首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We review structure and dynamic measurements of biomembranes by atomic force microscopy (AFM). We focus mainly on studies involving supported lipid bilayers (SLBs), particularly formation by vesicle rupture on flat and corrugated surfaces, nucleation and growth of domains in phase-separated systems, anesthetic-lipid interactions, and protein/peptide interactions in multicomponent systems. We show that carefully designed experiments along with real-time AFM imaging with superior lateral and z resolution (0.1 nm) have revealed quantitative details of the mechanisms and factors controlling vesicle rupture, domain shape and size, phase transformations, and some model biological interactions. The AFM tip can also be used as a mechanical transducer and incorporated in electrochemical measurements of membrane components; therefore, we touch on these important applications in both model and cell membranes.  相似文献   

2.
Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.  相似文献   

3.
This paper describes protocols for studies of structure and dynamics of DNA and protein-DNA complexes with atomic force microscopy (AFM) utilizing the surface chemistry approach. The necessary specifics for the preparation of functionalized surfaces and AFM probes with the use of silanes and silatranes, including the protocols for synthesis of silatranes are provided. The methodology of studies of local and global conformations DNA with the major focus on the time-lapse imaging of DNA in aqueous solutions is illustrated by the study of dynamics of Holliday junctions including branch migration. The analysis of nucleosome dynamics is selected as an example to illustrate the application of the time-lapse AFM to studies of dynamics of protein-DNA complexes. The force spectroscopy is the modality of AFM with a great importance to various fields of biomedical studies. The AFM force spectroscopy approach for studies of specific protein-DNA complexes is illustrated by the data on analysis of dynamics of synaptic SfiI-DNA complexes. When necessary, additional specifics are added to the corresponding example.  相似文献   

4.
5.
Podosomes are mechanosensitive attachment/invasion structures that form on the matrix-adhesion interface of cells and protrude into the extracellular matrix to probe and remodel. Despite their central role in many cellular processes, their exact molecular structure and function remain only partially understood. We review recent progress in molecular scale imaging of podosome architecture, including our newly developed localisation microscopy technique termed HAWK which enables artefact-free live-cell super-resolution microscopy of podosome ring proteins, and report new results on combining fluorescence localisation microscopy (STORM/PALM) and atomic force microscopy (AFM) on one setup, where localisation microscopy provides the location and dynamics of fluorescently labelled podosome components, while the spatial variation of stiffness is mapped with AFM. For two-colour localisation microscopy we combine iFluor-647, which has previously been shown to eliminate the need to change buffer between imaging modes, with the photoswitchable protein mEOS3.2, which also enables live cell imaging.  相似文献   

6.
7.
A theoretical model is proposed which states that the time-independent fluorescence anisotropy of the rod-shaped molecule diphenylhexatriene incorporated into lipid bilayers is a direct result of forces constraining the diphenylhexatriene molecule. These forces are postulated as equating with the lateral pressure operating within the bilayer independently of the probe molecule.Insertion into the model of experimental observations (recorded in the literature) on anisotropy of diphenylhexatriene in lipid bilayers as a function of temperature yielded values of lateral pressure, which decreased with temperature, and sharply at the temperature defining the transition from gel phase to fluid phase. The values so predicted for the mid-point of the transition and for the entirely fluid phase, respectively, compared favourably with estimates of the lateral pressures in these physical states, that have been reported elsewhere and arrived at either from theories describing lipid chain behaviour or from lipid monolayer compression experiments. Previously documented effects on anisotropy induced by incorporation of cholesterol into fluid lipid bilayers have been interpreted as reflections of rises in intramembranal lateral pressure.  相似文献   

8.
A fundamental challenge associated with chromosomal gene regulation is accessibility of DNA within nucleosomes. Recent studies performed by various techniques, including single-molecule approaches, led to the realization that nucleosomes are dynamic structures rather than static systems, as was once believed. Direct data are required in order to understand the dynamics of nucleosomes more clearly and to answer fundamental questions, including: What is the range of nucleosome dynamics? Does a non-ATP-dependent unwrapping process of nucleosomes exist? What are the factors facilitating the large-scale opening and unwrapping of nucleosomes? This review summarizes the results of nucleosome dynamics obtained with time-lapse AFM, including a high-speed version (HS-AFM) capable of visualizing molecular dynamics on the millisecond time scale. With HS-AFM, the dynamics of nucleosomes at a sub-second time scale was observed, allowing one to visualize various pathways of nucleosome dynamics, such as sliding and unwrapping, including complete dissociation. Overall, these findings reveal new insights into the dynamics of nucleosomes and the novel mechanisms controlling spontaneous chromatin dynamics.  相似文献   

9.
10.
Molecular recognition between a receptor and a ligand requires a certain level of flexibility in macromolecules. In this study, we aimed at analyzing the conformational variability of receptors portrayed by monoclonal antibodies that have been individually imaged using atomic force microscopy (AFM). Individual antibodies were chemically coupled to activated mica surface, and they have been imaged using AFM in ambient conditions. The resulting topographical surface of antibodies was used to assemble the three subunits constituting antibodies: two antigen‐binding fragments and one crystallizable fragment using a surface‐constrained computational docking approach. Reconstructed structures based on 10 individual topographical surfaces of antibodies are presented for which separation and relative orientation of the subunits were measured. When compared with three X‐ray structures of antibodies present in the protein data bank database, results indicate that several arrangements of the reconstructed subunits are comparable with those of known structures. Nevertheless, no reconstructed structure superimposes adequately to any particular X‐ray structure consequence of the antibody flexibility. We conclude that high‐resolution AFM imaging with appropriate computational reconstruction tools is adapted to study the conformational dynamics of large individual macromolecules deposited on mica. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
12.
A comparative study of several model lipid bilayers of different composition, which included analysis of kinetic parameters of model lipid bilayers and permeability of bilayer membranes for small molecules, has been carried out. The conformity of results of numeric experiments to experimental data (structure of membrane lipid bilayers, lateral diffusion coefficients, and relative permeability of biomembranes for ligands) is discussed in the framework of a standard molecular dynamics protocol.  相似文献   

13.
Of the large number of recognized zinc metalloenzymes, the activities of only a few are significantly decreased in severely zinc deficient animals. On the other hand, physiological pathology is manifested rapidly after dietary zinc deprivation. This shows that zinc exerts physiological and biochemical roles other than as a component of the known zinc metalloenzymes. The research results reviewed here suggest that zinc plays an important role in the maintenance of membrane structure and function.  相似文献   

14.
High-speed atomic force microscopy (HS-AFM) allows direct observation of biological molecules in dynamic action. However, HS-AFM has no atomic resolution. This article reviews recent progress of computational methods to infer high-resolution information, including the construction of 3D atomistic structures, from experimentally acquired resolution-limited HS-AFM images.  相似文献   

15.
Fully atomic simulation strategies are infeasible for the study of many processes of interest to membrane biology, biophysics and biochemistry. We review various coarse-grained simulation methodologies with special emphasis on methods and models that do not require the explicit simulation of water. Examples from our own research demonstrate that such models have potential for simulating a variety of biologically relevant phenomena at the membrane surface.  相似文献   

16.
Internal structure of the starch granule revealed by AFM   总被引:9,自引:0,他引:9  
Atomic force microscopy images of sectioned native corn starch granules show evidence of the well-known radial organisation of the starch macromolecules, with the less-ordered hilum region near to the centre. Native granules show blocks 400-500 nm in size that span the growth rings. Lintnerised starch granules, where a mild acid hydrolysis has been used to remove the amorphous and less crystalline parts of the granule, clearly show smaller 'blocklets' within the rings approximately 10-30 nm in size. This level of organisation within the growth rings corresponds to the blocklet or superhelix structures that have been proposed in the literature for the association or clustering of amylopectin helices. Mechanical property imaging techniques have provided enhanced contrast to view this morphology, and shown the deformability of the starch structure under contact mode imaging conditions.  相似文献   

17.
Martin Klingenberg 《BBA》2010,1797(6-7):579-594
Having worked for 55 years in the center and at the fringe of bioenergetics, my major research stations are reviewed in the following wanderings: from microsomes to mitochondria, from NAD to CoQ, from reversed electron transport to reversed oxidative phosphorylation, from mitochondrial hydrogen transfer to phosphate transfer pathways, from endogenous nucleotides to mitochondrial compartmentation, from transport to mechanism, from carrier to structure, from coupling by AAC to uncoupling by UCP, and from specific to general transport laws. These wanderings are recalled with varying emphasis paid to the covered science stations.  相似文献   

18.
Observing structure,function and assembly of single proteins by AFM   总被引:9,自引:0,他引:9  
Single molecule experiments provide insight into the individuality of biological macromolecules, their unique function, reaction pathways, trajectories and molecular interactions. The exceptional signal-to-noise ratio of the atomic force microscope allows individual proteins to be imaged under physiologically relevant conditions at a lateral resolution of 0.5–1 nm and a vertical resolution of 0.1–0.2 nm. Recently, it has become possible to observe single molecule events using this technique. This capability is reviewed on various water-soluble and membrane proteins. Examples of the observation of function, variability, and assembly of single proteins are discussed. Statistical analysis is important to extend conclusions derived from single molecule experiments to protein species. Such approaches allow the classification of protein conformations and movements. Recent developments of probe microscopy techniques allow simultaneous measurement of multiple signals on individual macromolecules, and greatly extend the range of experiments possible for probing biological systems at the molecular level. Biologists exploring molecular mechanisms will benefit from a burgeoning of scanning probe microscopes and of their future combination with molecular biological experiments.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号