首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyridoxal 5'-phosphate (PLP, vitamin B6), a cofactor in many enzymatic reactions, has two distinct biosynthetic routes, which do not coexist in any organism. Two proteins, known as PdxS and PdxT, together form a PLP synthase in plants, fungi, archaea, and some eubacteria. PLP synthase is a heteromeric glutamine amidotransferase in which PdxT produces ammonia from glutamine and PdxS combines ammonia with five- and three-carbon phosphosugars to form PLP. In the 2.2-A crystal structure, PdxS is a cylindrical dodecamer of subunits having the classic (beta/alpha)8 barrel fold. PdxS subunits form two hexameric rings with the active sites positioned on the inside. The hexamer and dodecamer forms coexist in solution. A novel phosphate-binding site is suggested by bound sulfate. The sulfate and another bound molecule, methyl pentanediol, were used to model the substrate ribulose 5-phosphate, and to propose catalytic roles for residues in the active site. The distribution of conserved surfaces in the PdxS dodecamer was used to predict a docking site for the glutaminase partner, PdxT.  相似文献   

2.
Physiological role of glutaminase activity in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
The participation of glutaminase activity in glutamine degradation was studied in a wild-type strain (S288C) of Saccharomyces cerevisiae. Evidence is presented that this strain has two glutaminase activities, a readily extractable form (glutaminase B) and a membrane-bound enzyme (glutaminase A). Glutaminase A and B activities could also be distinguished by their thermostability, pyruvate sensitivity and pH optimum. Glutaminase B activity was negatively modulated by some 2-oxo acids, and in vivo pyruvate accumulation inhibited this activity. A mutant strain (CN10) with an altered glutaminase B activity was isolated and partially characterized. Its glutaminase B activity was more sensitive to inhibition by pyruvate and 2-oxoglutarate than the wild type, thus resulting in inactivation of this enzyme in vivo. The physiological role of glutaminase activity is discussed with regard to the phenotype shown by the mutant strain.  相似文献   

3.
Zein F  Zhang Y  Kang YN  Burns K  Begley TP  Ealick SE 《Biochemistry》2006,45(49):14609-14620
Pyridoxal 5'-phosphate (PLP) is the biologically active form of vitamin B6 and is an important cofactor for several of the enzymes involved in the metabolism of amine-containing natural products such as amino acids and amino sugars. The PLP synthase holoenzyme consists of two subunits: YaaD catalyzes the condensation of ribulose 5-phosphate, glyceraldehyde-3-phosphate, and ammonia, and YaaE catalyzes the production of ammonia from glutamine. Here we describe the structure of the PLP synthase complex (YaaD-YaaE) from Thermotoga maritima at 2.9 A resolution. This complex consists of a core of 12 YaaD monomers with 12 noninteracting YaaE monomers attached to the core. Compared with the previously published structure of PdxS (a YaaD ortholog in Geobacillus stearothermophilus), the N-terminus (1-18), which includes helix alpha0, the beta2-alpha2 loop (46-56), which includes new helix alpha2a, and the C-terminus (270-280) of YaaD are ordered in the complex but disordered in PdxS. A ribulose 5-phosphate is bound to YaaD via an imine with Lys82. Previous studies have demonstrated a similar imine at Lys149 and not at Lys81 (equivalent to Lys150 and Lys82 in T. maritima) for the Bacillus subtilis enzyme suggesting the possibility that two separate sites on YaaD are involved in PLP formation. A phosphate from the crystallization solution is found bound to YaaD and also serves as a marker for a possible second active site. An ammonia channel that connects the active site of YaaE with the ribulose 5-phosphate binding site was identified. This channel is similar to one found in imidazole glycerol phosphate synthase; however, when the beta-barrels of the two complexes are superimposed, the glutaminase domains are rotated by about 180 degrees with respect to each other.  相似文献   

4.
We present evidence thatRhizobium etli has two glutaminases differentiated by their thermostability and electrophoretic mobility. The thermostable glutaminase (B) is constitutive, in contrast with the thermolabile glutaminase (A), which is positively regulated by glutamine and negatively regulated by ammonium and by the carbon source. In distinction to glutaminase A, glutaminase B plays a minor role in the utilization of glutamine as a carbon source, but it may play a role in maintaining the balance of glutamine and glutamate. By complementation of theRhizobium etli LM16 mutant that lacks glutaminase A, we have cloned the gene that codes for this enzyme.  相似文献   

5.
6.
A mutant of Saccharomyces cerevisiae that lacks glutamate synthase (GOGAT) activity has been isolated. This mutant was obtained after chemical mutagenesis of a NADP-glutamate dehydrogenase-less mutant strain. The gdh gus mutant is a glutamate auxotroph. The genetic analysis of the gus mutant showed that the GOGAT-less phenotype is due to the presence of two loosely linked mutations. Evidence is presented which suggests the possibility that S. cerevisiae has two GOGAT activities, designated GOGAT A and GOGAT B. These activities can be distinguished by their pH optima and by their regulation by glutamate. Furthermore, one of the mutations responsible for the GOGAT-less phenotype affected GOGAT A activity, while the other mutation affected GOGAT B activity.  相似文献   

7.
In the absence of phosphate, purified rat renal phosphate-dependent glutaminase exists as a catalytically inactive protomer. The addition of phosphate results in both dimerization and activation of the glutaminase. Covalent attachment of the dimeric form of the glutaminase to CNBr-activated Sepharose was achieved with 84% retention of activity. At least 70% of the bound glutaminase activity was expressed even in the absence of added phosphate. In addition, 6-diazo-5-oxo-L-norleucine, which interacts only with the catalytically active form of the glutaminase, inactivates the bound dimeric form of glutaminase at the same rate in either the absence or the presence of added phosphate. Therefore retention of dimeric structure is apparently sufficient to maintain glutaminase activity. In contrast, the coupling of the protomeric form of the enzyme to Sepharose resulted in retention of only 3% of the phosphate-induced glutaminase activity. However, up to 48% of this activity could be reconstituted by addition of soluble glutaminase under conditions that promote dimerization. These results indicate that the monomeric form of the glutaminase has minimal inherent activity and that dimerization is an essential step in the phosphate-induced activation of the glutaminase.  相似文献   

8.
Dempsey, Walter B. (University of Florida, Gainesville). Synthesis of pyridoxine by a pyridoxal auxotroph of Escherichia coli. J. Bacteriol. 92:333-337. 1966.-A pyridoxal auxotroph of Escherichia coli B produced pyridoxol and pyridoxol 5'-phosphate during starvation for pyridoxal. The identification of these compounds was made both by bioassay and by ion-exchange chromatography. Pyridoxol 5'-phosphate oxidase activity was absent in extracts of the auxotroph. The rate of synthesis of total pyridoxine by a pyridoxal-starved culture of this auxotroph was 6.0 x 10(-6) moles per mg per hr. Cellular content of pyridoxine was constant at 4.0 x 10(-10) moles/mg.  相似文献   

9.
Comparative pathogenicity of auxotrophic mutants of Candida albicans   总被引:11,自引:0,他引:11  
An induced mutant of Candida albicans with greatly decreased virulence for mice is described. The mutant was one of five auxotrophic mutants obtained by ultraviolet irradiation of a clinical isolate (strain MY 1044). The five mutants included two methionine auxotrophs, one methionine-cysteine auxotroph, one temperature-sensitive serine auxotroph, and one auxotroph with unknown growth requirements. Each of the mutants produced normal mycelium and had a normal profile of susceptibility to four antifungal drugs. The virulence of each mutant was compared with the parent strain by LD50 determination in mice. Four of the five auxotrophs exhibited LD50's that were not significantly different from the parent strain (mean LD50 = 7.5 x 10(5) cells). However, the temperature-sensitive serine auxotroph was significantly less virulent than the parent strain (LD50 greater than 10(7) cells), even though it grew well in vivo and in mouse serum at 37 degrees C in vitro. Use of this mutant in conjunction with its "isogenic" parent should help to elucidate true virulence factors in C. albicans.  相似文献   

10.
Several substrate analogs were tested for their ability to inhibit bovine pancreatic asparagine synthetase. Of the substrate analogs tested both 6-diazo-5-oxo-L-norleucine (DON) and 5-chloro-4-oxo-L-norvaline (CONV) were shown to inhibit the enzyme strongly. DON inhibited the glutaminase and glutamine-dependent asparagine synthetase activities and CONV inhibited the ammonia-dependent activity as well. Both of these inhibitors appeared to be relatively tight binding since desalting failed to remove the inhibition. The inactivation of bovine pancreatic asparagine synthetase by DON is accompanied by a shift from a 47,000 molecular weight monomer to a 96,000 molecular weight dimer as observed by HPLC gel filtration chromatography. This DON-induced shift is prevented by the presence of the substrate glutamine. A monoclonal antibody known to inhibit specifically the ammonia-dependent and glutamine-dependent asparagine synthetase activities but not glutaminase (monoclonal antibody 2B4) binds to both the monomer and the dimer forms of untreated enzyme, as well as to the dimer form of the DON-inactivated enzyme. On the other hand, a monoclonal antibody known to inhibit specifically the glutaminase and glutamine-dependent activities and not the ammonia-dependent asparagine synthetase (monoclonal antibody 5A6) binds to both forms of untreated enzyme but cannot bind to the DON-inactivated enzyme. These data are used to describe the relation of regions of the active site of asparagine synthetase in relation to antibody binding sites.  相似文献   

11.
以黄色短杆菌BF420为出发菌株,经过紫外线和亚硝基胍(NTG)复合诱变处理后,获得一株甲硫氨酸缺陷(Met-)及抗α-氨基丁酸(α-AB)的L-异亮氨酸产生菌BM2610,该菌株在未进行优化的发酵条件下能够积累L-异亮氨酸的量为7.12g.L-1,比出发菌株BF420提高了122.5%。  相似文献   

12.
With the advent of HIV and the widespread emergence of drug-resistant strains of Mycobacterium tuberculosis, newer control strategies in the form of a better vaccine could decrease the global incidence of tuberculosis. A desirable trait in an effective live attenuated vaccine strain is an ability to persist within the host in a limited fashion in order to produce important protective antigens in vivo. Attenuated M. tuberculosis vaccine candidates have been constructed by deleting genes required for growth in mice. These candidate vaccines did not elicit adequate protective immunity in animal models, due to their inability to persist sufficiently long within the host tissues. Here we report that an auxotrophic mutant of M. tuberculosis defective in the de novo biosynthesis of pantothenic acid (vitamin B5) is highly attenuated in immunocompromised SCID mice and in immunocompetent BALB/c mice. SCID mice infected with the pantothenate auxotroph survived significantly longer (250 days) than mice infected with either bacille Calmette-Guerin (BCG) vaccine or virulent M. tuberculosis (77 and 35 days, respectively). Subcutaneous immunization with this auxotroph conferred protection in C57BL/6J mice against an aerosol challenge with virulent M. tuberculosis, which was comparable with that afforded by BCG vaccination. Our findings highlight the importance of de novo pantothenate biosynthesis in limiting the intracellular survival and pathogenesis of M. tuberculosis without reducing its immunogenicity in vaccinated mice.  相似文献   

13.
Vitamin B6 is an essential nutrient in the human diet. It can act as a co-enzyme for numerous metabolic enzymes and has recently been shown to be a potent antioxidant. Plants and microorganisms have the ability to make the compound. Yet, studies of vitamin B6 biosynthesis have been mainly restricted to Escherichia coli, where the vitamin is synthesized from 1-deoxy-d -xylulose 5-phosphate and 4-phosphohydroxy-l-threonine. Recently, a novel pathway for its synthesis has been discovered, involving two genes (PDX1 and PDX2) neither of which is homologous to any of those participating in the E. coli pathway. In Bacillus subtilis, YaaD and YaaE represent the PDX1 and PDX2 homolog, respectively. The two proteins form a complex that functions as a glutamine amidotransferase, with YaaE as the glutaminase domain and YaaD as the acceptor and pyridoxal 5'-phosphate (PLP) synthesis domain. In this report we corroborate a recent report on the identification of the substrates of YaaD and provide unequivocal proof of the identity of the reaction product. We show that both the glutaminase and synthase reactions are dependent on the respective protein partner. The synthase reaction can also utilize an external ammonium source but, in contrast to other glutamine amidotransferases, is dependent on YaaE under certain conditions. Furthermore, we report on the detailed characterization of the inhibition of the glutaminase domain, and thus PLP synthesis, by the glutamine analog acivicin. Employing pull-out assays and native-PAGE, we provide evidence for the dissociation of the bi-enzyme complex under these conditions. The results are discussed in light of the nature of the interaction of the two components of the enzyme complex.  相似文献   

14.
15.
The human gene that encodes the kidney-type glutaminase (KGA) spans 84-kb, contains 19 exons, and encodes two alternatively spliced mRNAs. Various segments of the rat KGA cDNA were PCR amplified and cloned into a bacterial expression vector to determine whether the N- and C- terminal ends of the glutaminase protein were essential for activity. A recombinant glutaminase, lacking the coding sequence contained in exon 1, was found to be fully active. In contrast, proteins that lacked sequences from exons 1 and 2 and exons 1-3 were inactive. An additional construct that corresponded to the sequence encoded by exons 2-14 also retained full activity. Both of the fully active, truncated proteins were purified to apparent homogeneity using an incorporated N-terminal His(6)-tag and Ni(2+)-affinity chromatography. The K(M) values for glutamine of the native and recombinant forms of glutaminase were nearly identical. However, the two truncated forms of the glutaminase exhibit the characteristic phosphate activation profile only when dialyzed into a buffer lacking phosphate. Dialysis versus 10mM Tris-phosphate was sufficient to form an active tetramer. Thus, the deleted N-terminal sequence may contribute to the phosphate-dependent oligomerization and activation of the native glutaminase.  相似文献   

16.
The pathway for de novo vitamin B(6) biosynthesis has been characterized in Escherichia coli, however plants, fungi, archaebacteria, and most bacteria utilize an alternative pathway. Two unique genes of the alternative pathway, PDX1 and PDX2, have been described. PDX2 encodes a glutaminase, however the enzymatic function of the product encoded by PDX1 is not known. We conducted reciprocal transformation experiments to determine if there was functional homology between the E. coli pdxA and pdxJ genes and PDX1 of Cercospora nicotianae. Although expression of pdxJ and pdxA in C. nicotianae pdx1 mutants, either separately or together, failed to complement the pyridoxine mutation in this fungus, expression of PDX1 restored pyridoxine prototrophy to the E. coli pdxJ mutant. Expression of PDX1 in the E. coli pdxA mutant restored very limited ability to grow on medium lacking pyridoxine. We conclude that the PDX1 gene of the alternative B(6) pathway encodes a protein responsible for synthesis of the pyridoxine ring.  相似文献   

17.
A pleiotropic mutant of Paracoccus denitrificans, which has a severe defect that affects its anaerobic growth when either nitrate, nitrite, or nitrous oxide is used as the terminal electron acceptor and which is also unable to use ethanolamine as a carbon and energy source for aerobic growth, was isolated. This phenotype of the mutant is expressed only during growth on minimal media and can be reversed by addition of cobalamin (vitamin B(12)) or cobinamide to the media or by growth on rich media. Sequence analysis revealed the mutation causing this phenotype to be in a gene homologous to cobK of Pseudomonas denitrificans, which encodes precorrin-6x reductase of the cobalamin biosynthesis pathway. Convergently transcribed with cobK is a gene homologous to cobJ of Pseudomonas denitrificans, which encodes precorrin-3b methyltransferase. The inability of the cobalamin auxotroph to grow aerobically on ethanolamine implies that wild-type P. denitrificans (which can grow on ethanolamine) expresses a cobalamin-dependent ethanolamine ammonia lyase and that this organism synthesizes cobalamin under both aerobic and anaerobic growth conditions. Comparison of the cobK and cobJ genes with their orthologues suggests that P. denitrificans uses the aerobic pathway for cobalamin synthesis. It is paradoxical that under anaerobic growth conditions, P. denitrificans appears to use the aerobic (oxygen-requiring) pathway for cobalamin synthesis. Anaerobic growth of the cobalamin auxotroph could be restored by the addition of deoxyribonucleosides to minimal media. These observations provide evidence that P. denitrificans expresses a cobalamin-dependent ribonucleotide reductase, which is essential for growth only under anaerobic conditions.  相似文献   

18.
The structural gene (TMP1) for yeast thymidylate synthetase (thymidylate synthase; EC 2.1.1.45) was isolated from a chimeric plasmid bank by genetic complementation in Saccharomyces cerevisiae. Retransformation of the dTMP auxotroph GY712 and a temperature-sensitive mutant (cdc21) with purified plasmid (pTL1) yielded Tmp+ transformants at high frequency. In addition, the plasmid was tested for the ability to complement a bacterial thyA mutant that lacks functional thymidylate synthetase. Although it was not possible to select Thy+ transformants directly, it was found that all pTL1 transformants were phenotypically Thy+ after several generations of growth in nonselective conditions. Thus, yeast thymidylate synthetase is biologically active in Escherichia coli. Thymidylate synthetase was assayed in yeast cell lysates by high-pressure liquid chromatography to monitor the conversion of [6-3H]dUMP to [6-3H]dTMP. In protein extracts from the thymidylate auxotroph (tmp1-6) enzymatic conversion of dUMP to dTMP was barely detectable. Lysates of pTL1 transformants of this strain, however, had thymidylate synthetase activity that was comparable to that of the wild-type strain.  相似文献   

19.
Glutaminases belong to the large superfamily of serine-dependent beta-lactamases and penicillin-binding proteins, and they catalyze the hydrolytic deamidation of L-glutamine to L-glutamate. In this work, we purified and biochemically characterized four predicted glutaminases from Escherichia coli (YbaS and YneH) and Bacillus subtilis (YlaM and YbgJ). The proteins demonstrated strict specificity to L-glutamine and did not hydrolyze D-glutamine or L-asparagine. In each organism, one glutaminase showed higher affinity to glutamine ( E. coli YbaS and B. subtilis YlaM; K m 7.3 and 7.6 mM, respectively) than the second glutaminase ( E. coli YneH and B. subtilis YbgJ; K m 27.6 and 30.6 mM, respectively). The crystal structures of the E. coli YbaS and the B. subtilis YbgJ revealed the presence of a classical beta-lactamase-like fold and conservation of several key catalytic residues of beta-lactamases (Ser74, Lys77, Asn126, Lys268, and Ser269 in YbgJ). Alanine replacement mutagenesis demonstrated that most of the conserved residues located in the putative glutaminase catalytic site are essential for activity. The crystal structure of the YbgJ complex with the glutaminase inhibitor 6-diazo-5-oxo- l-norleucine revealed the presence of a covalent bond between the inhibitor and the hydroxyl oxygen of Ser74, providing evidence that Ser74 is the primary catalytic nucleophile and that the glutaminase reaction proceeds through formation of an enzyme-glutamyl intermediate. Growth experiments with the E. coli glutaminase deletion strains revealed that YneH is involved in the assimilation of l-glutamine as a sole source of carbon and nitrogen and suggested that both glutaminases (YbaS and YneH) also contribute to acid resistance in E. coli.  相似文献   

20.
K. LI AND T.P. WEST. 1995. Two uracil auxotrophs of the phytopathogen Burkholderia cepacia ATCC 25416, which is known to be involved in food spoilage, were isolated by a combination of ethylmethane sulphonate and D-cycloserine counterselection. One mutant exhibited depressed orotate phosphoribosyltransferase activity while the other mutant lacked orotidine 5'-monophosphate decarboxylase activity. Pyrimidine limitation of either auxotroph elevated aspartate transcarbamoylase and dihydroorotase activities by at least 1.5-fold indicating that these pathway enzymes may be repressible by a uracil-related compound in B. cepacia . Overall, regulation of de novo pyrimidine synthesis in the uracil auxotrophs of B. cepacia ATCC 25416 was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号