首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of the initiation factor eIF-2 in skeletal muscle extracts to form ternary initiation complexes ([Met-tRNA(f).eIF-2.GDP]) is decreased by either starvation or diabetes. These conditions also impair the ability of muscle extracts to dissociate [eIF-2.GDP], suggesting inhibition of the guanine nucleotide exchange reaction essential for eIF-2 recycling. We could not, however, detect any change in the phosphorylation state of the alpha subunit of eIF-2. This suggests that eIF-2 activity may be regulated in this system by a mechanism not involving its phosphorylation.  相似文献   

2.
The rate of protein synthesis in skeletal muscle is greatly decreased in response to diabetes and starvation. Analysis of polyribosome profiles indicates that polypeptide-chain initiation is impaired under these conditions. To identify the step in initiation that is affected, we assayed the incorporation of [35S]methionyl-tRNAfMet into [35S]methionyl-tRNAfMet . 40S-ribosomal-subunit initiation complexes in cell-free extracts based on postmitochondrial supernatants prepared from gastrocnemius muscle. Extracts from either starved or diabetic rats were 30-40% less active in forming these complexes compared with those derived from fed or insulin-maintained controls respectively. This change could be reversed by treatment of either starved or diabetic rats with insulin in vivo 30 min before death. Formation of 40S initiation complexes by extracts from either fed or starved rats could be stimulated by the addition of exogenous purified initiation factor eIF-2, but extracts from starved or diabetic rats were more sensitive than controls to stimulation by low concentrations of the factor. These results provide evidence for the acute regulation by insulin of protein synthesis in skeletal muscle at the level of polypeptide-chain initiation, and suggest that in this tissue, as in certain other eukaryotic systems, control of initiation appears to be mediated by changes in the activity of initiation factor eIF-2.  相似文献   

3.
The present study examined the effect of 2,5-di-(tert-butyl)-hydroquinone (tBuHQ), an inhibitor of liver microsomal calcium sequestration, on initiation of protein synthesis in perfused rat liver. Perfusion of livers with a concentration of tBuHQ previously shown to completely inhibit microsomal calcium sequestration in isolated hepatocytes caused a 50% inhibition of protein synthesis. The inhibition was characterized by an increase in liver content of free ribosomal particles and a decrease in polysomes indicating that peptide-chain initiation was slowed relative to elongation. Furthermore, the inhibition was associated with a 7.5-fold increase in the proportion of the alpha-subunit of eukaryotic initiation factor 2 (eIF-2) present in the phosphorylated form and a reduction in the activity of eukaryotic initiation factor 2B (eIF-2B) to 37% of the control value. The results suggest that protein synthesis in rat liver is regulated directly by changes in intracellular calcium concentration through a mechanism involving modulation of the phosphorylation state of eIF-2 alpha.  相似文献   

4.
Protein synthesis in sea urchin eggs is stimulated dramatically upon fertilization. We previously demonstrated that this stimulation is primarily due to an increase in the rate of polypeptide chain initiation which in turn may be regulated at the level of recycling of eukaryotic initiation factor 2 (eIF-2) (Colin, A. M., Brown, B. D., Dholakia, J. N., Woodley, C. L., Wahba, A. J., and Hille, M. B. (1987) Dev. Biol. 123, 354-363). We have now purified eIF-2 from sea urchin Strongylocentrotus purpuratus blastulae to apparent homogeneity by chromatography on DEAE-cellulose, phosphocellulose, Mono Q, Mono P, and Mono S columns. The factor, which differs from mammalian eIF-2, is composed of three non-identical subunits with apparent molecular weights of 40,000-alpha; 47,000-beta, and 58,000-gamma as estimated by sodium dodecyl-polyacrylamide gel electrophoresis. Antibodies raised against rabbit reticulocyte eIF-2 do not cross-react with sea urchin eIF-2. The binding of Met-tRNA(f) to sea urchin eIF-2 is totally dependent on GTP. A 4-fold stimulation in the rate of protein synthesis in unfertilized sea urchin egg extracts is observed by the addition of 1 micrograms of purified eIF-2. The factor also binds GDP to form a binary (eIF-2.GDP) complex which is stable in the presence of Mg2+. GDP binding to sea urchin eIF-2 inhibits ternary (eIF-2-GTP.[35S]Met-tRNA(f) complex formation. The rabbit reticulocyte guanine nucleotide exchange factor (GEF) catalyzes the exchange of GDP bound to sea urchin eIF-2 for GTP and stimulates ternary complex formation. The requirement of GEF for the recycling of eIF-2 suggests that protein synthesis in sea urchins is similar to that in mammalian systems and may also be regulated at the level of GEF activity. The reticulocyte heme-controlled repressor phosphorylates the alpha-subunit of eIF-2 from both sea urchins and rabbit reticulocytes. However, casein kinase II which phosphorylates the beta-subunit of the reticulocyte factor specifically phosphorylates the alpha-subunit of sea urchin eIF-2. In this respect, the sea urchin factor is similar to eIF-2 isolated from other nonmammalian sources. Since both heme controlled repressor and casein kinase II phosphorylate the alpha-subunit of sea urchin eIF-2 caution should be exercised when interpreting the significance of eIF-2(alpha) phosphorylation in sea urchins.  相似文献   

5.
The present study examined the effects of diabetes and insulin treatment of diabetic rats on the activity of the protein synthesis initiation factor, the guanine nucleotide exchange factor. In extracts from gastrocnemius and psoas muscles from two-day diabetic rats, guanine nucleotide exchange factor activity was reduced to 80% and 67% of control values, respectively. Insulin treatment (2 h) restored guanine nucleotide exchange factor activity to control values in both muscles. In contrast, guanine nucleotide exchange factor activity was unchanged in extracts from either soleus muscle or heart from diabetic rats compared to controls. Also, insulin treatment did not increase guanine nucleotide exchange factor activity in extracts from soleus and heart. The results suggest that the diabetes-induced impairment in peptide-chain initiation in fast-twitch skeletal muscle (i.e. gastrocnemius and psoas) is related to an inhibition of guanine nucleotide exchange factor activity and that slow-twitch muscle is spared from the effect on initiation due to the preservation of guanine nucleotide exchange factor activity.  相似文献   

6.
The interaction of GTP with initiation factor eIF-2 in different complexes was studied by affinity labeling using a derivative of [3H]GTP carrying a photoreactive group in the alpha-phosphate moiety. In the binary complex [eIF-2.GTP analogue], in the ternary complex [eIF-2.GTP analogue.Met-tRNAf] as well as in the eIF-2. eIF-2B complex the alpha-subunit of eIF-2 was found to be specifically labeled. GTP is concluded to interact during polypeptide chain initiation with the alpha-subunit of eIF-2 at least by its alpha-phosphate group.  相似文献   

7.
Eukaryotic protein synthesis initiation factor 2 (eIF-2) from rat liver has been resolved into two subfractions by anion-exchange chromatography on DEAE-cellulose. One of these contained all three components (eIF-2 alpha, eIF-2 beta, eIF-2 gamma) characteristic of mammalian eIF-2, whilst the other fraction contained only two. By a number of criteria these were shown to be eIF-2 alpha and eIF-2 gamma. The absence of eIF-2 beta from this fraction was not due to its proteolytic degradation during purification since it was unaffected by the inclusion of a range of proteinase inhibitors in the isolation media. The properties of eIF-2 containing or lacking eIF-2 beta have been directly compared. It was found that eIF-2 beta was not required for the binding of guanine nucleotides to eIF-2 or for formation of ternary initiation complexes with GTP and the initiator tRNA. eIF-2 lacking eIF-2 beta was able to form 40 S initiation complexes and the presence of eIF-2 beta was also unnecessary for the stimulation of eIF-2 activity by the recycling factor, eIF-2B. Some of these findings are at variance with previous reports in which eIF-2 beta was removed proteolytically. The role of eIF-2 beta in the overall physiological function of eIF-2 remains to be elucidated.  相似文献   

8.
The data presented here show that serine-51 of the alpha-subunit of eukaryotic initiation factor eIF-2 is the only residue phosphorylated by the eIF-2 alpha-specific kinases HCR (haem-controlled repressor) and dsI (double-stranded RNA-activated inhibitor) in vitro. This confirms our earlier finding that serine-48 is not labelled by either kinase. Methodology appropriate for the examination of phosphorylation sites in eIF-2 alpha in whole cells and their extracts has been developed, and used to study the site(s) in eIF-2 alpha labelled in reticulocyte lysates. Only serine-51 became phosphorylated under conditions of haem-deficiency or in the presence of double-stranded RNA. No evidence for a second phosphorylation site on the alpha-subunit was obtained with the lysates and conditions used here.  相似文献   

9.
10.
In previous studies, initiation of protein synthesis was shown to be inhibited in perfused rat livers deprived of single essential amino acids. In the present study, histidinol, a competitive inhibitor of histidinyl-tRNA synthetase, was used to amplify the effects of histidine deprivation on protein synthesis in perfused liver to facilitate investigation of mechanisms involved in the inhibition of peptide chain initiation. Protein synthesis was reduced to 77% of the control rate in livers deprived of histidine and to 13% of the control rate in livers deprived of histidine and exposed to 2.0 mM histidinol. The inhibition of protein synthesis caused by histidine deprivation alone was accompanied by a 2-fold increase in the number of free ribosomal particles, a 29% decrease in Met-tRNA(i) binding to 43 S preinitiation complexes, and a 31% reduction in activity of eukaryotic initiation factor 2B (eIF-2B). By comparison, histidine deprivation combined with histidinol addition resulted in a 3-fold increase in free ribosomal particles, a 66% decrease in Met-tRNAi binding, and a 78% reduction in eIF-2B activity. The proportion of the alpha-subunit of eukaryotic initiation factor two (eIF-2) in the phosphorylated form increased from 8.9 +/- 0.8% in control livers to 52.4 +/- 5.5% in response to histidinol. The increase in the amount of eIF-2 alpha in the phosphorylated form apparently was not due to an increase in kinase activity, because there was no change in eIF-2 alpha kinase activity in extracts of liver perfused with medium containing histidinol compared to controls. Instead, the increased phosphorylation of eIF-2 alpha was associated with an inhibition of eIF-2 alpha phosphatase activity. Thus, in contrast to other systems that have been examined, the mechanism involved in the increase in the phosphorylation state of eIF-2 alpha appears to involve an inhibition of eIF-2 alpha phosphatase activity rather than activation of an eIF-2 alpha kinase.  相似文献   

11.
The role of eukaryotic initiation factor 2 (eIF-2) phosphorylation in translational control has been demonstrated in vivo by overexpressing variant forms of eIF-2 alpha that are not phosphorylated. COS-1 cells transiently transfected with expression vectors for human eIF-2 alpha contain 10-20-fold more eIF-2 alpha subunit than the endogenous COS cell eIF-2 trimeric complex. Expression of the variant form of eIF-2 alpha, Ser51Asp, where Asp replaces Ser51, causes inhibition of protein synthesis, whereas the Ser48Asp variant does not. When either Ser48 or Ser51 is replaced by Ala, the variants stimulate dihydrofolate reductase synthesis when the eIF-2 alpha kinase, DAI, is activated. In order to elucidate these mechanisms, we have separated eIF-2 trimeric complexes from free overexpressed eIF-2 alpha subunits by fast protein liquid chromatography Superose chromatography. Pulse-labeled cells transfected with wild-type or variant DNAs produced eIF-2 preparations with greater than 10-fold higher specific radioactivity in the alpha-subunit compared to the gamma-subunit, thus demonstrating that the human eIF-2 alpha produced from the plasmids readily exchanges into COS cell eIF-2 complexes. Both wild-type and Ser48Ala variant forms of the free 2 alpha-subunit, further purified by MonoQ chromatography, are poor substrates for the heme-regulated eIF-2 alpha kinase, HRI, but are good substrates for double-stranded RNA-activated inhibitor in vitro; the Ser51Ala variant subunit is not phosphorylated by either kinase. None of the purified free eIF-2 alpha subunits inhibits phosphorylation of eIF-2 in vitro, even at up to 8-fold molar excess. Examination of the extent of eIF-2 alpha phosphorylation in the COS cell eIF-2 complexes by two-dimensional polyacrylamide gel electrophoresis shows that the stimulation of dihydrofolate reductase synthesis by the Ser51Ala variant is most readily explained by failure of eIF-2 to be phosphorylated. Stimulation by the Ser48Ala variant appears to occur by mitigation of the effect of phosphorylation at Ser51 since the double variant, Ser48Ala-Ser51Asp, inhibits protein synthesis less than the single variant Ser51Asp. The evidence argues strongly against there being a second site of phosphorylation involved in translational repression.  相似文献   

12.
Exposure of the temperature-sensitive leucyl-tRNA synthetase mutant of Chinese hamster ovary cells, tsH1, to the non-permissive temperature of 39.5 degrees C results in a rapid inhibition of polypeptide chain initiation. This inhibition is caused by a reduced ability of the eukaryotic initiation factor eIF-2 to participate in the formation of eIF-2.GTP.Met-tRNAf ternary complexes and thus in the formation of 43S ribosomal pre-initiation complexes. Associated with this decreased eIF-2 activity is an increased phosphorylation of the eIF-2 alpha subunit. It has previously been shown in other systems that phosphorylation of eIF-2 alpha slows the rate of recycling of eIF-2.GDP to eIF-2.GTP catalysed by the guanine nucleotide exchange factor eIF-2B. We show here that phosphorylation of eIF-2 alpha by the reticulocyte haem-controlled repressor also inhibits eIF-2B activity in cell-free extracts derived from tsH1 cells. Thus the observed increased phosphorylation of eIF-2 alpha at the non-permissive temperature in this system is consistent with impaired recycling of eIF-2 in vivo. Using a single-step temperature revertant of tsH1 cells, TR-3 (which has normal leucyl-tRNA synthetase activity at 39.5 degrees C), we demonstrate here that all inhibition of eIF-2 function reverts together with the synthetase mutation. This establishes the close link between synthetase function and eIF-2 activity. In contrast, recharging tRNALeu in vivo in tsH1 cells at 39.5 degrees C by treatment with a low concentration of cycloheximide failed to reverse the inhibition of eIF-2 function. This indicates that tRNA charging per se is not involved in the regulatory mechanism. Our data indicate a novel role for aminoacyl-tRNA synthetases in the regulation of eIF-2 function mediated through phosphorylation of the alpha subunit of this factor. However, in spite of the fact that cell-free extracts from Chinese hamster ovary cells contain protein kinase and phosphatase activities active against either exogenous or endogenous eIF-2 alpha, we have been unable to show any activation of kinase or inactivation of phosphatase following incubation of the cells at 39.5 degrees C.  相似文献   

13.
Determinants of diaphragmatic injury   总被引:1,自引:0,他引:1  
Severe muscle wasting is a characteristic feature of sepsis. We have previously established that the rate of protein synthesis in muscles composed of fast-twitch fibers is severely diminished in response to sepsis. The present studies investigate the biochemical reactions responsible for the decreased rate of protein synthesis using gastrocnemius from control and septic rats perfused in situ. Analysis of free ribosomal subunits indicated peptide-chain initiation was impaired by infection. To characterize biochemical reactions in the pathway of peptide-chain initiation affected, the effect of sepsis on the incorporation of initiator [35S]methionyl-tRNA (met-tRNAi mec) into the 40S initiation complex was examined. Sepsis caused a 65% decrease in the binding of radiolabelled met-tRNAi mec to the 40S initiation complex compared with controls. The binding of met-tRNAmec to the 40S ribosome is regulated by eukaryotic initiation factor eIF-2B, whose activity can be modulated in part by the redox state of pyridine dinucleotides. The mean cytoplasmic NADH/NAD+ ratio was increased 2 fold in sepsis, while the NADPH/NADP+ ratio was unchanged. These findings identify the formation of the 40S initiation complex as a defect in the protein synthesis machinery during sepsis. The decreased formation of the 40S initiation complex in muscle could not be explained by changes in the cytoplasmic redox state.  相似文献   

14.
The inhibitions of protein synthesis initiation in heme-deficient reticulocyte lysates and in GSSG-treated hemin-supplemented lysates are both characterized by the activation of heme-regulated eIF-2 alpha kinase, which phosphorylates the alpha-subunit of eukaryotic initiation factor (eIF-2). In both inhibitions, the accumulation of eIF phosphorylated in alpha-subunit (eIF-2(alpha P)) leads to the sequestration of reversing factor (RF) in a phosphorylated 15 S complex, RF.eIF-2(alpha P), in which RF is nonfunctional. A sensitive assay for the detection of endogenous RF activity in protein-synthesizing lysates indicates that, in GSSG-inhibited (1 mM GSSG) lysates, RF is more profoundly inhibited than in heme-deficient lysates. RF inactivation in GSSG-induced inhibition appears to be due to two separate but additive effects: (i) the formation of the phosphorylated 15 S RF complex, RF.eIF-2(alpha P), and (ii) the formation of disulfide complexes which inhibit RF activity. Both inhibitory effects are overcome by catalytic levels of exogenous RF which permits the resumption of protein synthesis. RF activity and protein synthesis in GSSG-inhibited lysates are efficiently restored by the delayed addition of glucose-6-P or 2-deoxyglucose-6-P (1 mM). The rescue of protein synthesis by hexose phosphate (1 mM) is proportional to the extent of RF recovery and is due in part to NADPH generation; even at levels of hexose phosphate (50 microM) too low to support protein synthesis, partial restoration of RF activity occurs due to increased NADPH/NADP+ ratios. The ability of dithiothreitol (1 mM) to restore RF activity in GSSG-treated but not heme-deficient lysates also provides evidence for a reducing mechanism which functions at the level of RF. The results suggest that NADPH plays a role in the maintenance of sulfhydryl groups essential for RF activity.  相似文献   

15.
The ability of polypeptide components of eukaryotic initiation factor (eIF) 4F to bind to the m7G cap of an mRNA, to be released from that mRNA, and then to rebind to the cap of a second mRNA has been investigated. The release and rebinding steps have been termed "recycling." It was found that eIF-4B stimulates the recycling of the 24-26 kDa (p24) component of eIF-4F, and perhaps of other components as well. By contrast, eIF-4A seemed to have little or no effect on the recycling of eIF-4F components, either in the presence or absence of eIF-4B. The recycled p24 is capable of cross-linking to oxidized cap structures. The recycled factor is also able to stimulate the cross-linking of added eIF-4A, which cross-links poorly in the absence of eIF-4F. By these criteria it seems likely that the recycled eIF-4F components are active for a second round of translational initiation.  相似文献   

16.
《Seminars in Virology》1993,4(4):201-207
Regulation of gene expression frequently involves translational controls that operate at the level of the initiation phase. Initiation of protein synthesis in eukaryotes is promoted by greater than 10 initiation factors. Important among these are initiation factors eIF-2 and eIF-2B, which stimulate methionyl-tRNA binding to 40S ribosomal subunits, and eIF-4A, eIF-4B and eIF-4F, which stimulate mRNA binding. Many of the initiation factors are phosphorylated in vivo, and phosphorylation has been shown to regulate rates of global protein synthesis. Phosphorylation of eIF-2 on its α-subunit results in repression of translation by interfering with the recycling of the factor. Phosphorylation of eIF-4F on its α- and γ-subunits activates this limiting initiation factor and stimulates protein synthesis. Other initiation factor activities may also be regulated by phosphorylation, but these have not yet been characterized in detail. Regulating the translational activity of the cell by phosphorylation appears to be important in virus-infected cells and in the control of cell proliferation.  相似文献   

17.
In contrast to reticulocyte polypeptide chain initiation factor 2 (eIF-2), the Artemia factor retains activity in the presence of Mg2+ or after phosphorylation of its alpha-subunit by rabbit reticulocyte heme-controlled repressor (Mehta, H. B., Woodley, C. L., and Wahba, A. J. (1983) J. Biol. Chem. 258, 3438-3441). Furthermore, we have so far been unable to demonstrate a requirement for a GDP/GTP nucleotide exchange factor with Artemia eIF-2. In order to explain these differences we compared the structure of eIF-2 from Artemia and rabbit reticulocytes by using one- and two-dimensional phosphopeptide and iodopeptide maps. Partial trypsin digestion of the alpha-subunit of Artemia eIF-2 after phosphorylation by the heme-controlled repressor generates a 4000 Mr phosphopeptide. Upon extensive trypsin digestion, the two-dimensional phosphopeptide maps of the alpha-subunits for the reticulocyte and Artemia factors are indistinguishable, whereas the iodopeptide maps are different. In addition, immunoblotting indicates that there is no consistent cross-reactivity of the reticulocyte subunits with antibodies prepared in rabbits against the Artemia eIF-2 subunits. A casein kinase II activity was isolated from Artemia embryos that phosphorylates the beta-subunit of reticulocyte eIF-2, but specifically phosphorylates the alpha-subunit of eIF-2 preparations from several non-mammalian sources, including Artemia, yeast, and wheat germ embryos. Since this kinase phosphorylates a site distinct from that recognized by the heme-controlled repressor, and this phosphorylation does not alter the ability of Artemia eIF-2 to undergo nucleotide exchange, caution must be exercised when interpreting the significance of eIF-2(alpha) phosphorylation in non-mammalian cells.  相似文献   

18.
Phosphocellulose chromatography of initiation factor eIF-2 from rat liver separates it from a protein fraction which is highly stimulatory for [eIF-2.GTP.Met-tRNAf] ternary complex formation. Evidence is presented which indicates that this stimulatory fraction contains a specific GDPase activity. eIF-2 dependent formation of 40S ribosomal initiation complexes is also enhanced by the GDPase preparation. The enzyme may play a role in the recycling of eIF-2 by removing inhibitory GDP which is generated during 80S initiation complex formation.  相似文献   

19.
We have examined the phosphorylation of the alpha-subunit of initiation factor-2 (eIF-2 alpha) in reticulocyte lysates in which translational shut-off was induced by haem-deficiency or by double-stranded RNA. To maximise the phosphorylation of eIF-2 alpha, lysates were supplemented with the broad spectrum phosphatase inhibitor microcystin. Under all conditions tested, serine-51 was the only residue to become labelled. This is consistent with the observation of only two species of eIF-2 alpha in isoelectric focusing/immunoblotting analyses of lysates treated as described above.  相似文献   

20.
T F Sarre 《Bio Systems》1989,22(4):311-325
In eukaryotic cells, protein biosynthesis is controlled at the level of polypeptide chain initiation. During the initiation process, eukaryotic initiation factor 2 (eIF-2) catalyzes the binding of Met-tRNAf and GTP to the 40S ribosomal subunit. In a later step, eIF-2 is released from the ribosomal initiation complex, most likely as an eIF-2.GDP complex, and another initiation factor termed eIF-2B is necessary to recycle eIF-2 by displacing GDP by GTP. In rabbit reticulocytes, inhibition of protein synthesis is accompanied by the phosphorylation of the alpha-subunit of eIF-2, a process that does not render eIF-2 inactive, but prevents it from being recycled by eIF-2B. First described in rabbit reticulocytes as inhibitors of translation, two distinct eIF-2 alpha kinases are known: the haemin-controlled kinase (termed HCI) and the double-stranded RNA-activated kinase (termed DAI). eIF-2 alpha phosphorylation appears to be a reversible control mechanism since corresponding phosphatases have been described. Recent reports indicate a correlation between eIF-2 alpha phosphorylation and the inhibition of protein synthesis in several mammalian cell types under a range of physiological conditions. In this review, the physical and functional features of the known eIF-2 alpha kinases are described with respect to their role in mammalian cells and the mode of activation by cellular signals. Furthermore, the possible impact of the eIF-2/eIF-2B ratio and of the subcellular compartmentation of these factors (and the eIF-2 alpha kinases) on mammalian protein synthesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号