首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individual nematodes were isolated from American chestnut blight-controlled cankers to determine if they were carriers of biocontrol (hypovirulent) isolates of the chestnut blight fungus, Cryphonectria parasitica. These hypovirulent isolates have a white fungal colony phenotype due to infection by the virus CHV1. Of 1,620 individual Aphelenchoides hylurgi isolated, 29.4% carried propagules of the blight fungus and 8.2% of these yielded white hypovirulent isolates. In attraction and movement tests in Petri plates, A. hylurgi moved 2 cm over 24 hr to mycelial discs of white hypovirulent C. parasitica and pigmented C. parasitica strains in nearly equal numbers. After 2 days of nematode movement to fungal colonies on agar in Petri plates and 21 days of nematode growth, large numbers of A. hylurgi were extracted from both white hypovirulent and pigmented C. parasitica strain colonies. Lower numbers of A. hylurgi were extracted from excised young American chestnut blight cankers that were inoculated with A. hylurgi and incubated for 22 days. A. hylurgi inoculated on the surface of an excised American chestnut canker moved within 24 hr to the small, spore-bearing C. parasitica reproductive structures (stromata) on the canker surface. The results indicate that A. hylurgi may play a role in the spread of hypovirulence on American chestnut trees.  相似文献   

2.
Chen B  Geletka LM  Nuss DL 《Journal of virology》2000,74(16):7562-7567
Infectious cDNA clones of mild (CHV1-Euro7) and severe (CHV1-EP713) hypovirus strains responsible for virulence attenuation (hypovirulence) of the chestnut blight fungus Cryphonectria parasitica were used to construct viable chimeric viruses. Differences in virus-mediated alterations of fungal colony morphology, growth rate, and canker morphology were mapped to a region of open reading frame B extending from nucleotides 2,363 to 9, 904. By swapping domains within this region, it was possible to generate chimeric hypovirus-infected C. parasitica isolates that exhibited a spectrum of defined colony and canker morphologies. Several severe strain traits were observed to be dominant. It was also possible to uncouple the severe strain traits of small canker size and suppression of asexual sporulation. For example, fungal isolates infected with a chimera containing nucleotides 2363 through 5310 from CHV1-Euro7 in a CHV1-713 background formed small cankers that were similar in size to that caused by CHV1-EP713-infected isolates but with the capacity for producing asexual spores at levels approaching that observed for fungal isolates infected with the mild strain. These results demonstrate that hypoviruses can be engineered to fine-tune the interaction between a pathogenic fungus and its plant host. The identification of specific hypovirus domains that differentially contribute to canker morphology and sporulation levels also provides considerable utility for continuing efforts to enhance biological control potential by balancing hypovirulence and ecological fitness.  相似文献   

3.
Previously we showed in laboratory studies that the fungivorus nematode, Aphelenchoides hylurgi, was attracted to and fed upon the chestnut blight fungus, Cryphonectria parasitica, from American chestnut bark cankers and was a carrier of biocontrol, white hypovirulent C. parasitica strains. In the present field study, we recovered Aphelenchoides spp. in almost all (97.0 %) of 133 blight canker tissue assays (three 5-g samples each) from four eastern states. High mean population densities (227 to 474 nematodes per 5 g tissue) of Aphelenchoides spp. were recovered from cankers in Virginia, West Virginia, and Tennessee but not from New Hampshire (mean = 75 nematodes per 5 g tissue). Overall, most canker assays yielded population densities less than 200 nematodes per 5 g tissue. All of 12 very small or young cankers yielded a few to many Aphelenchoides spp. Regression analysis indicated greatest recovery of Aphelenchoides spp. occurred in the month of May (r = 0.94). The results indicate that Aphelenchoides spp. appear to be widespread in blight cankers on American chestnut trees and could play a role in biocontrol of chestnut blight.  相似文献   

4.
Chestnut blight is controlled in Europe by using Cryphonectria hypovirus CHV1, a non-encapsulated RNA virus. The chestnut blight fungus, Cryphonectria parasitica, is weakened by the virus, and healing tissue growth occurs in the host tree. Transmission of this cytoplasmic hypovirus is restricted by the incompatibility system of the fungus, so that the hypovirus can be transmitted only between isolates of the same or closely related vegetative compatibility (vc) types. Hypovirulent isolates of C. parasitica (all of the French subtype CHV1-F1) from Castilla y León (NW Spain) were compared with virulent isolates in both laboratory (cut stems) and field inoculations (in two orchards in the province of León and one orchard in the province of Zamora). The tests were performed with the most common vc types in the region, EU1 and EU11. The cut stem assay revealed that the hypovirulent isolates of vc type EU1 did not reduce the growth of virulent cankers. By contrast, four hypovirulent strains H1, H4, H5 and H6 (all vc type EU11) reduced the growth of virulent isolates in the cut stem assay. Field tests showed that hypovirulent isolates of EU1 and EU11 were effective in reducing canker in both orchards in León with all treatments tested; however, in Zamora, where only EU11 was tested, all the treatments failed except H1, which was able to reduce growth of the canker eighteen months after the inoculation. The development of hypovirulence suggests that hypovirus subtype F1 is well adapted in the province of León. Both naturally extended and inoculated hypoviruses appear to have reduced the incidence of the canker, thus improving chestnut stands. However, the inoculations were not as effective in the orchards in Zamora. This indicates that the disease could be controlled in Castilla y León by inoculation of trees with hypovirulent strains, but that more tests should be done in provinces where the hypovirus is still not present.  相似文献   

5.
The gene encoding laccase in the chestnut blight fungus, Cryphonectria parasitica, has been cloned and characterized. The predicted C. parasitica laccase amino acid sequence (591 aa) was 57% identical to the Neurospora crassa laccase sequence and contained four potential copper-binding regions that are conserved in a number of copper-binding proteins. Treatment of a virulent C. parasitica strain with 3 microM cycloheximide resulted in a marked increase in laccase mRNA accumulation, whereas identical treatment of an isogenic strain that contained a hypovirulence-associated virus failed to significantly increase laccase mRNA levels. In contrast, the accumulation of mRNAs encoding beta-tubulin, actin, or glyceraldehyde-3-phosphate dehydrogenase was not appreciably altered by either the presence of a hypovirulence-associated virus or treatment with cycloheximide. These results provide evidence that the expression of a specific fungal gene encoding a known protein product is selectively modulated by a hypovirulence-associated virus.  相似文献   

6.
Hydrophobins are abundant small hydrophobic proteins that are present on the surfaces of many filamentous fungi. The chestnut blight pathogen Cryphonectria parasitica was shown to produce a class II hydrophobin, cryparin. Cryparin is the most abundant protein produced by this fungus when grown in liquid culture. When the fungus is growing on chestnut trees, cryparin is found only in the fungal fruiting body walls. Deletion of the gene encoding cryparin resulted in a culture phenotype typical of hydrophobin deletion mutants of other fungi, i.e., easily wettable (nonhydrophobic) hyphae. When grown on the natural substrate of the fungus, however, cryparin-null mutation strains were unable to normally produce its fungal fruiting bodies. Although the stromal pustules showed normal development initially, they were unable to erupt through the bark of the tree. The hydrophobin cryparin thus plays an essential role in the fitness of this important plant pathogen by facilitating the eruption of the fungal fruiting bodies through the bark of its host tree.  相似文献   

7.
The outcome of host-parasite interactions may depend not only on the genotypes of the species involved but also on environmental factors. We used the fungus Cryphonectria parasitica, the causal agent of chestnut blight, and its hyperparasitic virus, Cryphonectria hypovirus-1 (CHV1), to test for genotype-by-genotype-by-environment interactions in a host-parasite system. In C. parasitica, infection with CHV1 induces a hypovirulent phenotype with reduced virulence toward the chestnut tree (Castanea spp.) and thus controls chestnut blight in many European regions. In contrast, uninfected virulent C. parasitica have nearly eradicated the American chestnut in North America. We applied a full factorial design and assessed the fungal growth and sporulation of four C. parasitica strains, uninfected and infected with each of the four known CHV1 subtypes, at 12°, 18°, 24°, and 30°C. We found a significant (P ≤ .00001) genotype-by-genotype-by-environment interaction, demonstrating the potential for a selection mosaic. As a consequence, different host and parasite genotypes would be selected under different climatic conditions, affecting the coevolutionary dynamics of the host-parasite interaction and the course of chestnut blight epidemics. Genotype-by-genotype-by-environment interactions are essential to take into account when designing biological control strategies.  相似文献   

8.
Endopolygalacturonases (endoPGs) of some phytopathogens are virulent factors for dicots. To investigate the function of the endoPG of Magnaporthe oryzae, a disruption mutant of MGG_08938, the homolog of endoPG found in the genome database of this fungus, was generated. The pathogenicity, mycelial growth, and appressorium formation of this mutant were comparable with those of the wild-type strain; however, the germination of conidia in a highly concentrated suspension of conidia was affected by the mutation. Whereas the germination of the wild-type strain was inhibited at high concentrations, this effect was canceled out by disruption by the endoPG homolog gene. The authors named the gene MDG1 (M. oryzae density-dependent germination), which delineates this new function in the fungus.  相似文献   

9.
The filamentous fungus Cochliobolus carbonum produces endo-α1,4-polygalacturonase (endoPG), exo-α1,4-polygalacturonase (exoPG), and pectin methylesterase when grown in culture on pectin. Residual activity in a pgn1 mutant (lacking endoPG) was due to exoPG activity, and the responsible protein has now been purified. After chemical deglycosylation, the molecular mass of the purified protein decreased from greater than 60 to 45 kDa. The gene that encodes exoPG, PGX1, was isolated with PCR primers based on peptide sequences from the protein. The product of PGX1, Pgx1p, has a predicted molecular mass of 48 kDa, 12 potential N-glycosylation sites, and 61% amino acid identity to an exoPG from the saprophytic fungus Aspergillus tubingensis. Strains of C. carbonum mutated in PGX1 were constructed by targeted gene disruption and by gene replacement. Growth of pgx1 mutant strains on pectin was reduced by ca. 20%, and they were still pathogenic on maize. A double pgn1/pgx1 mutant strain was constructed by crossing. The double mutant grew as well as the pgx1 single mutant on pectin and was still pathogenic despite having less than 1% of total wild-type PG activity. Double mutants retained a small amount of PG activity with the same cation-exchange retention time as Pgn1p and also pectin methylesterase and a PG activity associated with the mycelium. Continued growth of the pgn1/pgx1 mutant on pectin could be due to one or more of these residual activities.  相似文献   

10.
Plant-pathogenic fungi produce cutinase, an enzyme required to degrade plant cuticles and facilitate penetration into the host. The absence of cutinase or a decrease in its production has been associated with a decrease in pathogenicity of the fungus. A set of isogenic strains of Cryphonectria parasitica, the chestnut blight fungus, was tested for the presence and amounts of cutinase activity. The virulent strain of C. parasitica produced and secreted significantly higher amounts of cutinase than the hypovirulent strains. Use of both nucleic acid and polyclonal antibody probes for cutinase from Fusarium solani f. sp. pisi showed that cutinase in C. parasitica is 25 kDa in size and is coded by a 1.1-kb mRNA. Both mRNA and protein were inducible by cutin hydrolysate, while hypovirulence agents suppressed the level of mRNA and the enzyme. Since all the strains had the cutinase gene, the suppression of expression was due to the hypovirulence agents. The data presented are the first report indicating that hypovirulence agents in C. parasitica regulate a gene associated with pathogenicity in other plant-pathogenic fungi.  相似文献   

11.
12.
13.
The filamentous fungus Penicillium olsonii secretes several polygalacturonases (PGs) with molecular masses of about 47 kDa. These enzymes consist of several basic and acidic isoforms, with dominant activities at pI 4.5 and pI 7.9. Two polygalacturonase genes, pg1 and pg2, have been cloned. The corresponding enzymes, PG1 and PG2, consist of 370 and 380 amino acids, respectively, and show significant similarities to endo-polygalacturonases from other filamentous fungi. Targeted disruption of pg1 resulted in the elimination of all basic PG isoforms. In contrast, disruption of pg2 reduced, but did not eliminate the acidic PG activities. The PGs of P. olsonii must therefore be encoded by a gene family of at least three genes. Induction studies with various carbon sources revealed that the acidic and basic isoforms are differentially regulated. Pectin is the best inducer of the acidic PG isoforms. The basic isoforms, however, are best induced by monosaccharides like glucose, alpha-L-rhamnose and alpha-L-arabinose.  相似文献   

14.
15.
Elicitin 172, an acid protein with elicitor activity, has been isolated in true form from culture filtrates of Phytophthora nicotianae, the causal agent of crown and root rot of tomato (Lycopersicon esculentum). The M(r) (10,349 +/- 1) of the purified protein, determined by ES-MS, is identical to that calculated for parasiticein using the mean isotopic composition and assuming the occurrence of three disulfide bridges. The primary structure of elicitin 172, determined using also MALDI-MS experiments, shows complete identity with parasiticein, with elicitin 310 and a cloned elicitin gene from P. parasitica (= P. nicotianae), confirming conservation of the elicitin sequence within a single species. The protein induces necrosis (hypersensitive reaction) on tobacco, but no symptoms on tomato, when applied on the leaves. Tomato pretreated with elicitin 172 was affected by P. nicotianae, as well as by the phytotoxic aggregates, naturally occurring with the elicitin in the non permeated dialysis fraction of culture filtrates. Finally, the elicitin induce protection of capsicum (Capsicum annuum) and vegetable marrow (Cucurbita pepo) from P. capsici.  相似文献   

16.
The prototype hypovirus CHV1-EP713 causes virulence attenuation and severe suppression of asexual sporulation and pigmentation in its host, the chestnut blight fungus, Cryphonectria parasitica. We identified a factor associated with symptom induction in C. parasitica using a transformation of C. parasitica strain EP155 with a full-length cDNA clone from a mild mutant virus strain, Cys(72). This was accomplished by using mutagenesis of the transformant fungal strain TCys(72)-1 by random integration of plasmid pHygR, conferring hygromycin resistance. The mutant, namA (after nami-gata, meaning wave shaped), showed an irregular fungal morphology with reduced conidiation and pigmentation while retaining similar levels of virulence and virus accumulation relative to TCys(72)-1- or Cys(72)-infected strain EP155. However, the colony morphology of virus-cured namA (VC-namA) was indistinguishable from those of EP155 and virus-cured TCys(72)-1 [VC-TCys(72)-1]. The phenotypic difference between VC-namA and VC-TCys(72)-1 was found only when these strains infected with the wild type or certain mutant CHV1-EP713 strains but not when infected with Mycoreovirus 1. Sequence analysis of inverse-PCR-amplified genomic DNA fragments and cDNA identified the insertion site of the mutagenic plasmid in exon 8 of the nam-1 gene. NAM-1, comprising 1,257 amino acids, shows sequence similarities to counterparts from other filamentous fungi and possesses the CorA domain that is conserved in a class of Mg(2+) transporters from prokaryotes and eukaryotes. Complementation assays using the wild-type and mutant alleles and targeted disruption of nam-1 showed that nam-1 with an extension of the pHygR-derived sequence contributed to the altered phenotype in the namA mutant. The molecular mechanism underlying virus-specific fungal symptom modulation in VC-namA is discussed.  相似文献   

17.
18.
Botrytis cinerea is a plant-pathogenic fungus infecting over 200 different plant species. We use a molecular genetic approach to study the process of pectin degradation by the fungus. Recently, we described the cloning and characterization of an endopolygalacturonase (endoPG) gene from B. cinerea (Bcpg1) which is required for full virulence. Here we describe the cloning and characterization of five additional endoPG-encoding genes from B. cinerea SAS56. The identity at the amino acid level between the six endoPGs of B. cinerea varied from 34 to 73%. Phylogenetic analysis, by using a group of 35 related fungal endoPGs and as an outgroup one plant PG, resulted in the identification of five monophyletic groups of closely related proteins. The endoPG proteins from B. cinerea SAS56 could be assigned to three different monophyletic groups. DNA blot analysis revealed the presence of the complete endoPG gene family in other strains of B. cinerea, as well as in other Botrytis species. Differential gene expression of the gene family members was found in mycelium grown in liquid culture with either glucose or polygalacturonic acid as the carbon source.  相似文献   

19.
Chestnut blight cankers, caused by the fungus Cryphonectria parasitica, are prone to invasion by other microorganisms as the canker ages. This microbial community has the potential to alter canker expansion, which may influence the probability that the canker girdles the infected stem. Hypoviruses infect the pathogen mycelium directly and are known to decrease pathogen virulence (i.e. hypovirulent). These viral infections can slow pathogen growth, decreasing the rate of canker expansion and lowering the probability of girdling. Saprophytic fungi also invade the expanding canker and may antagonize C. parasitica leading to reduced pathogen growth. The combined effects of fungal antagonism and a hypovirulent pathogen could work in combination to reduce the probability of girdling the infected stem. We assessed the ability of different fungal taxa, isolated from low severity cankers, to inhibit the growth of virulent and hypovirulent forms of C. parasitica in dual culture tests on two cultural media. Percent growth inhibition of virulent C. parasitica by potentially antagonistic fungi ranged from 2 % to 34 %, while inhibition of hypovirulent C. parasitica ranged from 18 % to 54 %. Only one isolate, identified as Umbelopsis isabellina (UmbelopsisWS) inhibited the virulent form of the pathogen more than the hypovirulent form. All three Trichoderma isolates caused the greatest growth inhibition of virulent C. parasitica, but they, like all other fungal isolates tested, inhibited the hypovirulent form of the pathogen more than the virulent form. These results suggest that commonly occurring fungi in chestnut blight cankers, including Trichoderma, may inhibit the hypovirulent C. parasitica more than virulent C. parasitica. Thus, the presence of other fungi in cankers may not enhance the effect of hypovirulent C. parasitica to delay cankers from girdling a stem but instead intensify canker development.  相似文献   

20.
The Ustilago maydis genomic TOP1 gene encoding DNA topoisomerase I was cloned by amplifying a gene fragment using the polymerase chain reaction, and using this fragment to search a genomic DNA library by hybridization. The predicted peptide sequence exhibited 30-40% identity to other eukaryotic TOP1 genes, yet differed in several features. First, an unusually long acidic region was identified near the amino terminus (28/29 residues are acidic), which resembles other nucleolar peptide motifs. Second, an atypical carboxy-terminal 'tail', absent in other TOP1 genes, followed the active site tyrosine residue. A top1 gene disruption mutant was constructed by replacing the genomic TOP1 gene, with a top1::HygR null allele. This mutant lost the abundant topoisomerase I activity evident in wild-type U.maydis, and displayed a subtle coloration phenotype evident during cell senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号