首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Homeobox genes located in the 5' part of the HoxA and HoxD complexes are required for proliferation of skeletal progenitor cells of the vertebrate limb. Specific combinations of gene products determine the length of the upper arm (genes belonging to groups 9 and 10), the lower arm (groups 10, 11 and 12) and the digits (groups 11, 12 and 13). In these different domains, individual gene products quantitatively contribute to an overall protein dose, with predominant roles for groups 11 and 13. Quantitative reduction in the gene dose in each set results in truncations of the corresponding anatomical regions. The physical order of the genes in the HoxA and HoxD complexes, as well as a unidirectional sequence in gene activation, allow for completion of the process in a precise order, which in turn makes possible the sequential outgrowth of the respective primordia. While the skeletal patterns of upper and lower limb are relatively stable throughout the tetrapods, more variation is seen in the digits. Molecular analysis of the underlying regulatory processes promises further exciting insights into the genetic control of development, pathology and the course of evolution.  相似文献   

2.
3.
Tribolium Hox genes repress antennal development in the gnathos and trunk   总被引:2,自引:0,他引:2  
Evidence from Drosophila suggests that Hox genes not only specify regional identity, but have the additional function of repressing antennal development within their normal domains. This is dramatically demonstrated by a series of Hox mutants in the red flour beetle, Tribolium castaneum, and is likely an ancient function of Hox genes in insects.  相似文献   

4.
The discovery of the homeobox motif and its presence in each gene of the Hox clusters revolutionized the fields of developmental biology and evolutionary developmental biology (1, 2),providing a rapid entrance into investigating the mechanisms of development of almost any animal taxon as well as dramatically altering conceptions on the extent of genetic conservation across the animal kingdom.  相似文献   

5.
6.
The role of Hox genes during vertebrate limb development   总被引:3,自引:0,他引:3  
The potential role of Hox genes during vertebrate limb development was brought into focus by gene expression analyses in mice (P Dolle, JC Izpisua-Belmonte, H Falkenstein, A Renucci, D Duboule, Nature 1989, 342:767-772), at a time when limb growth and patterning were thought to depend upon two distinct and rather independent systems of coordinates; one for the anterior-to-posterior axis and the other for the proximal-to-distal axis (see D Duboule, P Dolle, EMBO J 1989, 8:1497-1505). Over the past years, the function and regulation of these genes have been addressed using both gain-of-function and loss-of-function approaches in chick and mice. The use of multiple mutations either in cis-configuration in trans-configuration or in cis/trans configurations, has confirmed that Hox genes are essential for proper limb development, where they participate in both the growth and organization of the structures. Even though their molecular mechanisms of action remain somewhat elusive, the results of these extensive genetic analyses confirm that, during the development of the limbs, the various axes cannot be considered in isolation from each other and that a more holistic view of limb development should prevail over a simple cartesian, chess grid-like approach of these complex structures. With this in mind, the functional input of Hox genes during limb growth and development can now be re-assessed.  相似文献   

7.
Because of their importance for proper development of the bilaterian embryo, Hox genes have taken center stage for investigations into the evolution of bilaterian metazoans. Taxonomic surveys of major protostome taxa have shown that Hox genes are also excellent phylogenetic markers, as specific Hox genes are restricted to one of the two great protostome clades, the Lophotrochozoa or the Ecdysozoa, and thus support the phylogenetic relationships as originally deduced by 18S rDNA studies. Deuterostomes are the third major group of bilaterians and consist of three major phyla, the echinoderms, the hemichordates, and the chordates. Most morphological studies have supported Hemichordata+Chordata, whereas molecular studies support Echinodermata+Hemichordata, a clade known as Ambulacraria. To test these competing hypotheses, complete or near complete cDNAs of eight Hox genes and four Parahox genes were isolated from the enteropneust hemichordate Ptychodera flava. Only one copy of each Hox gene was isolated suggesting that the Hox genes of P. flava are arranged in a single cluster. Of particular importance is the isolation of three posterior or Abd-B Hox genes; these genes are only shared with echinoderms, and thus support the monophyly of Ambulacraria.  相似文献   

8.

Background  

It is expected that genes that are expressed early in development and have a complex expression pattern are under strong purifying selection and thus evolve slowly. Hox genes fulfill these criteria and thus, should have a low evolutionary rate. However, some observations point to a completely different scenario. Hox genes are usually highly conserved inside the homeobox, but very variable outside it.  相似文献   

9.
The eyespot patterns found on the wings of nymphalid butterflies are novel traits that originated first in hindwings and subsequently in forewings, suggesting that eyespot development might be dependent on Hox genes. Hindwings differ from forewings in the expression of Ultrabithorax (Ubx), but the function of this Hox gene in eyespot development as well as that of another Hox gene Antennapedia (Antp), expressed specifically in eyespots centers on both wings, are still unclear. We used CRISPR-Cas9 to target both genes in Bicyclus anynana butterflies. We show that Antp is essential for eyespot development on the forewings and for the differentiation of white centers and larger eyespots on hindwings, whereas Ubx is essential not only for the development of at least some hindwing eyespots but also for repressing the size of other eyespots. Additionally, Antp is essential for the development of silver scales in male wings. In summary, Antp and Ubx, in addition to their conserved roles in modifying serially homologous segments along the anterior–posterior axis of insects, have acquired a novel role in promoting the development of a new set of serial homologs, the eyespot patterns, in both forewings (Antp) and hindwings (Antp and Ubx) of B. anynana butterflies. We propose that the peculiar pattern of eyespot origins on hindwings first, followed by forewings, could be due to an initial co-option of Ubx into eyespot development followed by a later, partially redundant, co-option of Antp into the same network.  相似文献   

10.
11.

Background

Hox genes are key elements in patterning animal development. They are renowned for their, often, clustered organisation in the genome, with supposed mechanistic links between the organisation of the genes and their expression. The widespread distribution and comparable functions of Hox genes across the animals has led to them being a major study system for comparing the molecular bases for construction and divergence of animal morphologies. Echinoderms (including sea urchins, sea stars, sea cucumbers, feather stars and brittle stars) possess one of the most unusual body plans in the animal kingdom with pronounced pentameral symmetry in the adults. Consequently, much interest has focused on their development, evolution and the role of the Hox genes in these processes. In this context, the organisation of echinoderm Hox gene clusters is distinctive. Within the classificatory system of Duboule, echinoderms constitute one of the clearest examples of Disorganized (D) clusters (i.e. intact clusters but with a gene order or orientation rearranged relative to the ancestral state).

Results

Here we describe two Hox genes (Hox11/13d and e) that have been overlooked in most previous work and have not been considered in reconstructions of echinoderm Hox complements and cluster organisation. The two genes are related to Posterior Hox genes and are present in all classes of echinoderm. Importantly, they do not reside in the Hox cluster of any species for which genomic linkage data is available.

Conclusion

Incorporating the two neglected Posterior Hox genes into assessments of echinoderm Hox gene complements and organisation shows that these animals in fact have Split (S) Hox clusters rather than simply Disorganized (D) clusters within the Duboule classification scheme. This then has implications for how these genes are likely regulated, with them no longer covered by any potential long-range Hox cluster-wide, or multigenic sub-cluster, regulatory mechanisms.
  相似文献   

12.
Organogenesis requires the differentiation and integration of distinct populations of cells to form a functional organ. In the kidney, reciprocal interactions between the ureter and the nephrogenic mesenchyme are required for organ formation. Additionally, the differentiation and integration of stromal cells are also necessary for the proper development of this organ. Much remains to be understood regarding the origin of cortical stromal cells and the pathways involved in their formation and function. By generating triple mutants in the Hox10 paralogous group genes, we demonstrate that Hox10 genes play a critical role in the developing kidney. Careful examination of control kidneys show that Foxd1-expressing stromal precursor cells are first observed in a cap-like pattern anterior to the metanephric mesenchyme and these cells subsequently integrate posteriorly into the kidney periphery as development proceeds. While the initial cap-like pattern of Foxd1-expressing cortical stromal cells is unaffected in Hox10 mutants, these cells fail to become properly integrated into the kidney, and do not differentiate to form the kidney capsule. Consistent with loss of cortical stromal cell function, Hox10 mutant kidneys display reduced and aberrant ureter branching, decreased nephrogenesis. These data therefore provide critical novel insights into the cellular and genetic mechanisms governing cortical cell development during kidney organogenesis. These results, combined with previous evidence demonstrating that Hox11 genes are necessary for patterning the metanephric mesenchyme, support a model whereby distinct populations in the nephrogenic cord are regulated by unique Hox codes, and that differential Hox function along the AP axis of the nephrogenic cord is critical for the differentiation and integration of these cell types during kidney organogenesis.  相似文献   

13.
14.
To clarify the relationship between axial patterning in cnidarians and bilaterians, we have investigated the embryonic development of the hydrozoan Podocoryne carnea. The expression of Hox-like homeobox genes was analyzed by RT-PCR and in situ hybridization. Cnox1-Pc, an anterior Hox gene, is a maternal message. It is present throughout larval development, first weakly in all blastomeres and later restricted mostly to the anterior pole of the planula. Gsx, an anterior ParaHox gene, is first seen in the anterior endoderm but also extends into posterior regions. Cnox4-Pc, an orphan Hox-like gene, is expressed in the egg as a ring-shaped cloud around the germinal vesicle. After fertilization, the message remains in most animal blastomeres. When the embryo elongates in late blastula, staining is restricted to a few cells at the posterior pole where gastrulation will start. However, once gastrulation starts, the Cnox4-Pc signal disappears and is absent in later stages of larval development. Phylogenetic analysis shows that not all cnidarian Hox-like genes have recognizable orthologues in bilaterian groups. However, the expression analysis of Cnox1-Pc and Gsx correlates to some extent with the expression pattern of cognate genes of bilaterians, confirming the conservation of genes involved in organizing animal body plans and their putative common ancestral origin.  相似文献   

15.
Hox genes and the phylogeny of the arthropods   总被引:12,自引:0,他引:12  
The arthropods are the most speciose, and among the most morphologically diverse, of the animal phyla. Their evolution has been the subject of intense research for well over a century, yet the relationships among the four extant arthropod subphyla - chelicerates, crustaceans, hexapods, and myriapods - are still not fully resolved. Morphological taxonomies have often placed hexapods and myriapods together (the Atelocerata) [1, 2], but recent molecular studies have generally supported a hexapod/crustacean clade [2-9]. A cluster of regulatory genes, the Hox genes, control segment identity in arthropods, and comparisons of the sequences and functions of Hox genes can reveal evolutionary relationships [10]. We used Hox gene sequences from a range of arthropod taxa, including new data from a basal hexapod and a myriapod, to estimate a phylogeny of the arthropods. Our data support the hypothesis that insects and crustaceans form a single clade within the arthropods to the exclusion of myriapods. They also suggest that myriapods are more closely allied to the chelicerates than to this insect/crustacean clade.  相似文献   

16.
Cho SJ  Vallès Y  Kim KM  Ji SC  Han SJ  Park SC 《Gene》2012,493(2):260-266
Annelida is a lophotrochozoan phylum whose members have a high degree of diversity in body plan morphology, reproductive strategies and ecological niches among others.Of the two traditional classes pertaining to the phylum Annelida (Polychaete and Clitellata), the structure and function of the Hox genes has not been clearly defined within the Oligochaeta class. Using a PCR-based survey, we were able to identify five new Hox genes from the earthworm Perionyx excavatus: a Hox3 gene (Pex-Hox3b), two Dfd genes (Pex-Lox6 and Pex-Lox18), and two posterior genes (Pex-post1 and -post2a). Our result suggests that the eleven earthworm Hox genes contain at least four paralog groups (PG) that have duplicated. We found the clitellates-diagnostic signature residues and annelid signature motif. Also, we show by semi-quantitative RT-PCR that duplicated Hox gene orthologs are differentially expressed in six different anterior-posterior body regions. These results provide essential data for comparative evolution of the Hox cluster within the Annelida.  相似文献   

17.
An echiuroid species, Urechis unicinctus, was surveyed for Hox genes using polymerase chain reaction with homeobox-specific degenerate primers. We identified nine distinct homeodomain-containing gene fragments. These nine fragments were classified by comparative analysis. This analysis revealed that this echiuroid possessed at least three Hox genes from the anterior group, five from the central group, and one from the posterior group.  相似文献   

18.
Many animals show regionally specialized patterns of movement along the body axis. In vertebrates, spinal networks regulate locomotion, while the brainstem controls movements of respiration and feeding. Similarly, amongst invertebrates diversification of appendages along the body axis is tied to the performance of characteristically different movements such as those required for feeding, locomotion, and respiration. Such movements require locally specialized networks of nerves and muscles. Here we use the regionally differentiated movements of larval crawling in Drosophila to investigate how the formation of a locally specialized locomotor network is genetically determined. By loss and gain of function experiments we show that particular Hox gene functions are necessary and sufficient to dictate the formation of a neuromuscular network that orchestrates the movements of peristaltic locomotion.  相似文献   

19.
20.
Hox genes and the crustacean body plan   总被引:2,自引:0,他引:2  
The Crustacea present a variety of body plans not encountered in any other class or phylum of the Metazoa. Here we review our current knowledge on the complement and expression of the Hox genes in Crustacea, addressing questions related to the evolution of body architecture. Specifically, we discuss the molecular mechanisms underlying the homeotic transformation of legs into feeding appendages, which occurred in parallel in several branches of the crustacean evolutionary tree. A second issue that can be approached by the comparative study of Hox genes and their expression in the Crustacea bears on the homology of the abdomen. We discuss whether the so-called "abdominal" tagma of the crustaceans is homologous to the abdomen of insects. In addition, the homology of the abdomen between malacostracan and non-malacostracan crustaceans has also been questioned. We also address the question of the molecular developmental basis of the apparent lack of an abdomen in barnacles. We discuss these issues in relation to the problem of constraint versus adaptation in evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号