首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Tormo  D Blaas  N R Parry  D Rowlands  D Stuart    I Fita 《The EMBO journal》1994,13(10):2247-2256
The three-dimensional structure of the complex between the Fab fragment of an anti-human rhinovirus neutralizing antibody (8F5) and a cross-reactive synthetic peptide from the viral capsid protein VP2 has been determined at 2.5 A resolution by crystallographic methods. The refinement is presently at an R factor of 0.18 and the antigen-binding site and viral peptide are well defined. The peptide antigen adopts a compact fold by two tight turns and interacts through hydrogen bonds, some with ionic character, and van der Waals contacts with antibody residues from the six hypervariable loops as well as several framework amino acids. The conformation adopted by the peptide is closely related to the corresponding region of the viral protein VP2 on the surface of human rhinovirus 1A whose three-dimensional structure is known. Implications for the cross-reactivity between peptides and the viral capsid are discussed. The peptide-antibody interactions, together with the analysis of mutant viruses that escape neutralization by 8F5 suggest two different mechanisms for viral escape. The comparison between the complexed and uncomplexed antibody structures shows important conformational rearrangements, especially in the hypervariable loops of the heavy chain. Thus, it constitutes a clear example of the 'induced fit' molecular recognition mechanism.  相似文献   

2.
P Pack  A Plückthun 《Biochemistry》1992,31(6):1579-1584
We have designed dimeric antibody fragments that assemble in Escherichia coli. They are based on single-chain FV fragments, with a flexible hinge region from mouse IgG3 and an amphiphilic helix fused to the C-terminus of the antibody fragment. The sequence of the helix was taken either from that of a previously reported four-helix bundle design or from a leucine zipper, optionally extended with a short cysteine-containing peptide. The bivalent fragments associate in vivo, either with covalent linkage or with a monomer-dimer equilibrium, and results from ultracentrifugation sedimentation studies and SDS-PAGE are consistent with dimers. All constructs are able to bind to surface-bound antigen under conditions in which only bivalent but not monovalent antibody fragments bind. The covalent bundle helix construct shows binding characteristics nearly identical to those of the much larger whole mouse antibody, resulting in substantially more stable immunoglobulin-antigen complexes than in the case of monovalent fragments. This modular design of natural and engineered protein domains directly leads to a boost of avidity, and it allows the construction of bispecific antibody fragments in functional form in E. coli.  相似文献   

3.
Morii T  Sato S  Hagihara M  Mori Y  Imoto K  Makino K 《Biochemistry》2002,41(7):2177-2183
We have employed a structure-based design to construct a small folding domain from the F-actin bundling protein villin that contains the amino acids necessary for the DNA binding of the basic leucine zipper protein GCN4 and have compared its DNA binding with GCN4. The monomeric motif folds into a stable domain and binds DNA in a rigid-body mechanism, while its affinity is not higher than that of the basic region peptide. The addition of the leucine zipper region to the folded domain restored its sequence-specific DNA binding comparable to that of GCN4. Unlike the monomeric folded domain, its leucine zipper derivative undergoes a conformational change upon DNA binding. CD spectral and thermodynamic studies indicate that the DNA-contacting region is folded in the presence or absence of DNA and suggest that the junction between the DNA-contacting and the leucine zipper regions transits to a helix in the presence of DNA. These results demonstrate that the structural transition outside the direct-contacting region, which adjusts the precise location of the DNA-contacting region, plays a critical role in the specific complex formation of basic leucine zipper proteins.  相似文献   

4.
Fluorescence resonance energy transfer (FRET) is a powerful technique to monitor protein-protein interaction. Recently, we developed homogeneous and noncompetitive immunoassay based on the enhanced FRET by leucine zipper interaction. Here we improved the assay by establishing a general method for preparation of the Fab'-based immunoconjugate. Anti-human serum albumin Fab' numbers 11 and 13 were chemically conjugated with recombinant proteins consisting of thioredoxin, flexible linker, and green fluorescent protein color variant tethered with a leucine zipper motif. Compared with single chain antibody variable region-based fusion proteins prepared by the gene fusion method in our previous study, the resultant Fab'-based immunoconjugates accomplished an assay with nearly 10 times greater sensitivity. Furthermore, the conjugation method enabled us to apply the assay generally to measurement of another high-molecular weight antigen for which antibodies prepared for sandwich immunoassay are commercially available. Because of the facility and generality of the preparation method for the immunoconjugate, the assay is expected to be applied to many antigens that require rapid diagnosis and moderate measurement range.  相似文献   

5.
6.
The structure of the antigen-binding fragment from the monoclonal antibody S64-4 in complex with a pentasaccharide bisphosphate fragment from chlamydial lipopolysaccharide has been determined by x-ray diffraction to 2.6 ? resolution. Like the well-characterized antibody S25-2, S64-4 displays a pocket formed by the residues of germline sequence corresponding to the heavy and light chain V gene segments that binds the terminal Kdo residue of the antigen; however, although S64-4 shares the same heavy chain V gene segment as S25-2, it has a different light chain V gene segment. The new light chain V gene segment codes for a combining site that displays greater affinity, different specificity, and allows a novel antigen conformation that brings a greater number of antigen residues into the combining site than possible in S25-2. Further, while antibodies in the S25-2 family use complementarity determining region (CDR) H3 to discriminate among antigens, S64-4 achieves its specificity via the new light chain V gene segment and resulting change in antigen conformation. These structures reveal an intriguing parallel strategy where two different combinations of germline-coded V gene segments can act as starting points for the generation of germline antibodies against chlamydial antigens and show how anti-carbohydrate antibodies can exploit the conformational flexibility of this class of antigens to achieve high affinity and specificity independently of CDR H3.  相似文献   

7.
The leucine zipper is a dimeric coiled-coil structural motif consisting of four to six heptad repeats, designated (abcdefg)(n). In the GCN4 leucine zipper, a position 16 in the third heptad is occupied by an Asn residue whereas the other a positions are Val residues. Recently, we have constructed variants of the GCN4 leucine zipper in which the a position Val residues were replaced by Ile. The folding and unfolding of the wild-type GCN4 leucine zipper and the Val to Ile variant both adhere to a simple two-state mechanism. In this study, another variant of the GCN4 leucine zipper was constructed by moving the single Asn residue from a position 16 to a position 9. This switch causes the thermal unfolding of the GCN4 leucine zipper to become three state. The unfolding pathway of this variant was determined by thermal denaturation, limited proteinase K digestion, and sedimentation equilibrium analysis. Our data are consistent with a model in which the variant first unfolds from its N terminus and changes the oligomerization specificity from a native dimer to a partially unfolded intermediate containing a mixture of dimers and trimers and then completely unfolds to unstructured monomers.  相似文献   

8.
A lambda light chain, isolated from an immunoglobulin G molecule, was found to reversibly precipitate at low temperatures. This cryoprecipitation was a function of pH, ionic strength, protein concentration, and time as well as temperature. The lambda chain underwent a cooperative conformational change as the temperature was lowered from 26 to 0 degrees C as judged by ultraviolet difference spectroscopy and circular dichroism. Normal lambda chains showed no conformational change. By difference spectroscopy it was possible to calculate the equilibrium constant governing the conformational change. The change was strongly exothermic (delta H approximately -80 kcal mol-1) and accompanied by a large decrease in entropy (delta S approximately -280 eu). The midpoint of the transition was dependent on the initial protein concentration, suggesting that only the noncovalent dimer of the lambda chain exhibited the conformational change. The existence of a monomer-dimer eqiulibrium (KA approximately 4 X 10(5) M-1) was confirmed by sedimentation velocity. No conformational change was observed by circular dichroism at concentrations where greater than 95% of lambda chain was in the form of a monomer. Although high ionic strength inhibited cryoprecipitation, it had no effect on the conformational change. Stabilization of the dimer by forming an interchain disulfide bond between two monomers abolished both the conformational change and cryoprecipitation. A fragment corresponding to the constant region was isolated from both peptic and tryptic digests of the lambda chain. This fragment neither cryoprecipitated nor showed temperature dependence conformational changes. It proved impossible to isolate a fragment corresponding to the variable region. Both qualitative and quantitative models are presented to account for the behavior of the lambda chain at low temperatures.  相似文献   

9.
Many pathogenic Gram-negative bacteria possess tripartite transporters that catalyze drug extrusion across the inner and outer membranes, thereby conferring resistance. These transporters consist of inner (IMP) and outer (OMP) membrane proteins, which are coupled by a periplasmic membrane fusion (MFP) protein. However, it is not know whether the MFP translocates the drug between the membranes, by acting as a channel, or whether it brings the IMP and OMP together, facilitating drug transfer. The MFP EmrA has an elongated periplasmic domain, which binds transported drugs, and is anchored to the inner membrane by a single alpha-helix, which contains a leucine zipper dimerization domain. Consistent with CD and hydrodynamic analyses, the periplasmic domain is predicted to be composed of a beta-sheet subdomain and an alpha-helical coiled-coil. We propose that EmrA forms a trimer in which the coiled-coils radiate across the periplasm, where they could sequester the OMP TolC. The "free" leucine zipper in the EmrA trimer might stabilize the interaction with the IMP EmrB, which also possesses leucine zipper motifs in the putative N- and C-terminal helices. The beta-sheet subdomain of EmrA would sit at the membrane surface adjacent to the EmrB, from which it receives the transported drug, inducing a conformational change that triggers the interaction with the OMP.  相似文献   

10.
DNA-induced increase in the alpha-helical content of C/EBP and GCN4   总被引:16,自引:0,他引:16  
Leucine zipper proteins comprise a recently identified class of DNA binding proteins that contain a bipartite structural motif consisting of a "leucine zipper" dimerization domain and a segment rich in basic residues responsible for DNA interaction. Protein fragments encompassing the zipper plus basic region domains (bZip) have previously been used to determine the conformational and dynamic properties of this motif. In the absence of DNA, the coiled-coil portion is alpha-helical and dimeric, whereas the basic region is flexible and partially disordered. Addition of DNA containing a specific recognition sequence induces a fully helical conformation in the basic regions of these fragments. However, the question remained whether the same conformational change would be observed in native bZip proteins where the basic regions might be stabilized in an alpha-helical conformation even in the absence of DNA, through interactions with portions of the protein not included in the bZip motif. We have now examined the DNA-induced conformational transition for an intact bZip protein, GCN4, and for the bZip fragment of C/EBP with two enhancers that are differentially symmetric. Our results are consistent with the induced helical fork model wherein the basic regions are largely flexible in the absence of DNA and become fully helical in the presence of the specific DNA recognition sequence.  相似文献   

11.
12.
An antibody subpopulation, anti high molecular weight (anti-HMW) kininogen-Ca2+ antibody able to bind specifically to the HMW kininogen-Ca2+ complex, was isolated from anti-HMW kininogen antiserum. Partially purified anti-HMW kininogen antibody was applied to a HMW kininogen-Sepharose column equilibrated with 40 mM tris(hydroxymethyl)aminomethane hydrochloride buffer, pH 7.5, containing 1.0 M NaCl and 1 mM CaCl2, and anti-HMW kininogen-Ca2+ antibody was eluted with 5 mM ethylenediaminetetraacetic acid. As a result of characterization by enzyme-linked immunosorbent assay, this antibody specifically recognized the cyanogen bromide cleaved fragment 1 (CB-1) region (1-160 amino acid sequence) of the heavy chain of kininogen molecules in the presence of Ca2+ or Mg2+. Furthermore, circular dichroism (CD) experiments showed that the conformational changes of HMW kininogen and heavy chain were induced by metal ions such as Ca2+ and Mg2+ and that these changes were due to the conformational change of the CB-1 region of the heavy chain. The dissociation constant (Kd) for the heavy chain-Ca2+ measured by CD analysis at 214 nm was found to be 0.33 +/- 0.09 mM (mean +/- SD). The number of Ca2+-binding sites of heavy chain calculated from the Hill plot was 1.15 +/- 0.04 (mean +/- SD). Then, a possible Ca2+-binding site was found in the amino-terminal portion of the heavy chain of kininogen molecules.  相似文献   

13.
A 33-residue pseudo-wild-type GCN4 leucine zipper peptide is used to probe the equilibrium conformational population in proteins. 13Calpha-NMR shows that chain sites differ in structural content at a given temperature, and that two dimeric folded forms are evident at many sites. Spin inversion transfer experiments are reported bearing on the thermodynamics and kinetics of interconversion of the two dimeric folded forms (Fa <--> Fb) at the 13Calpha-labeled position L13. At each temperature, at conditions wherein the population of unfolded chains is quite small, inversion of the Fa spins via a tuned Gaussian pi-pulse is followed by a time interval (tau), interrogation, and recording of the free induction decay. Fifteen such inversions, with varying tau, provide the time course for recovery of equilibrium magnetization after inversion. Similar experiments follow inversion of the Fb spins. Re-equilibration is known to be modulated by four first-order rate constants: two (T1a(-1) and T1b(-1)) for spin-lattice relaxation intrinsic to the respective sites, and two (kab and kba) for the conformational change. All four follow from joint, Bayesian analysis of all the data at each temperature. The equilibrium constant at each temperature for this local transition, determined simply from the equilibrium relative magnetizations at Fa and Fb sites, agrees well with the kinetic ratio kab/kba. The standard Gibbs energies, enthalpy, and entropy follow. Activation parameters, both ways, are accessible from the rate constants and suggest a transition state with high Gibbs energy and enthalpy, but with entropy between those of Fa and Fb.  相似文献   

14.
The N terminal domain of human apolipoprotein E3 (apoE3-NT) functions as a ligand for members of the low-density lipoprotein receptor (LDLR) family. Whereas lipid-free apoE3-NT adopts a stable four-helix bundle conformation, a lipid binding induced conformational change is required for LDLR recognition. To investigate the role of a leucine zipper motif identified in the helix bundle on lipid binding activity, three leucine residues in helix 2 (Leu63, Leu71 and Leu78) were replaced by alanine. Recombinant "leucine to alanine" (LA) apoE3-NT was produced in E. coli, isolated and characterized. Stability studies revealed a transition midpoint of guanidine hydrochloride induced denaturation of 2.7 M and 2.1 M for wild type (WT) and LA apoE3-NT, respectively. Results from fluorescent dye binding assays revealed that, compared to WT apoE3-NT, LA apoE3-NT has an increased content of solvent exposed hydrophobic surfaces. In phospholipid vesicle solubilization assays, LA apoE3-NT was more effective than WT apoE3-NT at inducing a time-dependent decrease in dimyristoylphosphatidylglycerol vesicle light scattering intensity. Likewise, in lipoprotein binding assays, LA apoE3-NT protected human low-density lipoprotein from phospholipase C induced aggregation to a greater extent than WT apoE3-NT. On the other hand, LA apoE3-NT and WT apoE3-NT were equivalent in terms of their ability to bind a soluble LDLR fragment. The results suggest that the leucine zipper motif confers stability to the apoE3-NT helix bundle state and may serve to modulate lipid binding activity of this domain and, thereby, influence the conformational transition associated with manifestation of LDLR binding activity.  相似文献   

15.
Human cytochrome P450 aromatase (P450arom) is responsible for biosynthesis of estrogens from androgens. Monoclonal antibody MAb3-2C2 to P450arom specifically binds to a conformational epitope and suppresses the enzyme activity in a dose-dependent manner. The crystal structure of the Fab fragment of MAb3-2C2 has been used to engineer a recombinant single chain antibody fragment (scFv) and a homodimeric variable domain of the light chain (VL(2)). These recombinant antibody fragments have been expressed in Escherichia coli and purified. Here, we show that the recombinant scFv suppresses P450arom activity with an IC(50) value similar to that of natural MAb3-2C2 F(ab')(2). The recombinant VL(2) also exhibits dose-dependent suppression of the P450arom activity, but at a reduced level, demonstrating that the homodimer is unable to fully mimic the complementarity determining region (CDR) of a variable heavy chain (VH)-VL heterodimer. We prepare and purify a stable complex of P450arom with MAb3-2C2 F(ab')(2) and show that the complex migrates and precipitates as a single molecular assembly. Efforts to crystallize P450arom for structure-function studies have yielded small single crystals. Our results suggest that formation of stable complexes with fragments of the monoclonal antibody could provide an alternative method for crystallization of P450arom.  相似文献   

16.
Expression cloning of cDNA by phage display selection.   总被引:2,自引:0,他引:2       下载免费PDF全文
J Light  R Maki    N Assa-Munt 《Nucleic acids research》1996,24(21):4367-4368
Expression cloning of a mouse kappa chain fragment has been achieved from a cDNA library by display of expressed proteins on filamentous phage and affinity selection for binding to anti-mouse Fab antibodies. Expressed proteins were anchored to the phage coat by a synthetic, anti-parallel leucine zipper, which had been selected from a semi-randomized zipper library for the ability to connect a test protein to phage. From a library of 4 x 10(6) transformants, two separate clones displaying different size cDNA inserts were recovered after four selection rounds. These results further demonstrate the utility of phage display for cDNA expression cloning.  相似文献   

17.
BACKGROUND: Elucidating the structural basis of antigen-antibody recognition ideally requires a structural comparison of free and complexed components. To this end we have studied a mouse monoclonal antibody, denoted 13B5, raised against p24, the capsid protein of HIV-1. We have previously described the first crystal structure of intact p24 as visualized in the Fab13B5-p24 complex. Here we report the structure of the uncomplexed Fab13B5 at 1.8 A resolution and analyze the Fab-p24 interface and the conformational changes occurring upon complex formation. RESULTS: Fab13B5 recognizes a nearly continuous epitope comprising a helix-turn-helix motif in the C-terminal domain of p24. Only 4 complementarity-determining regions (CDRs) are in contact with p24 with most interactions being by the heavy chain. Comparison of the free and complexed Fab reveals that structural changes upon binding are localized to a few side chains of CDR-H1 and -H2 but involve a larger, concerted displacement of CDR-H3. Antigen binding is also associated with an 8 degrees relative rotation of the heavy and light chain variable regions. In p24, small conformational changes localized to the turn between the two helices comprising the epitope result from Fab binding. CONCLUSIONS: The relatively small area of contact between Fab13B5 and p24 may be related to the fact that the epitope is a continuous peptide rather than a more complex protein surface and correlates with a relatively low affinity of antigen and antibody. Despite this, a significant quaternary structural change occurs in the Fab upon complex formation, with additional smaller adaptations of both antigen and antibody.  相似文献   

18.
To increase our understanding of the molecular basis for antibody specificity and for the cross-reactivity of antipeptide antibodies with native proteins, it is important to study the three-dimensional structure of antibody complexes with their peptide antigens. For this purpose it may not be necessary to solve the structure of the whole antibody complex but rather to concentrate on elucidating the combining site structure, the interactions of the antibody with its antigen, and the bound peptide conformation. To extract the information about antibody–peptide interactions and intramolecular interactions in the bound ligand from the complicated and unresolved spectrum of the Fab–peptide complex (Fab: antibody fragment made of Fv—the antibody fragment composed of the variable regions of the light and heavy chains forming a single combining site for the antigen—the light chain, and the first heavy chain constant regions), an nmr methodology based on measurements of two-dimensional transferred nuclear Overhauser effect (NOE) difference spectra was developed. Using this methodology the interactions of three monoclonal antibodies with a cholera toxin peptide were studied. The observed interactions were assigned to the antibody protons involved by specific deuteration of aromatic amino acids and specific chain labeling, and by using a predicted model for the structure of the antibody combining site. The assigned NOE interactions were translated to restraints on interproton distances in the complex that were used to dock the peptide into calculated models for the antibodies combining sites. Comparison of the interactions of three antibodies against a cholera toxin peptide (CTP3). which differ in their cross-reactivity with the toxin, yields information about the size and conformation of antigenic determinants recognized by the antibodies, the structure of their combining sites, and relationships between antibodies' primary structure and their interactions with peptide antigens. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
20.

It has been recently proposed that certain DNA binding proteins (including C/EBP, GCN4 and themyc, jun, andfos oncogene proteins) share a common structural motif based on helix-promoting regions containing heptad repeat sequences of leucines. It has been suggested that this structure is critical to the biological activity of these proteins, since it facilitates the formation of functional dimers held together by interdigitating leucine side-chains along the hydrophobic interfaces between long α-helical regions of the polypeptide chains in a configuration termed the “leucine zipper.” In this paper, conformational energy analysis is used to determine the preferred three-dimensional structures of the leucine repeat regions of these proteins. The results indicate that, in all cases, the global minimum energy conformation for these regions is an amphipathic α-helix with the leucine side-chains arrayed on one side in such a way to favor “leucine zipper” dimerization. Furthermore, amino acid substitutions in these regions (such as Pro for Leu), that are known to inhibit dimer formation and prevent DNA binding, are found to produce significant conformational changes that disrupt the amphipathic helical structure. Thus, these results provide support for the proposed “leucine zipper” configuration as a critical structural feature of this class of DNA binding proteins.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号