首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a new method for relative quantification of 40 different DNA sequences in an easy to perform reaction requiring only 20 ng of human DNA. Applications shown of this multiplex ligation-dependent probe amplification (MLPA) technique include the detection of exon deletions and duplications in the human BRCA1, MSH2 and MLH1 genes, detection of trisomies such as Down’s syndrome, characterisation of chromosomal aberrations in cell lines and tumour samples and SNP/mutation detection. Relative quantification of mRNAs by MLPA will be described elsewhere. In MLPA, not sample nucleic acids but probes added to the samples are amplified and quantified. Amplification of probes by PCR depends on the presence of probe target sequences in the sample. Each probe consists of two oligonucleotides, one synthetic and one M13 derived, that hybridise to adjacent sites of the target sequence. Such hybridised probe oligonucleotides are ligated, permitting subsequent amplification. All ligated probes have identical end sequences, permitting simultaneous PCR amplification using only one primer pair. Each probe gives rise to an amplification product of unique size between 130 and 480 bp. Probe target sequences are small (50–70 nt). The prerequisite of a ligation reaction provides the opportunity to discriminate single nucleotide differences.  相似文献   

2.
The utility of parallel hybridization of environmental nucleic acids to many oligonucleotides immobilized in a matrix of polyacrylamide gel pads on a glass slide (oligonucleotide microchip) was evaluated. Oligonucleotides complementary to small-subunit rRNA sequences of selected microbial groups, encompassing key genera of nitrifying bacteria, were shown to selectively retain labeled target nucleic acid derived from either DNA or RNA forms of the target sequences. The utility of varying the probe concentration to normalize hybridization signals and the use of multicolor detection for simultaneous quantitation of multiple probe-target populations were demonstrated.  相似文献   

3.
Traditional use of an oligonucleotide probe to determine genotype depends on perfect base pairing to a single-stranded target which is stable to a higher temperature than when imperfect binding occurs due to a mismatch in the target sequence. Bound oligonucleotide is detected at a predetermined single temperature 'snapshot' of the melting profile, allowing the distinction of perfect from imperfect base pairing. In heterozygotes, the presence of the alternative sequence must be verified with a second oligonucleotide complementary to the variant. Here we describe a system of real-time variable temperature electrophoresis during which the oligonucleotide dissociates from its target. In 20% polyacrylamide the target strand has minimal mobility and released oligonucleotide migrates extremely quickly so that the 'freed' rather than the 'bound' is displayed. The full profile of oligonucleotide dissociation during gel electrophoresis is represented along the gel track, and a single oligonucleotide is sufficient to confirm heterozygosity, since the profile displays two separate peaks. Resolution is great, with use of short track lengths enabling analysis of dense arrays of samples. Each gel track can contain a different target or oligonucleotide and the temperature gradient can accommodate oligonucleotides of different melting temperatures. This provides a convenient system to examine the interaction of many different oligonucleotides and target sequences simultaneously and requires no prior knowledge of the mutant sequence(s) nor of oligonucleotide melting temperatures. The application of the technique is described for screening of a hotspot for mutations in the LDL receptor gene in patients with familial hypercholesterolaemia.  相似文献   

4.
We describe here an efficient microarray-based multiplex assay to detect Korean-specific mutations in breast cancer susceptibility gene BRCA1 using direct probe/target hybridization. Allele-specific oligonucleotides were covalently immobilized on an aldehyde-activated glass slide to prepare an oligonucleotide chip. From a wild-type sample, a two-step method was used to generate labeled multiplex polymerase chain reaction (PCR) amplification products of genomic regions containing the mutation sites. Amino allyl-dUTP, an amine-modified nucleotide, was incorporated during multiplex PCR amplifications and a monofunctional form of cyanine 3 dye was subsequently attached to the reactive amine group of the PCR products. Hybridization of the labeled PCR products to the oligonucleotide chip successfully identified all of the genotypes for the selected mutation sites. This work demonstrates that oligonucleotides chip-based analysis is a good candidate for efficient clinical testing for BRCA1 mutations when combined with the indirect strategy to prepare labeled target samples.  相似文献   

5.
Empirical Establishment of Oligonucleotide Probe Design Criteria   总被引:11,自引:0,他引:11  
Criteria for the design of gene-specific and group-specific oligonucleotide probes were established experimentally via an oligonucleotide array that contained perfect match (PM) and mismatch probes (50-mers and 70-mers) based upon four genes. The effects of probe-target identity, continuous stretch, mismatch position, and hybridization free energy on specificity were tested. Little hybridization was observed at a probe-target identity of ≤85% for both 50-mer and 70-mer probes. PM signal intensities (33 to 48%) were detected at a probe-target identity of 94% for 50-mer oligonucleotides and 43 to 55% for 70-mer probes at a probe-target identity of 96%. When the effects of sequence identity and continuous stretch were considered independently, a stretch probe (>15 bases) contributed an additional 9% of the PM signal intensity compared to a nonstretch probe (≤15 bases) at the same identity level. Cross-hybridization increased as the length of continuous stretch increased. A 35-base stretch for 50-mer probes or a 50-base stretch for 70-mer probes had approximately 55% of the PM signal. Little cross-hybridization was observed for probes with a minimal binding free energy greater than −30 kcal/mol for 50-mer probes or −40 kcal/mol for 70-mer probes. Based on the experimental results, a set of criteria are suggested for the design of gene-specific and group-specific oligonucleotide probes, and the experimentally established criteria should provide valuable information for new software and algorithms for microarray-based studies.  相似文献   

6.
Several DNA oligonucleotides have been photochemically modified with the furocoumarin 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) such that each contained a single HMT furan side monoadduct to thymidine at a unique 5' TpA 3' sequence. When these oligonucleotides were hybridized to their respective complements, the HMT adduct could be driven to form an interstrand crosslink by irradiation of the hybrid with 360 nm light. The ability to crosslink probe-target complexes has allowed us to determine the kinetics and the extent of hybridization in solution between these oligonucleotides and their complementary sequences in single-stranded bacteriophage M13 DNA. Our data indicate that these parameters are strongly influenced by the existence of local as well as global secondary structure in the viral DNA. During hybridization, rearrangement of this secondary structure so as to expose the target sequence can be rate-limiting. Upon attainment of equilibrium, only a portion of the target sequence may be hybridized to the probe with the remainder involved in intrastrand base-pairing. Using crosslinkable oligonucleotide probes hybridized and irradiated near the melting temperature of the respective probe-target complex one can partially overcome these secondary structure effects.  相似文献   

7.
Empirical establishment of oligonucleotide probe design criteria   总被引:6,自引:0,他引:6  
Criteria for the design of gene-specific and group-specific oligonucleotide probes were established experimentally via an oligonucleotide array that contained perfect match (PM) and mismatch probes (50-mers and 70-mers) based upon four genes. The effects of probe-target identity, continuous stretch, mismatch position, and hybridization free energy on specificity were tested. Little hybridization was observed at a probe-target identity of < or =85% for both 50-mer and 70-mer probes. PM signal intensities (33 to 48%) were detected at a probe-target identity of 94% for 50-mer oligonucleotides and 43 to 55% for 70-mer probes at a probe-target identity of 96%. When the effects of sequence identity and continuous stretch were considered independently, a stretch probe (>15 bases) contributed an additional 9% of the PM signal intensity compared to a nonstretch probe (< or =15 bases) at the same identity level. Cross-hybridization increased as the length of continuous stretch increased. A 35-base stretch for 50-mer probes or a 50-base stretch for 70-mer probes had approximately 55% of the PM signal. Little cross-hybridization was observed for probes with a minimal binding free energy greater than -30 kcal/mol for 50-mer probes or -40 kcal/mol for 70-mer probes. Based on the experimental results, a set of criteria are suggested for the design of gene-specific and group-specific oligonucleotide probes, and the experimentally established criteria should provide valuable information for new software and algorithms for microarray-based studies.  相似文献   

8.
The confident discrimination of nucleic acids that share a high degree of sequence identity is the major obstacle for the widespread applicability of multiplex DNA-based techniques. This diagnostic uncertainty originates in the insufficient specificity of hybridization, allowing cross-hybridization between unwanted probe-target combinations. Starting from a random mixture of oligonucleotides, we describe a protocol to selectively amplify the probes that bind to the target but not to the similar, unintended targets. The procedure involves five forward hybridizations to generate pools of probes with significant affinity, but not necessarily specificity, for the target. Specificity is then achieved during subtractive hybridization steps, where only probes having differential diagnostic performance are retained. Iterative hybridizations, cloning, sequencing and testing of the performance of selected probes can all be fully automated. Eight weeks are required for the full completion of a project composed of 40 probe-target pairs, even when targets share as much as 87% of sequence identity. While alternative, computer-assisted, rational oligonucleotide design may produce an uncertain outcome, the present protocol generates robust and specific probes suitable for a variety of multiplex, nucleic acid-based detection/typing platforms.  相似文献   

9.
We propose a novel universal methodology, Short Oligonucleotide Tandem Ligation Assay (SOTLA), for SNP genotyping. SOTLA is based on using a tandem of short oligonucleotide (TSO) probes consisting of three fragments: the core oligonucleotide and two flanking oligomers, one of which is immobilized onto a solid support and another one contains the biotin label. TSO is self-associated on a complementary DNA template, forms the complex containing two nicks, which are efficiently ligated with DNA ligase giving biotinylated oligonucleotide covalently bound to polymer beads. No ligation of TSO on an imperfect DNA template bearing the base substitution in the core binding site is occurred. We used SOTLA for the highly selective SNP analysis in different DNA fragments of human Y chromosome. Comparison of SOTLA results with those of PCR-RFLP and allele-specific PCR techniques demonstrates that SOTLA ensures the univocal reliable SNP analysis in different PCR fragments varying in length and base composition. The fundamental difference between SOTLA and well known OLA approaches while using T4 DNA ligase is that the accuracy of SNP analysis in OLA is ensured only by the specificity of ligase while that in SOTLA is provided by the specificity of both ligation and hybridization of TSO probes.  相似文献   

10.
We developed the LigAmp assay for sensitive detection and accurate quantification of viruses and cells with single-base mutations. In LigAmp, two oligonucleotides are hybridized adjacently to a DNA template. One oligonucleotide matches the target sequence and contains a probe sequence. If the target sequence is present, the oligonucleotides are ligated together and detected using real-time PCR. LigAmp detected KRAS2 mutant DNA at 0.01% in mixtures of different cell lines. KRAS2 mutations were also detected in pancreatic duct juice from patients with pancreatic cancer. LigAmp detected the K103N HIV-1 drug resistance mutation at 0.01% in plasmid mixtures and at approximately 0.1% in DNA amplified from plasma HIV-1. Detection in both systems is linear over a broad dynamic range. Preliminary evidence indicates that reactions can be multiplexed. This assay may find applications in the diagnosis of genetic disorders and the management of patients with cancer and infectious diseases.  相似文献   

11.
D Y Wu  R B Wallace 《Genomics》1989,4(4):560-569
A novel DNA sequence detection method that utilizes the ligation of oligonucleotide pairs that are complementary to adjacent sites on appropriate DNA templates is described. The product is increased by either linear or exponential amplification using sequential rounds of template-dependent ligation. In the case of linear amplification, a single pair of oligonucleotides is ligated, the reaction is heated to dissociate the ligation product, and an additional round of ligation is performed. After n rounds there is a (1 + x) X n-fold amplification of product, where x is the efficiency of the ligation reaction. Exponential amplification utilizes two pairs of oligonucleotides, one complementary to the upper strand and one to the lower strand of a target sequence. The products of the ligation reaction serve as templates for subsequent rounds of ligation. In this case there is (1 + x)(n-1)-fold amplification of product after n rounds. A single base-pair mismatch between the annealed oligonucleotides and the template prevents ligation, thus allowing the distinction of single base-pair differences between DNA templates. At high template concentrations, the ligation reaction has an efficiency approaching 100%. In this report, we demonstrate the use of the ligation amplification reaction (LAR) to distinguish the normal from the sickle cell allele of the human beta-globin gene. We also report the use of LAR as a detection system for polymerase chain reaction-enriched DNA sequences.  相似文献   

12.
We report on the suitability of hydrazone formation for activator-free ligation of oligonucleotides. 5'-Acyl hydrazides were synthesized using a previously described phosphoramidite modifier, whereas 3'-hydrazides resulted from a hydrazinolysis of an ester group serving as a linker to the solid support. Aromatic aldehydes could be directly introduced on the 5'-terminus via the respective phosphoramidates. Aliphatic aldehydes were generated by periodate cleavage of the corresponding 3'- and 5'-modified diol precursors. Ligation of a 3'-hydrazide-modified oligonucleotide with oligonucleotides bearing an aromatic aldehyde in 5'-position showed a fast reaction kinetics (k(1) about 10(-1) M(-1)s(-1)) [corrected] and irreversible hydrazone formation. The ligation of a 5'-hydrazide-modified oligonucleotide and a 3'-ribobisaldehyde appeared to proceed reversibly at the beginning, but became irreversible with increasing reaction time. Hydrazide-modified oligonucleotides were found to be somewhat unstable in aqueous solutions.  相似文献   

13.
Signal amplification of padlock probes by rolling circle replication.   总被引:14,自引:10,他引:4       下载免费PDF全文
Circularizing oligonucleotide probes (padlock probes) have the potential to detect sets of gene sequences with high specificity and excellent selectivity for sequence variants, but sensitivity of detection has been limiting. By using a rolling circle replication (RCR) mechanism, circularized but not unreacted probes can yield a powerful signal amplification. We demonstrate here that in order for the reaction to proceed efficiently, the probes must be released from the topological link that forms with target molecules upon hybridization and ligation. If the target strand has a nearby free 3' end, then the probe-target hybrids can be displaced by the polymerase used for replication. The displaced probe can then slip off the targetstrand and a rolling circle amplification is initiated. Alternatively, the target sequence itself can prime an RCR after its non-base paired 3' end has been removed by exonucleolytic activity. We found the Phi29 DNA polymerase to be superior to the Klenow fragment in displacing the target DNA strand, and it maintained the polymerization reaction for at least 12 h, yielding an extension product that represents several thousand-fold the length of the padlock probe.  相似文献   

14.
Herein we report a new strategy for highly sensitive and selective colorimatric assay for genotyping of single-nucleotide polymorphisms (SNPs). It is based on the use of a specific gap ligation reaction, horseradish peroxidase (HRP) for signal amplification, and magnetic beads for the easy separation of the ligated product. Briefly, oligonucleotide capture probe functionalized magnetic beads are first hybridized to a target DNA. Biotinylated oligonucleotide detection probes are then allowed to hybridize to the already captured target DNA. A subsequent ligation at the mutation point joins the two probes together. The introduction of streptavidin-conjugated HRP and a simple magnetic separation allow colorimetric genotyping of SNPs. The assay is able to discriminate one copy of mutant in 1000 copies of wild-type KRAS oncogene at 30 picomolar. The detection limit of the assay is further improved to 1 femtomolar by incorporating a ligation chain reaction amplification step, offering an excellent opportunity for the development of a simple and highly sensitive diagnostic tool.  相似文献   

15.
We have developed a rapid, cost-effective, high-throughput readout for single nucleotide polymorphism (SNP) genotyping using flow cytometric analysis performed on a Luminex 100 flow cytometer. This robust technique employs a PCR-derived target DNA containing the SNP, a synthetic SNP-complementary ZipCode-bearing capture probe, a fluorescent reporter molecule, and a thermophilic DNA polymerase. An array of fluorescent microspheres, covalently coupled with complementary ZipCode sequences (cZipCodes), was hybridized to the reaction products and sequestered them for flow cytometric analysis. The single base chain extension (SBCE) reaction was used to assay 20 multiplexed SNPs for 633 patients in 96-well format. Comparison of the microsphere-based SBCE assay results to gel-based oligonucleotide ligation assay (OLA) results showed 99.3% agreement in genotype assignments. Substitution of direct-labeled R6G dideoxynucleotide with indirect-labeled phycoerythrin dideoxynucleotide enhanced signal five- to tenfold while maintaining low noise levels. A new assay based on allele-specific primer extension (ASPE) was validated on a set of 15 multiplexed SNPs for 96 patients. ASPE offers both the advantage of streamlining the SNP analysis protocol and the ability to perform multiplex SNP analysis on any mixture of allelic variants.  相似文献   

16.
The success of oligonucleotide ligation assays in probing specific sequences of DNA arises in large part from high enzymatic selectivity against base mismatches at the ligation junction. We describe here a study of the effect of mismatches on a new non-enzymatic, reagent-free method for ligation of oligonucleotides. In this approach, two oligonucleotides bound at adjacent sites on a complementary strand undergo autoligation by displacement of a 5'-end iodide with a 3'-phosphorothioate group. The data show that this ligation proceeds somewhat more slowly than ligation by T4 ligase, but with substantial discrimination against single base mismatches both at either side of the junction and a few nucleotides away within one of the oligonucleotide binding sites. Selectivities of >100-fold against a single mismatch are observed in the latter case. Experiments at varied concentrations and temperatures are carried out both with the autoligation of two adjacent linear oligonucleotides and with intramolecular autoligation to yield circular 'padlock' DNAs. Application of optimized conditions to discrim-ination of an H- ras codon 12 point mutation is demonstrated with a single-stranded short DNA target.  相似文献   

17.

Background  

The quality of chemically synthesized oligonucleotides falls with the length of the oligonucleotide, not least due to depurinations and premature termination during production. This limits the use of long oligonucleotides in assays where long high-quality oligonucleotides are needed (e.g. padlock probes). Another problem with chemically synthesized oligonucleotides is that secondary structures contained within an oligonucleotide reduce the efficiency of HPLC and/or PAGE purification. Additionally, ligation of chemically synthesized oligonucleotides is less efficient than the ligation of enzymatically produced DNA molecules.  相似文献   

18.
Using microparticles as the capture surface and fluorescence resonance energy transfer as the detection technology, we have demonstrated the feasibility of performing the invasive cleavage reaction on a solid phase. An effective tool for many genomic applications, the solution phase invasive cleavage assay is a signal amplification method capable of distinguishing nucleic acids that differ by only a single base mutation. The method positions two overlapping oligonucleotides, the probe and upstream oligonucleotides, on the target nucleic acid to create a complex recognized and cleaved by a structure-specific 5′-nuclease. For microarray and other multiplex applications, however, the method must be adapted to a solid phase platform. Effective cleavage of the probe oligonucleotide occurred when either of the two required overlapping oligonucleotides was configured as the particle-bound reagent and also when both oligonucleotides were attached to the solid phase. Positioning probe oligonucleotides away from the particle surface via long tethers improved both the signal and the reaction rates. The particle-based invasive cleavage reaction was capable of distinguishing the ApoE Cys158 and Arg158 alleles at target concentrations as low as 100 amol/assay (0.5 pM).  相似文献   

19.
BACKGROUND: We have developed a rapid, high throughput method for single nucleotide polymorphism (SNP) genotyping that employs an oligonucleotide ligation assay (OLA) and flow cytometric analysis of fluorescent microspheres. METHODS: A fluoresceinated oligonucleotide reporter sequence is added to a "capture" probe by OLA. Capture probes are designed to hybridize both to genomic "targets" amplified by polymerase chain reaction and to a separate complementary DNA sequence that has been coupled to a microsphere. These sequences on the capture probes are called "ZipCodes". The OLA-modified capture probes are hybridized to ZipCode complement-coupled microspheres. The use of microspheres with different ratios of red and orange fluorescence makes a multiplexed format possible where many SNPs may be analyzed in a single tube. Flow cytometric analysis of the microspheres simultaneously identifies both the microsphere type and the fluorescent green signal associated with the SNP genotype. RESULTS: Application of this methodology is demonstrated by the multiplexed genotyping of seven CEPH DNA samples for nine SNP markers located near the ApoE locus on chromosome 19. The microsphere-based SNP analysis agreed with genotyping by sequencing in all cases. CONCLUSIONS: Multiplexed SNP genotyping by OLA with flow cytometric analysis of fluorescent microspheres is an accurate and rapid method for the analysis of SNPs.  相似文献   

20.
Large DNA constructs of arbitrary sequences can currently be assembled with relative ease by joining short synthetic oligodeoxynucleotides (oligonucleotides). The ability to mass produce these synthetic genes readily will have a significant impact on research in biology and medicine. Presently, high-throughput gene synthesis is unlikely, due to the limits of oligonucleotide synthesis. We describe a microfluidic PicoArray method for the simultaneous synthesis and purification of oligonucleotides that are designed for multiplex gene synthesis. Given the demand for highly pure oligonucleotides in gene synthesis processes, we used a model to improve key reaction steps in DNA synthesis. The oligonucleotides obtained were successfully used in ligation under thermal cycling conditions to generate DNA constructs of several hundreds of base pairs. Protein expression using the gene thus synthesized was demonstrated. We used a DNA assembly strategy, i.e. ligation followed by fusion PCR, and achieved effective assembling of up to 10 kb DNA constructs. These results illustrate the potential of microfluidics-based ultra-fast oligonucleotide parallel synthesis as an enabling tool for modern synthetic biology applications, such as the construction of genome-scale molecular clones and cell-free large scale protein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号