首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection of muskmelon Cucumis melo seedlings by the fungus Colletotrichum lagenarium causes a 10-fold increase in the amount of cell wall hydroxyproline-rich glycoprotein. Evidence for this increase was provided by studying two specific markers of this glycoprotein, namely hydroxyproline and glycosylated serine. The lability of the O-glycosidic linkage of wall-bound glycosylated serine in the presence of hydrazine, was used to determine the amount of serine which is glycosylated.  相似文献   

2.
To investigate the influence of flanking amino acid sequence on the O-glycosylation of a single threonine residue in vitro, we have examined a series of 52 related peptides. The substrates were based upon a sequence from human von Willebrand factor which is known to be glycosylated in vivo (-6PHMAQVTVGPGL+5). Each residue of the parent peptide was substituted, in turn, with isoleucine, alanine, proline, glutamic acid, or arginine. Peptides were glycosylated using a UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase purified 15,000-fold from bovine colostrum by chromatography on DEAE-Sephacel, SP-Sephadex, Sephacryl S-300, Affi-Gel Blue, and 5-mercuri-UDP-GalNAc thiopropyl-Sepharose. Single amino acid changes in the sequences flanking the threonine could profoundly alter the glycosylation of the substrate peptides. Substitution of any amino acid tested at positions +3, -3, and -2 markedly decreased O-glycosylation, as did the presence of a charged residue at position -1. The substitution of amino acids at the other positions of the peptide substrate had little effect on the incorporation of GalNAc. Statistical analysis of sequences flanking known glycosylated threonine and serine residues suggests that they should be glycosylated with equal efficiency in the same sequence context (O'Connell et al., 1991). However, the bovine colostrum transferase failed to glycosylate a peptide derived from human erythropoietin which contains a serine that is glycosylated in vivo (-5PPDAASAAPLR+5). When a threonine was substituted for the serine in this peptide (-5PPDAATAAPLR+5), the substrate proved to be an excellent acceptor of GalNAc. These observations indicate that although flanking amino acid sequence is important for the O-glycosylation of specific hydroxyamino acids, discrete threonine- and serine-specific transferases may exist.  相似文献   

3.
Three chemical specific cleavage reactions, one for the carboxyl side of aspartyl peptide bonds, one for the carboxyl side of asparaginyl peptide bonds and another for the amino side of seryl/threonyl peptide bonds have been recently established. Additionally, these reactions simultaneously react on several post-translationally modified groups in peptides or proteins. The modified groups cover the external modifications N-formyl, N-acetyl, N-pyroglutamyi residues and C-terminal-alpha amide, as well as the internal modifications such as O-acetyl serine, phosphorylated serine/tyrosine, sulfonylated tyrosine, glycosylated serine/threonine and glycosylated asparagine. These three cleavage reactions relate to key amino acids for modifications, deamidation for asparagine, phosphorylation and acetylation for serine, and glycosylation for asparagine, serine and threonine. The chemical reactions on these modifications change the peptide mapping pattern, and information from these reactions may contribute characterization and location of post-translational modified groups in the protein.  相似文献   

4.
Tarelli E 《Carbohydrate research》2007,342(15):2322-2325
Pools of O-glycopeptides (and their deglycosylated analogues) derived from trypsin-digested normal human serum IgA1 have been treated with ammonia under conditions reported to result in complete liberation of O-glycans linked to serine and threonine residues in glycopeptides and glycoproteins. MALDI-TOF MS analysis has revealed that only one of the six glycosylated sites is susceptible to beta-elimination under these conditions. It is likely that resistance to beta-elimination is due to very close proximity of proline to the glycosylated serine or threonine residues. Preliminary results using 0.1M NaOH (instead of ammonia) to perform beta-elimination indicated that there was also selective de-O-glycosylation with this reagent, however, these results were complicated by the concomitant hydrolysis of the peptide bonds. These findings may have implications for similarly O-glycosylated peptides and proteins and possibly for other chemical methods that are used to carry out beta-eliminations of O-glycans.  相似文献   

5.
Two series of glycopeptides with mono- and disaccharides, [GalNAc and Galbeta (1-3)GalNAc] O-linked to serine and threonine at one, two or three contiguous sites were synthesized and characterized by 1H NMR. The conformational effects governed by O-glycosylation were studied and compared with the corresponding non-glycosylated counterparts using NMR, CD and molecular modelling. These model peptides encompassing the aa sequence, PAPPSSSAPPE (series I) and APPETTAAPPT (series II) were essentially derived from a 23-aa tandem repeat sequence of low molecular weight human salivary mucin (MUC7). NOEs, chemical shift perturbations and temperature coefficients of amide protons in aqueous and nonaqueous media suggest that carbohydrate moiety in threonine glycosylated peptides (series II) is in close proximity to the peptide backbone. An intramolecular hydrogen bonding between the amide proton of GalNAc or Galbeta (1-3)GalNAc and the carbonyl oxygen of the O-linked threonine residue is found to be the key structure stabilizing element. The carbohydrates in serine glycosylated peptides (series I), on the other hand, lack such intramolecular hydrogen bonding and assume a more apical position, thus allowing more rotational freedom around the O-glycosidic bond. The effect of O-glycosylation on peptide backbone is clearly reflected from the observed overall differences in sequential NOEs and CD band intensities among the various glycosylated and non-glycosylated analogues. Delineation of solution structure of these (glyco)peptides by NMR and CD revealed largely a poly L-proline type II and/or random coil conformation for the peptide core. Typical peptide fragments of tandem repeat sequence of mucin (MUC7) showing profound glycosylation effects and distinct differences between serine and threonine glycosylation as observed in the present investigation could serve as template for further studies to understand the multifunctional role played by mucin glycoproteins.  相似文献   

6.
An antigenic similarity between lipopolysaccharide (LPS) and glycosylated pilin of Pseudomonas aeruginosa 1244 was noted. We purified a glycan-containing molecule from proteolytically digested pili and showed it to be composed of three sugars and serine. This glycan competed with pure pili and LPS for reaction with an LPS-specific monoclonal antibody, which also inhibited twitching motility by P. aeruginosa bearing glycosylated pili. One-dimensional NMR analysis of the glycan indicated the sugars to be 5N beta OHC(4)7NfmPse, Xyl, and FucNAc. The complete proton assignments of these sugars as well as the serine residue were determined by COSY and TOCSY. Electrospray ionization mass spectrometry (MS) determined the mass of this molecule to be 771.5. The ROESY NMR spectrum, tandem MS/MS analysis, and methylation analysis provided information on linkage and the sequence of oligosaccharide components. These data indicated that the molecule had the following structure: alpha-5N beta OHC(4)7NFmPse-(2-->4)beta-Xyl-(1-->3)-beta-FucNAc-(1-->3)-beta-Ser.  相似文献   

7.
The isolation and characterization of eight forms of corticotropin-like intermediary lobe peptide (CLIP, adrenocorticotropin18-39) from the intermediary lobe of the rat pituitary has been accomplished by using reversed phase high performance liquid chromatography. The eight forms are the result of all combinations of the presence or absence of three post-translational modifications. These are glycosylation, phosphorylation, and removal of the carboxyl-terminal amino acid. The sites of phosphorylation and glycosylation are at serine 31 and asparagine 29, respectively. The eight forms (in order of elution from the reversed high performance liquid chromatography column) are glycosylated, phosphorylated CLIP18-38; glycosylated, nonphosphorylated CLIP18-38; nonglycosylated, phosphorylated CLIP18-38; nonglycosylated, nonphosphorylated CLIP18-38; glycosylated, phosphorylated CLIP18-39; glycosylated, nonphosphorylated CLIP18-39; nonglycosylated, phosphorylated CLIP18-39; and nonglycosylated, nonphosphorylated CLIP18-39.  相似文献   

8.
TMPRSS13, a member of the type II transmembrane serine protease (TTSP) family, harbors four N-linked glycosylation sites in its extracellular domain. Two of the glycosylated residues are located in the scavenger receptor cysteine-rich (SRCR) protein domain, while the remaining two sites are in the catalytic serine protease (SP) domain. In this study, we examined the role of N-linked glycosylation in the proteolytic activity, autoactivation, and cellular localization of TMPRSS13. Individual and combinatory site-directed mutagenesis of the glycosylated asparagine residues indicated that glycosylation of the SP domain is critical for TMPRSS13 autoactivation and catalytic activity toward one of its protein substrates, the prostasin zymogen. Additionally, SP domain glycosylation-deficient TMPRSS13 displayed impaired trafficking of TMPRSS13 to the cell surface, which correlated with increased retention in the endoplasmic reticulum. Importantly, we showed that N-linked glycosylation was a critical determinant for subsequent phosphorylation of endogenous TMPRSS13. Taken together, we conclude that glycosylation plays an important role in regulating TMPRSS13 activation and activity, phosphorylation, and cell surface localization.  相似文献   

9.
The fiber protein purified from the pool of nonincorporated viral protein after infection of cells with adenovirus type 5 exists as two forms separable by reverse-phase HPLC. As determined by mass spectrometry, this heterogeneity results from a difference in one O-linked N-acetylglucosamine (GlcNac). A western blot analysis using a monoclonal antibody directed against the GlcNac motif showed that only one of the two forms reacted with the antibody, suggesting that one form carries a single GlcNac and the other form has none. The ratio of glycosylated to nonglycosylated forms of fiber, which is about 1, is conserved in assembled viruses. After digestion of glycosylated fiber with endoproteinase GluC, isolation of the glycosylated peptide by reverse-phase HPLC, and chemical derivatization using dimethylamine, the site of glycosylation was located in the fiber shaft at serine 109 by mass spectrometry. Elimination of glycosylation by site-directed mutagenesis of fiber should help to understand the function of this postranslational modification.  相似文献   

10.
The C-terminal amino acid of the variant surface glycoprotein from Trypanosoma brucei is glycosylated. For two variant proteins that terminate in an aspartic acid and a serine residue respectively, it was shown that the sugar side chain is linked through ethanolamine to the alpha-carboxy group of the amino acid.  相似文献   

11.
The specificities of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases which link the carbohydrate GalNAc to the side-chain of certain serine and threonine residues in mucin type glycoproteins, are presently unknown. The specificity seems to be modulated by sequence context, secondary structure and surface accessibility. The sequence context of glycosylated threonines was found to differ from that of serine, and the sites were found to cluster. Non-clustered sites had a sequence context different from that of clustered sites. Charged residues were disfavoured at position – 1 and +3. A jury of artificial neural networks was trained to recognize the sequence context and surface accessibility of 299 known and verified mucin type O-glycosylation sites extracted from O-GLYCBASE. The cross-validated NetOglyc network system correctly found 83% of the glycosylated and 90% of the non-glycosylated serine and threonine residues in independent test sets, thus proving more accurate than matrix statistics and vector projection methods. Predictions of O-glycosylation sites in the envelope glycoprotein gp120 from the primate lentiviruses HIV-1, HIV-2 and SIV are presented. The most conserved O-glycosylation signals in these evolutionary-related glycoproteins were found in their first hypervariable loop, V1. However, the strain variation for HIV-1 gp120 was significant. A computer server, available through WWW or E-mail, has been developed for prediction of mucin type O-glycosylation sites in proteins based on the amino acid sequence. The server addresses are http://www.cbs.dtu.dk/services/NetOGlyc/ and netOglyc@cbs.dtu.dk.  相似文献   

12.
Among bacterial species demonstrated to have protein O-glycosylation systems, that of Bacteroides fragilis and related species is unique in that extracytoplasmic proteins are glycosylated at serine or threonine residues within the specific three-amino acid motif D(S/T)(A/I/L/M/T/V). This feature allows for computational analysis of the proteome to identify candidate glycoproteins. With the criteria of a signal peptidase I or II cleavage site or a predicted transmembrane-spanning region and the presence of at least one glycosylation motif, we identified 1021 candidate glycoproteins of B. fragilis. In addition to the eight glycoproteins identified previously, we confirmed that another 12 candidate glycoproteins are in fact glycosylated. These included four glycoproteins that are predicted to localize to the inner membrane, a compartment not previously shown to include glycosylated proteins. In addition, we show that four proteins involved in cell division and chromosomal segregation, two of which are encoded by candidate essential genes, are glycosylated. To date, we have not identified any extracytoplasmic proteins containing a glycosylation motif that are not glycosylated. Therefore, based on the list of 1021 candidate glycoproteins, it is likely that hundreds of proteins, comprising more than half of the extracytoplasmic proteins of B. fragilis, are glycosylated. Site-directed mutagenesis of several glycoproteins demonstrated that all are glycosylated at the identified glycosylation motif. By engineering glycosylation motifs into a naturally unglycosylated protein, we are able to bring about site-specific glycosylation at the engineered sites, suggesting that this glycosylation system may have applications for glycoengineering.  相似文献   

13.
Although Candida rugosa utilizes a nonuniversal serine codon (CUG) for leucine, it is possible to express lipase genes (LIP) in heterologous systems. After replacing the 19 CUG codons in LIP4 with serine codons by site-directed mutagenesis, a recombinant LIP4 was functionally overexpressed in Pichia pastoris in this study. This recombinant glycosylated lipase was secreted into the culture medium with a high purity of 100 mg/liter in a culture broth. Purified recombinant LIP4 had a molecular mass of 60 kDa, showing a range similar to that of lipase in a commercial preparation. Since LIP4 has only a glycosylation site at position Asn-351, this position may also be the major glycosylation site in C. rugosa lipases. Although the thermal stability of recombinant LIP4 significantly increased from 52 to 58 degrees C after glycosylation, there were no significant differences in the catalytic properties of recombinant glycosylated lipase from P. pastoris and the unglycosylated one from Escherichia coil. These two recombinant LIP4s showed higher esterase activities toward long-chain ester (C16 and C18) and exhibited higher lipase activities toward unsaturated and long-chain lipids. In addition, LIP4 does not show interfacial activation as compared with LIP1 toward lipid substrates of tributyrin and triolein. These observations demonstrated that LIP4 shows distinguished catalytic activities with LIP1 in spite of their high sequence homology.  相似文献   

14.
A glycoprotein of mol.wt. 2x10(6) was isolated in homogeneous form from pig gastric mucus by isopycnic centrifugation in CsCl but without enzymic digestion or reductive cleavage of disulphide bonds. Digestion of the purified glycoprotein with trypsin, pepsin or Pronase resulted in the formation of glycoprotein subunits, of mol.wt. 5.2x10(5)-5.8x10(5), one-quarter that of the undigested glycoprotein. The glycoprotein subunits were isolated by gel filtration and shown to contain all the carbohydrate present in the undigested glycoprotein, but 18.6-25.6% of the total amino acids originally present were lost on digestion. The relative amount of threonine, serine and proline had increased from 41% (w/w) in the undigested glycoprotein to 61-67% of the total amino acids in the glycoprotein subunits after digestion. The results support the previously proposed structure for the glycoprotein, namely that of four subunits joined by disulphide bridges. These results show the presence of two distinct regions in the glycoprotein molecule, one rich in threonine, serine and proline, which is glycosylated and resistant to proteolyis, whereas the other, with an amino acid composition more characteristic of a globular protein, is not glycosylated and is susceptible to proteolysis. In addition, the region that is susceptible to proteolysis contains the disulphide bridges which join the glycoprotein subunits together to form the gastric glycoprotein.  相似文献   

15.
A stretch of 16 amino acid residues within the nominal phosphoprotein of rabies virus was shown to carry an immunodominant epitope for class I- and class II-restricted T cells. The nominal phosphoprotein of rabies virus is thought to be heterogeneously phosphorylated at multiple serine and threonine residues. The synthetic peptide that expressed the T-cell epitope contained a single serine residue corresponding to position 196 of the protein. Phosphorylation of this serine within the synthetic peptide caused a significant decrease of the antigenic potency of the peptide. A similar effect was seen if the serine was replaced by an alanine or if the peptide was glycosylated at its acidic residues. These data suggest that T-cell-mediated recognition of antigen presented by major histocompatibility complex class I- or II-positive cells is impaired not only by point mutations but also by posttranslational side chain modifications of residues within viral epitopes.  相似文献   

16.
The major autolysin Acm2 from the probiotic strain Lactobacillus plantarum WCFS1 contains high proportions of alanine, serine, and threonine in its N-terminal so-called AST domain. It has been suggested that this extracellular protein might be glycosylated, but this has not been experimentally verified. We used high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS) to study the possible occurrence of glycans on peptides generated from lactobacillary surface proteins by protease treatment. This approach yielded five glycopeptides in various glycoforms, all derived from the AST domain of Acm2. All five glycopeptides contained the hydroxy-amino acids serine and threonine, suggesting that Acm2 is O-glycosylated. By using lectin blotting with succinylated wheat germ agglutinin, and by comparing the wild-type strain with an Acm2-negative derivative (NZ3557), we found that the attached N-acetylhexosamines are most likely N-acetylglucosamines (GlcNAc). NZ3557 was further used as a genetic background to express an Acm2 variant lacking its secretion signal, resulting in intracellular expression of Acm2. We show that this intracellular version of Acm2 is also glycosylated, indicating that the GlcNAc modification is an intracellular process.  相似文献   

17.
Osteopotin is a secreted glycosylated phosphoprotein found in bone and other normal and malignant tissues. Osteopontin can be autophosphorylated on tyrosine residues and can also be phosphorylated on serine and threonine residues by several protein kinases. Autophosphorylation of osteopontin may generate sites for specific interactions with other proteins on the cell surface and/or within the extracelluar matrix. These interactions of osteopontin are thought to be essential for bone mineralization and function. The polyaspartic acid motif of osteopontin, in combination with neighboring sequences that include serine residues phosphorylated by protein kinases, could fold and assemble into a molecular structure that participates in the mineralization of the bone matrix.  相似文献   

18.
Modification through beta-elimination has proven to be a reliable first step in the approach for enrichment of serine/threonine-phopshorylated (Ser-/Thr) peptides. However, under harsh basic conditions, Ser-/Thr-glycosylated peptides are susceptible to beta-elimination as well. Therefore, we have optimized these conditions to achieve a beta-elimination that is highly selective for phosphorylated peptides. This is the first report of selective beta-elimination and enrichment of phosphorylated peptides in the presence of glycosylated peptides.  相似文献   

19.
Database analysis of O-glycosylation sites in proteins   总被引:3,自引:0,他引:3       下载免费PDF全文
Statistical analysis was carried out to study the sequential aspects of amino acids around the O-glycosylated Ser/Thr. 992 sequences containing O-glycosylated Ser/Thr were selected from the O-GLYCBASE database of O-glycosylated proteins. The frequency of occurrence of amino acid residues around the glycosylated Ser/Thr revealed that there is an increased number of proline residues around the O-glycosylation sites in comparison with the nonglycosylated serine and threonine residues. The deviation parameter calculated as a measure of preferential and nonpreferential occurrence of amino acid residues around the glycosylation site shows that Pro has the maximum preference around the O-glycosylation site. Pro at +3 and/or -1 positions strongly favors glycosylation irrespective of single and multiple glycosylation sites. In addition, serine and threonine are preferred around the multiple glycosylation sites due to the effect of clusters of closely spaced glycosylated Ser/Thr. The preference of amino acids around the sites of mucin-type glycosylation is found likely to be similar to that of the O-glycosylation sites when taken together, but the acidic amino acids are more preferred around Ser/Thr in mucin-type glycosylation when compared totally. Aromatic amino acids hinder O-glycosylation in contrast to N-glycosylation. Cysteine and amino acids with bulky side chains inhibit O-glycosylation. The preference of certain potential sequence motifs of glycosylation has been discussed.  相似文献   

20.
The secreted acid phosphatase (SAcP) of L.donovani is a heterogeneous glycoprotein that displays a wide array of N- and O-linked glycosylations. The O-linked sugars are of particular interest due to their similarity to the phosphoglycan structures of the major lipophosphoglycan surface antigen and released phosphoglycan (Turco et al., 1987; Greis et al., 1992). This study describes a structural analysis of the SAcP O-linked glycosylations using mass spectroscopy, amino acid sequencing, and enzymatic carbohydrate sequencing. Analysis of glycan chain lengths and peptide glycosylation site distribution was performed, revealing that the average O-linked structure was approximately 32 repeat units in length. Amino acid sequence analysis of glycosylated peptides showed that phosphoglycosylations did not occur randomly but were localized to specific serine residues within an array of degenerate serine/threonine-rich repeat sequences localized in the C-terminus. No evidence was obtained for modification of threonine residues. The observed pattern suggested that a consensus sequence may exist for localization of phosphoglycan structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号