首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of various bioactive sphingolipids (sphingosine 1-phosphate, sphingosine 1-phosphocholine, ceramide 1-phosphate, ceramide -glucoside and -lactoside, and gangliosides) on cell proliferation and apoptosis are reviewed. It is concluded that the balance between the bioeffector sphingolipids determines their overall effect on cell.  相似文献   

2.
This review highlights the literature on the effects of biologically active sphingolipids (sphingosine, ceramide, sphingomyelin, glucosylceramide, gangliosides GM1, GM2, GM3, GD3, etc.) on proliferation, apoptosis, metastases, and invasiveness of tumor cells and the putative role of sphingolipids in chemotherapy of malignant tumors.  相似文献   

3.
Sphingolipids are ubiquitous in all eukaryotic organisms. Various physiological functions of dietary sphingolipids, such as preventing colon cancer and improving the skin barrier function, have been recently reported. One of the common sphingolipids used as a foodstuff is glucosylceramide from plant sources, which is composed of sphingoid bases distinct from those of mammals. However, the fate of dietary sphingolipids derived from plants is still not understood. In this study, we investigated the absorption of maize glucosylceramide in the rat intestine using a lipid absorption assay of lymph from the thoracic duct. The free and complex forms of trans-4,cis-8-sphingadienine, the predominant sphingoid base of maize glucosylceramide, were found in the lymph after administration of maize glucosylceramide. This plant type of sphingoid base was detected in the ceramide fraction and N-palmitoyl-4,8-sphingadienine (C16:0-d18:2) and N-tricosanoyl-4,8-sphingadienine (C23:0-d18:2) were identified by LC-MS/MS. The cumulative recovery of 4t,8c-sphingadienine in the lymph was very low. These results indicate that dietary glucosylceramide originating from higher plants is slightly absorbed in the intestine and is incorporated into ceramide structures in the intestinal cells. However, it appears that the intact form of sphingoid bases is not reutilized well in the tissues.  相似文献   

4.
Fumonisin B1 is a mycotoxin produced by Fusarium moniliforme, a common fungus in corn. It is known to cause a variety of diseases, including hepatic and renal degeneration in many species of laboratory and domestic animals. The known biochemical events in fumonisin B1 toxicity involve inhibition of ceramide synthase leading to disruption of sphingolipid metabolism. The effect of fumonisin B1 on ceramide and more complex sphingolipids in mice is not known. Groups of five male BALB/c mice each were injected with fumonisin B1 subcutaneously at doses of 0, 0.25, 0.75, 2.25, and 6.75 mg/kg body weight daily for 5 days. This protocol has been shown to produce a dose-dependent increase in apoptosis in liver and kidney of these animals. In the present study, liver, kidney, and brain were sampled and analyzed for free sphingoid bases and complex sphingolipids one day after the last treatment. A dose-related accumulation of free sphinganine and sphingosine was observed in liver and kidney, but not brain. The maximal increase in free sphinganine in kidney was 10-fold greater than in liver. Total phospholipids increased only in liver, whereas ceramide levels were not consistently altered in liver, kidney, or brain. In liver and kidney, fumonisin B1 treatment increased the sphinganine-containing complex sphingolipids, but no effect was observed on sphingosine-containing complex sphingolipids. No changes in complex sphingolipids were observed in brain. In liver, there was a close correlation between the extent of free sphinganine accumulation, and apoptosis and hepatopathy. This correlation was also evident in kidney but to a lessor extent. Nonetheless, the apoptosis and nephropathy occurred with little or no change in the levels of ceramide or more complex sphingolipids. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 281–289, 1998  相似文献   

5.
Abstract

Sphingolipids represent an important class of bioactive signaling lipids which have key roles in numerous cellular processes. Over the last few decades, the levels of bioactive sphingolipids and/or their metabolizing enzymes have been realized to be important factors involved in disease development and progression, most notably in cancer. Targeting sphingolipid-metabolizing enzymes in disease states has been the focus of many studies and has resulted in a number of pharmacological inhibitors, with some making it into the clinic as therapeutics. In order to better understand the regulation of sphingolipid-metabolizing enzymes as well as to develop much more potent and specific inhibitors, the field of sphingolipids has recently taken a turn toward structural biology. The last decade has seen the structural determination of a number of sphingolipid enzymes and effector proteins. In these terms, one of the most complete arms of the sphingolipid pathway is the sphingosine-1-phosphate (S1P) arm. The structures of proteins involved in the function and regulation of S1P are being used to investigate further the regulation of said proteins as well as in the design and development of inhibitors as potential therapeutics.  相似文献   

6.
Alterations in lipid metabolism may contribute to diabetic complications. Sphingolipids are essential components of cell membranes and have essential roles in homeostasis and in the initiation and progression of disease. However, the role of sphingolipids in type 1 diabetes remains largely unexplored. Therefore, we sought to quantify sphingolipid metabolites by LC-MS/MS from two animal models of type 1 diabetes (streptozotocin-induced diabetic rats and Ins2(Akita) diabetic mice) to identify putative therapeutic targets and biomarkers. The results reveal that sphingosine-1-phosphate (So1P) is elevated in both diabetic models in comparison to respective control animals. In addition, diabetic animals demonstrated reductions in plasma levels of omega-9 24:1 (nervonic acid)-containing ceramide, sphingomyelin, and cerebrosides. Reduction of 24:1-esterfied sphingolipids was also observed in liver and heart. Nutritional stress via a high-fat diet also reduced 24:1 content in the plasma and liver of mice, exacerbating the decrease in some cases where diabetes was also present. Subcutaneous insulin corrected both circulating So1P and 24:1 levels in the murine diabetic model. Thus, changes in circulating sphingolipids, as evidenced by an increase in bioactive So1P and a reduction in cardio- and neuro-protective omega-9 esterified sphingolipids, may serve as biomarkers for type 1 diabetes and represent novel therapeutic targets.  相似文献   

7.
胰岛素抵抗是Ⅱ型糖尿病的病理基础之一,近年来已成为Ⅱ型糖尿病研究的关键和热点.众多研究发现,机体内鞘脂类物质水平的改变直接影响胰岛素信号的强弱.神经酰胺和神经节苷脂GM3对胰岛素信号具有负向调控作用,介导胰岛素抵抗的形成,该调节效应依赖于细胞膜上微囊蛋白.1-磷酸鞘氨醇则通过氧化还原途径增强胰岛素信号.微囊蛋白功能性活动和1-磷酸鞘氨醇的介导作用均与钙信号相关,因此,可通过实时检测细胞外钙内流和细胞内钙瞬间变化,从离子通道水平进一步探索鞘脂类调节胰岛素信号的相关机制.本文综述了鞘脂类物质调控胰岛素信号的机制,干预鞘脂类水平和改善胰岛素抵抗的策略,将为鞘脂类物质在Ⅱ型糖尿病预防和治疗的研究及应用提供有力的帮助.  相似文献   

8.
For several decades, lipid biologists have investigated how sphingolipids contribute to physiology, cell biology, and cell fate. Foremost among these discoveries is the finding that the bioactive sphingolipids ceramide, sphingosine, and sphingosine-1-phosphate (S1P) have diverse and often opposing effects on cell fate. Interestingly, these bioactive sphingolipids can be interconverted by just a few enzymatic reactions. Therefore, much attention has been paid to the enzymes which govern these reactions with a disproportionate amount of focus on the enzyme sphingosine kinase 1 (SK1). Several studies have found that tissue expression of SK1 correlates with cancer stage, chemotherapy response, and tumor aggressiveness. In addition, overexpression of SK1 in multiple cancer cell lines increases their resistance to chemotherapy, promotes proliferation, allows for anchorage independent growth, and increases local angiogenesis. Inhibition of SK1 using either pharmacological inhibitors or by crossing SK1 null mice has shown promise in many xenograft models of cancer, as well as several genetic and chemically induced mouse models of carcinogenesis. Here, we review the majority of the evidence that suggests SK1 is a promising target for the prevention and/or treatment of various cancers. Also, we strongly advocate for further research into basic mechanisms of bioactive sphingolipid signaling, and an increased focus on the efficacy of SK inhibitors in non-xenograft models of cancer progression.  相似文献   

9.
Apoptosis and autophagy are two evolutionarily conserved processes that maintain homeostasis during stress. Although the two pathways utilize fundamentally distinct machinery, apoptosis and autophagy are highly interconnected and share many key regulators. The crosstalk between apoptosis and autophagy is complex, as autophagy can function to promote cell survival or cell death under various cellular conditions. The molecular mechanisms of crosstalk are beginning to be elucidated and have critical implications for the treatment of various diseases, such as cancer. Sphingolipids are a class of bioactive lipids that mediate many key cellular processes, including apoptosis and autophagy. By targeting several of the shared regulators, sphingolipid metabolites differentially regulate the induction of apoptosis and autophagy. Importantly, individual sphingolipid species appear to “switch” autophagy toward cell survival (e.g., sphingosine-1-phosphate) or cell death (e.g., ceramide, gangliosides). This review assesses the current understanding of sphingolipid-induced apoptosis and autophagy to address how sphingolipids mediate the “switch” between the cell survival and cell death. As sphingolipid metabolism is frequently dysregulated in cancer, sphingolipid-modulating agents, or sphingomimetics, have emerged as a novel chemotherapeutic strategy. Ultimately, a greater understanding of sphingolipid-mediated crosstalk between apoptosis and autophagy may be critical for enhancing the chemotherapeutic efficacy of these agents.  相似文献   

10.
We used a HPLC-MS/MS methodology for determination of a basic metabolomic profile (18:1,18:0 sphingoid backbone, C14-C26 N-acyl part) of “normal” sphingolipid levels in human serum and plasma. Blood was collected from healthy males and nonpregnant females under fasting and nonfasting conditions with and without anticoagulants. Sphingolipids analyzed included sphingoid bases, sphingosine and dihydrosphingosine, their 1-phosphates (S1P and dhS1P), molecular species (Cn-) of ceramide (Cer), sphingomyelin (SM), hexosylceramide (HexCer), lactosylceramide (LacCer), and Cer 1-phosphate (Cer1P). SM, LacCer, HexCer, Cer, and Cer1P constituted 87.7, 5.8, 3.4, 2.8, and 0.15% of total sphingolipids, respectively. The abundant circulating SM was C16-SM (64.0 µM), and it increased with fasting (100 µM). The abundant LacCer was C16-LacCer (10.0 µM) and the abundant HexCer was C24-HexCer (2.5 µM). The abundant Cer, C24-Cer (4.0 µM), was not influenced by fasting; however, levels of C16-C20 Cers were decreased in response to fasting. S1P levels were higher in serum than plasma (0.68 µM vs. 0.32 µM). We also determined levels of sphingoid bases and SM species in isolated lipoprotein classes. HDL3 was the major carrier of S1P, dhS1P, and Sph, and LDL was the major carrier of Cer and dhSph. Per particle, VLDL contained the highest levels of SM, Cer, and S1P. HPLC-MS/MS should provide a tool for clinical testing of circulating bioactive sphingolipids in human blood.  相似文献   

11.
Lysosomal storage disorders are inborn diseases resulting from the lack or activity of lysosomal hydrolases, transporters, or integral membrane proteins. Although most of the genes encoding these proteins have been characterized and many gene defects identified, the molecular bases underlying the pathophysiology of these genetic diseases still remain obscure. In this mini-review, the potential role of apoptotic cell death in the development of the cellular and tissue lesions seen in lysosomal storage disorders, and particularly in neurological diseases, is discussed. A list of observations documenting either a decrease or an exacerbation in apoptosis induction are presented. The putative, yet controversial contribution of certain sphingolipids and cathepsins in the regulation of these phenomena is emphasized.  相似文献   

12.
Aiming to investigate the possible production of ceramide-1-phosphate from complex sphingolipid metabolism in neurons, we administered radiolabeled sphingolipids to cerebellar granule cells and inspected the formation of labeled ceramide-1-phosphate in different experimental conditions. We report that differentiated granule cells are capable to form Cer-1-P via ceramide derived from SM degradation at the plasma membrane level. Moreover we observed that ceramide-1-phosphate can be also produced from a metabolic pathway not involving SM degradation. In particular, we obtained evidence that ceramide, synthesized via the recycling of sphingosine produced from ganglioside catabolism, can also be the precursor of ceramide-1-phosphate. We also found that undifferentiated and differentiated granule cells display different capacities to phosphorylate Cer produced by the two different metabolic pathways. The results here obtained demonstrate that cerebellar neurons are able to metabolically produce ceramide-1-phosphate and support that this molecule may serve a potential role in sphingoid-mediated signaling in the nervous system.  相似文献   

13.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that regulates diverse biological processes by binding to a family of G protein-coupled receptors or as an intracellular second messenger. Mammalian S1P phosphatase (SPP-1), which degrades S1P to terminate its actions, was recently cloned based on homology to a lipid phosphohydrolase that regulates the levels of phosphorylated sphingoid bases in yeast. Confocal microscopy surprisingly revealed that epitope-tagged SPP-1 is intracellular and colocalized with the ER marker calnexin. Moreover, SPP-1 activity and protein appeared to be mainly enriched in the intracellular membranes with lower expression in the plasma membrane. Treatment of SPP-1 transfectants with S1P markedly increased ceramide levels, predominantly in the intracellular membranes, diminished survival, and enhanced apoptosis. Remarkably, dihydro-S1P, although a good substrate for SPP-1 in situ, did not cause significant ceramide accumulation or increase apoptosis. Ceramide accumulation induced by S1P was completely blocked by fumonisin B1, an inhibitor of ceramide synthase, but only partially reduced by myriocin, an inhibitor of serine palmitoyltransferase, the first committed step in de novo synthesis of ceramide. Furthermore, S1P, but not dihydro-S1P, stimulated incorporation of [3H]palmitate, a substrate for both serine palmitoyltransferase and ceramide synthase, into C16-ceramide. Collectively, our results suggest that SPP-1 functions in an unprecedented manner to regulate sphingolipid biosynthesis and is poised to influence cell fate.  相似文献   

14.
目的:建立生物样品中鞘氨醇激酶(SPK)活性和1-磷酸鞘氨醇(S1P)含量的测定方法.方法:用Flag标记的SPK基因表达载体转染ECV304细胞,用Western blot方法检测转染后SPK基因的表达,用酶促反应、同住素掺入和薄层层析的方法检测SPK的活性.提取细胞或组织的S1P,碱性磷酸酶消化去除磷酸根,然后利用SPK的催化活性和同位素标记的方法对S1P进行定量.结果:转染基因后细胞的SPK表达明显升高,活性显著增强,细胞内S1P的含量也明显增多.肝细胞生长因子(HGF)刺激能增强ECV304细胞SPK的活性和细胞内S1P水平.结论:建立了SPK活性和S1P含量的测定方法.  相似文献   

15.
Kim TJ  Mitsutake S  Kato M  Igarashi Y 《FEBS letters》2005,579(20):4383-4388
Ceramide kinase (CERK) converts ceramide (Cer) to ceramide-1-phosphate (C1P), a newly recognized bioactive molecule capable of regulating diverse cellular functions. The N-terminus of the CERK protein encompasses a sequence motif known as a pleckstrin homology (PH) domain. However, little is known regarding the functional roles of this domain in CERK. In this study, we have demonstrated that the PH domain of CERK is essential for its enzyme activity. Using site-directed mutagenesis, we have further determined that Leu10 in the PH domain has an important role in CERK activity. Replacing this residue with a neutral alanine or isoleucine, caused a dramatic decrease in CERK activity to 1% and 29%, respectively, compared to CERK, but had no effect on substrate affinity. The study presented here suggests that the PH domain of CERK is not only indispensable for its activity but also act as a regulator of CERK activity.  相似文献   

16.
Ceramide (Cer) is the precursor for sphingolipids and functions as a second messenger in a variety of cellular processes including apoptosis. However, no direct target of Cer leading to apoptosis has been identified. Understanding the movement and trafficking of Cer is important for fully understanding Cer signaling. In this study, we identified, for the first time, the transbilayer movement of Cer in the plasma membrane (PM) of living cells. We developed a new method to monitor transbilayer Cer movement using ceramide kinase activity. To produce Cer on the extracellular leaflet of the PM, bacterial sphingomyelinase (SMase) was added to rat basophilic leukemia cells. Interestingly, the dramatic elevation of ceramide 1-phosphate (C1P), the product of CerK, was observed following the increase of Cer induced by SMase treatment. Since we determined that both the protein and catalytic activity of CerK exists in the intracellular compartment, the all conversion of Cer to C1P by CerK should be occur intracellularly. This result indicates the rapid transbilayer movement of Cer from the outer leaflet to the inner leaflet of the PM of living cells. Furthermore, protease digestion of membrane proteins, inhibition of ABC transporters (by glibencramide) and of cation channels (by carbonyl cyanide m-chlorophenylhydrozone), and modification of cholesterol content did not affect the transbilayer movement of Cer. Thus, this movement might occur spontaneously. Our findings indicate not only Cer movement in the PM, but also identify an intrinsic property of Cer enabling Cer signaling.  相似文献   

17.
18.
19.
Sphingosine kinases (SphKs) and ceramide kinase (CerK) phosphorylate sphingosine to sphingosine-1-phosphate (S1P) and ceramide to ceramide-1-phosphate (C1P), respectively. S1P and C1P are bioactive lipids that regulate cell fate/function and human health/diseases. The translocation and activity of SphK1 are regulated by its phosphorylation of Ser 225 and by anionic lipids such as phosphatidic acid and phosphatidylserine. However, the roles of another anionic lipid C1P on SphK1 functions have not yet been elucidated, thus, we here investigated the regulation of SphK1 by CerK/C1P. C1P concentration dependently bound with and activated recombinant human SphK1. The inhibition of CerK reduced the phorbol 12-myristate 13-acetate-induced translocation of SphK1 to the plasma membrane (PM) and activation of the enzyme in membrane fractions of cells. A treatment with C1P translocated wild-type SphK1, but not the SphK1-S225A mutant, to the PM without affecting phosphorylation signaling. A cationic RxRH sequence is proposed to be a C1P-binding motif in α-type cytosolic phospholipase A 2 and tumor necrosis factor α-converting enzyme. The mutation of four cationic amino acids to Ala in the 56-RRNHAR-61 domain in SphK1 reduced the phorbol 12-myristate 13-acetate- and C1P-induced translocation of SphK1 to the PM, however, the capacity of C1P to bind with and activate SphK1 was not affected by this mutation. In conclusion, C1P modulates SphK1 functions by interacting with multiple sites in SphK1.  相似文献   

20.
In a previous study, we synthesized a novel inhibitor of ceramide kinase, K1. In this study, we determined that inhibition by K1 is non-competitive and that four intact six-membered rings are important to the inhibitory activity. Furthermore, we identified an effective in vivo concentration for K1, at which it did not influence any cellular lipid synthesis other than that of ceramide 1-phosphate (C1P) using RBL-2H3 cells, and found that K1 suppressed the activation of mast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号