effects of DA-1229 in HF-DIO mice and young db/db mice.Key findingsDA-1229 was shown to potently inhibit the DPP4 enzyme in human and murine soluble forms and the human membrane-bound form with IC50 values of 0.98, 3.59 and 1.26 nM, respectively. As a reversible and competitive inhibitor, DA-1229 was more selective to human DPP4 (6000-fold) than to human DPP8 and DPP9. DA-1229 (0.1–3 mg/kg) dose-dependently inhibited plasma DPP4 activity, leading to increased levels of plasma GLP-1 and insulin, and thereby lowering blood glucose levels in mice. In high fat diet-fed (HF) mice, a single oral dose of 100 mg/kg of DA-1229 reduced plasma DPP4 activity by over 80% during a 24 h period. Long-term treatment with DA-1229 for 8 weeks revealed significant improvements in glucose intolerance and insulin resistance, accompanied by significant body weight reduction. However, it remains unclear whether there is a direct causal relationship between DPP4 inhibition and body weight reduction. In young db/db mice, the DA-1229 treatment significantly reduced blood glucose excursions for the first 2 weeks, resulting in significantly lower levels of HbA1c at the end of the study. Furthermore, the pancreatic insulin content of the treatment group was significantly higher than that of the db/db control.SignificanceDA-1229 as a novel and selective DPP4 inhibitor improves the insulin sensitivity in HF mice and delays the onset of diabetes in young db/db mice.  相似文献   

16.

Background

The second generation antipsychotic (SGA) drugs are widely used in psychiatry due to their clinical efficacy and low incidence of neurological side-effects. However, many drugs in this class cause deleterious metabolic side-effects. Animal models accurately predict metabolic side-effects for SGAs with known clinical metabolic liability. We therefore used preclinical models to evaluate the metabolic side-effects of glucose intolerance and insulin resistance with the novel SGAs asenapine and iloperidone for the first time. Olanzapine was used as a comparator.

Methods

Adults female rats were treated with asenapine (0.01, 0.05, 0.1, 0.5, 1.0 mg/kg), iloperidone (0.03, 0.5, 1.0, 5.0, 10.0 mg/kg) or olanzapine (0.1, 0.5, 1.5, 5.0, 10.0 mg/kg) and subjected to the glucose tolerance test (GTT). Separate groups of rats were treated with asenapine (0.1 and 1.0 mg/kg), iloperidone (1.0 and 10 mg/kg) or olanzapine (1.5 and 15 mg/kg) and tested for insulin resistance with the hyperinsulinemic-euglycemic clamp (HIEC).

Results

Asenapine showed no metabolic effects at any dose in either test. Iloperidone caused large and significant glucose intolerance with the three highest doses in the GTT, and insulin resistance with both doses in the HIEC. Olanzapine caused significant glucose intolerance with the three highest doses in the GTT, and insulin resistance with the higher dose in the HIEC.

Conclusions

In preclinical models, asenapine shows negligible metabolic liability. By contrast, iloperidone exhibits substantial metabolic liability, comparable to olanzapine. These results emphasize the need for appropriate metabolic testing in patients treated with novel SGAs where current clinical data do not exist.  相似文献   

17.
《Phytomedicine》2015,22(1):128-137
We have reported the antidiabetic activity of the total lignans from Fructus arctii (TLFA) against alloxan-induced diabetes in mice and rats. In this study, arctigenic acid was found to be the main metabolite in rat plasma detected by UPLC/MS and HPLC/MS/MS after oral administration of TLFA. For the first time, its hypoglycemic activity and acute oral toxicity were evaluated in Goto-Kakizaki (GK) rats, a spontaneous type 2 diabetic animal model, and ICR mice respectively.GK rats were orally given arctigenic acid (50 mg/kg) twice daily before each meal for 12 weeks. The treatment reduced the elevated plasma glucose, glycosylated hemoglobin and showed significant improvement in glucose tolerance in glucose fed hyperglycemic GK rats. We found that the hypoglycemic effect of arctigenic acid was partly due to the stimulation on insulin secretion, whereas the body weight was not affected by arctigenic acid administration in GK rats. Meanwhile, there was no observable acute toxicity of arctigenic acid treatment at the dosage of 280 mg/kg body weight daily in the acute 14-day toxicity study in mice.This study demonstrates that arctigenic acid may be the main metabolite in the rat serum after oral administration of TLFA, which showed significant hypoglycemic effect in GK rats, and low acute toxicity in ICR mice. The result prompts us that arctigenic acid is the key substance responsible for Fructus Arctii antidiabetic activity and it has a great potential to be further developed as a novel therapeutic agent for diabetes in humans.  相似文献   

18.
The Cre/loxP recombinase system for performing conditional gene targeting experiments has been very useful in exploring genetic pathways that control both the development and function of pancreatic beta-cells. One particular line of transgenic mice (B6.Cg-Tg(Ins2-cre)25Mgn/J), commonly called RIP-Cre, in which expression of Cre recombinase is controlled by a short fragment of the rat insulin II gene promoter has been used in at least 21 studies on at least 17 genes. In most of these studies inactivation of the gene of interest was associated with either glucose intolerance or frank diabetes. Experimental evidence has been gradually emerging to suggest that RIP-Cre mice alone display glucose intolerance. In this study experiments from three laboratories demonstrate that RIP-Cre mice, in the absence of genes targeted by loxP sites, are glucose intolerant, possibly due to impaired insulin secretion. In addition, we review the use of RIP-Cre mice and discuss possible molecular underpinnings and ramifications of our findings.  相似文献   

19.
The dried sap of the aloe plant (aloes) is one of several traditional remedies used for diabetes in the Arabian peninsula. Its ability to lower the blood glucose was studied in 5 patients with non-insulin-dependent diabetes and in Swiss albino mice made diabetic using alloxan. During the ingestion of aloes, half a teaspoonful daily for 4-14 weeks, the fasting serum glucose level fell in every patient from a mean of 273 +/- 25 (SE) to 151 +/- 23 mg/dl (p less than 0.05) with no change in body weight. In normal mice, both glibenclamide (10 mg/kg twice daily) and aloes (500 mg/kg twice daily) induced hypoglycaemia after 5 days, 71 +/- 6.2 and 91 +/- 7.6 mg/dl, respectively, versus 130 +/- 7 mg/dl in control animals (p less than 0.01); only glibenclamide was effective after 3 days. In the diabetic mice, fasting plasma glucose was significantly reduced by glibenclamide and aloes after 3 days. Thereafter only aloes was effective and by day 7 the plasma glucose was 394 +/- 22.0 versus 646 +/- 35.9 mg/dl, in the controls and 726 +/- 30.9 mg/dl in the glibenclamide treated group (p less than 0.01). We conclude that aloes contains a hypoglycaemic agent which lowers the blood glucose by as yet unknown mechanisms.  相似文献   

20.
X Z Khawaja  I C Green 《Peptides》1991,12(2):227-233
Intraperitoneal administration of beta-endorphin (1 mg/kg) to ob/ob mice doubled fasting plasma insulin concentrations within 30 min, while plasma glucose concentrations were unaltered. In lean mice, beta-endorphin failed to alter plasma insulin or glucose responses. In glucose-loaded ob/ob mice, beta-endorphin (1 mg/kg) reduced insulin levels at 40 min, and delayed glucose disposal. A lower dose of beta-endorphin (0.1 mg/kg) decreased plasma insulin at 90 min, with no effect on plasma glucose disposal. In lean mice, only the higher dose of beta-endorphin suppressed the glucose-stimulated rise in plasma insulin concentrations, without affecting plasma glucose. Beta-endorphin's actions were blocked by naltrexone and could not be mimicked by N-acetyl-beta-endorphin. Beta-endorphin (10(-8)M) enhanced insulin release from isolated ob/ob and lean mouse islets incubated in medium containing 6 mM glucose, but inhibited release when 20 mM glucose was present. These effects were naloxone reversible. The results indicate that 1) ob/ob mice display a greater magnitude of response in vivo to beta-endorphin's actions on insulin release compared with lean mice, 2) high concentrations of beta-endorphin exacerbate glucose disposal in ob/ob mice. 3) the prevailing glucose concentration is an important determinant of whether beta-endorphin's effects on insulin release will be stimulatory or inhibitory and 4) these actions are mediated via opiate receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号