首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein hydrolysate was prepared from pre-treated sheep visceral mass (including stomach, large and small intestines) by enzymatic treatment at 43+/-1 degrees C (at the in situ pH 7.1+/-0.2 of the visceral mass) using fungal protease. The enzyme readily solubilized the proteins of the visceral mass as indicated by the degree of hydrolysis (34%) and nitrogen recovery (>64%). Hydrolysis with an enzyme level of 1% (w/w of total solids) at 43+/-1 degrees C with a pH around 7.0 for 45 min was found to be the optimum condition. The yield of protein hydrolysate was about 6% (w/w). The amino acid composition of the protein hydrolysate that was very hygroscopic, was comparable to that of casein.  相似文献   

2.
Cation exchange chromatography combined with ligand (methotrexate) affinity chromatography on a column desorbed with a pH-gradient was used for separation and large scale purification of two folate binding proteins in human milk. One of the proteins, which had a molecular size of 27 kDa on gel filtration and eluted from the affinity column at pH 5-6 was a cleavage product of a 100 kDa protein eluted at pH 3-4 as evidenced by identical N-terminal amino acid sequences and a reduction in the molecular size of the latter protein to 27 kDa after cleavage of its hydrophobic glycosylphosphatidyl-inositol tail that inserts into Triton X-100 micelles. Chromatofocusing showed that both proteins possessed multiple isoelectric points within the pH range 7-9. The 100 kDa protein exhibited a high affinity to hydrophobic interaction chromatographic gels, whereas this was only the case with unliganded forms of the 27 kDa protein indicative of a decrease in the hydrophobicity of the protein after ligand binding.  相似文献   

3.
啤酒废酵母中β-1,3-葡聚糖的提取工艺   总被引:1,自引:0,他引:1  
研究采用酶-碱法从经超声波处理的废酵母残渣中提取β-1,3-葡聚糖的工艺,通过正交试验得出理想的酶处理工艺条件:酶添加量208U/g,温度50℃、pH6,酶解8h,蛋白质去除率为62.82%,每L废酵母液中可回收0.348g多肽、氨基酸的蛋白水解液;碱处理工艺条件:用30mL质量分数为2% NaOH溶液在70℃处理酶解后的沉淀物5h。所得β-1,3-葡聚糖纯度为90.50%,得率为11.00%,经紫外光谱、薄层层析和性质分析为高纯度的β-1,3-葡聚糖。  相似文献   

4.
Using ion-exchange chromatography and gel filtration, cGMP-dependent protein kinase was purified from prawn tissues 220-fold with a yield of activity of 12%. The apparent Ka values for cGMP, cAMP and 8-Br-cGMP are 1 . 10(-7), 5 . 10(-6) and 5 . 10(-8) M, respectively; the apparent Km values for ATP in the presence of cGMP is 9 . 10(-6) M. The cGMP-stimulated protein kinase activity was observed only in the presence of SH-compounds and high Mg2+ concentrations (500-100 mM). The protein kinase demonstrated a broad pH optimum wih a maximum at pH 6.8-7.2. The elution volume of the enzyme during gel filtration corresponded to a globular protein with molecular weight of 140,000.  相似文献   

5.
Protein hydrolysate was prepared from visceral waste proteins of Catla (Catla catla), an Indian freshwater major carp. Hydrolysis conditions (viz., time, temperature, pH and enzyme to substrate level) for preparing protein hydrolysates from the fish visceral waste proteins were optimized by response surface methodology (RSM) using a factorial design. Model equation was proposed with regard to the effect of time, temperature, pH and enzyme to substrate level. An enzyme to substrate level of 1.5% (v/w), pH 8.5, temperature of 50 degrees C and a hydrolysis time of 135 min were found to be the optimum conditions to obtain a higher degree of hydrolysis close to 50% using alcalase. The amino acid composition of the protein hydrolysate prepared using the optimized conditions revealed that the protein hydrolysate was similar to FAO/WHO reference protein. The chemical scores computed indicated methionine to be the most limiting amino acid. The protein hydrolysate can well be used to meet the amino acid requirements of juvenile common carp and hence has the potential for application as an ingredient in balanced fish diets.  相似文献   

6.
The use of 5-methyltryptophan as an internal standard to facilitate tryptophan determination is described. Protein is hydrolyzed in the presence of 5-methyltryptophan for 18 hr at 120° in 5.0n NaOH in the absence of oxygen and in the presence of starch or thiodiglycol as an antioxidant. Ion-exchange chromatography of the hydrolysate on Durrum DC-2 resin using pH 5.43 citrate (0.175n Na+) completely resolved tryptophan and 5-methyltryptophan from one another, other amino acids, and artifacts of the alkaline hydrolysate. The chromatographic conditions and stability of tryptophan and 5-methyltryptophan were established initially by demonstrating quantitative recovery of both amino acids that had been added prior to hydrolysis of ribonuclease A, a protein devoid of tryptophan. The tryptophan content of several well-characterized proteins was determined, and the results, after correction to 100% recovery of 5-methyltryptophan, agreed well with values obtained by established procedures.  相似文献   

7.
The following general characteristics of 21-hydroxylase activity were determined using pooled microsomes obtained from three glands. Enzyme activity exhibited a broad pH dependence, being optimal between pH 7.4-pH 7.8, and was maximal with NADPH in the range 2 to 4.75 X 10(-4)mol/l. No microsomal 21-hydroxylase activity was detected in the absence of NADPH or substrate and when heat denatured microsomes were employed. Enzyme activity was depressed by greater than 75% in the presence of 100% oxygen or nitrogen. In a second set of experiments, microsomal fractions were prepared individually from 7 glands. In the presence of 17 alpha-hydroxy progesterone (2.0 X 10(-7) and 2.0 X 10(-6)mol/l) product formation was linear with time for up to 90 s when the microsomal protein concentration was 5, 10 and 20 micrograms/ml. Between 5 and 30% of the substrate was converted during the first 60 s. In 5/7 of the glands the addition of the autologous cytosol (20 micrograms protein/ml) was without effect, and enzyme activity (using a 60 s reaction and either 2.0 X 10(-7) or 2 X 10(-6)mol/l 17 alpha-hydroxy progesterone was directly proportional to the microsomal protein concentration (range 0-20 micrograms/ml). With the other 2 adrenals 21-hydroxylation was not proportional to the same range of microsomal protein concentrations, although it became so upon the addition of cytosol, which significantly augmented activity. There was considerable variation in enzyme activity between glands from different individuals (Vmax ranging from 2.6 to 16.6 X 10(-9) mol/min/mg protein) and in the apparent Km's (from 0.22 to 1.1 X 10(-6)mol/l). In the two preparations sensitive to cytosol, the Vmax increased 2-fold, and the Km was 3 times lower. Cytosol was without effect upon the kinetic characteristics of the other 5 microsomal preparations. Ascorbic acid (1 X 10(-3) mol/l) depressed enzyme activity by 25-43% whereas oxidised and reduced glutathione (1 X 10(-3) mol/l) showed a slight and variable effect upon 21-hydroxylation.  相似文献   

8.
This study concerns the production of yeast extract from spent brewer's yeast using rotary microfiltration as a means to combine debittering and cell debris separation into a single step, without using a toxic alkali wash. The pH of yeast homogenate was found to affect protein yield and bitterness of the product. Rotary filtration of yeast homogenate at various pHs resulted in different percent protein transmissions. These were found to be 5.05%, 9.83%, and 30.83% for pH 5, 6, and 7.5, respectively. The bitterness concentration in the permeate was also found to be higher at higher pHs. Autolysis of the cell homogenate prior to filtration increased protein yield and decreased bitterness considerably. At pH 5.5, the protein transmission was increased to 60% and debittering efficiency was increased from 59% to 86%. The permeate flux and protein productivity could be further increased by increasing the rotational speed, but this resulted in a decrease in debittering efficiency. Thus, the rotational speed should be carefully selected to compromise between the yield and product quality. Furthermore, for the tested rotational speeds of 600 and 1000 rpm, the change in feed flow rate from 11 to 35 L h(-1) changes the flow behavior from turbulent vortex flow to laminar vortex flow, thus decreasing the flux and protein productivity.  相似文献   

9.
A S-adenosylmethionine:protein-lysine N-methyltransferase (EC 2.1.1.43) has been purified from rat brain cytosol 7,080-fold with a yield of 8%, using octopus calmodulin as a substrate. It contains a lysine residue that is not fully methylated. The enzyme was purified by ammonium sulfate fractionation, Sephacryl S-200 gel filtration, and phosphocellulose and octopus calmodulin-Sepharose affinity chromatographies. Among protein substrates, it was highly specific toward octupus calmodulin. The Km values for octopus calmodulin and S-adenosyl-L-methionine were found to be 2.2 X 10(-8) M and 0.8 X 10(-6) M, respectively. The molecular weight was estimated to be 57,000 by gel filtration and the pH optimum was between 7.5 and 8.5. The enzyme was stimulated in the presence of 10(-7) M Mn2+ and 10(-4) M Ca2+. HPLC of the acid hydrolysate of methyl-3H-labeled calmodulin showed the formation of epsilon-N-mono, epsilon-N-di, and epsilon-N-trimethyllysine. Reverse-phase HPLC of tryptic peptides of the methyl-3H-labeled calmodulin demonstrated that the labeled N-methyllysine lies in the 107-126 peptide. These findings suggest that this enzyme methylated a specific lysine residue of octopus calmodulin.  相似文献   

10.
Tang L  Sun J  Zhang HC  Zhang CS  Yu LN  Bi J  Zhu F  Liu SF  Yang QL 《PloS one》2012,7(5):e37863
Peanut protein and its hydrolysate were compared with a view to their use as food additives. The effects of pH, temperature and protein concentration on some of their key physicochemical properties were investigated. Compared with peanut protein, peanut peptides exhibited a significantly higher solubility and significantly lower turbidity at pH values 2-12 and temperature between 30 and 80°C. Peanut peptide showed better emulsifying capacity, foam capacity and foam stability, but had lower water holding and fat adsorption capacities over a wide range of protein concentrations (2-5 g/100 ml) than peanut protein isolate. In addition, peanut peptide exhibited in vitro antioxidant properties measured in terms of reducing power, scavenging of hydroxyl radical, and scavenging of DPPH radical. These results suggest that peanut peptide appeared to have better functional and antioxidant properties and hence has a good potential as a food additive.  相似文献   

11.
A protein tyrosine kinase with an apparent Mr of 60,000 was highly purified from bovine spleen and used to phosphorylate poly(Glu, Tyr) (4:1) on tyrosine residues for the study of phosphotyrosyl protein phosphatases from this tissue. About 70% of the phosphotyrosyl protein phosphatase activity in extracts of bovine spleen was adsorbed on DEAE-Sepharose. Chromatography of the eluted phosphotyrosyl protein phosphatases on phosphocellulose indicated the presence of at least two species, one that did not bind to the phosphocellulose and a second species that did bind and was eluted at about 0.5 M NaCl. The phosphatase that did not bind to phosphocellulose was further purified by successive chromatography on poly(L-lysine)-Sepharose, L-tyrosine-agarose, poly(Glu,Tyr)-Sepharose, and Sephacryl S-200. The enzyme had an apparent Mr of 50,000 as estimated by gel filtration and 52,000 as estimated by NaDodSO4- polyacrylamide gel electrophoresis. The phosphatase exhibited a pH optimum of 6.5-7.0, was inhibited by Zn2+ and vanadate ions, and was stimulated by EDTA. Sodium fluoride and sodium pyrophosphate, inhibitors of phosphoseryl protein phosphatases, had no effect on the enzyme. Protein inhibitors of type 1 phosphoseryl/threonyl phosphatase were also ineffective.  相似文献   

12.
Protein hydrolysate was prepared from visceral waste proteins of an Indian freshwater major carp, Catla catla. Hydrolysis conditions (viz., time, temperature and enzyme to substrate level) for preparing protein hydrolysates from the fish visceral waste proteins using in situ pH of the visceral mass were optimized by response surface methodology (RSM) by employing a factorial design. The regression coefficient close to 1.0, observed during both experimental and validation runs, indicated the validity of prediction model. An enzyme to substrate level of 1.25 % (v/w), temperature of 55 degrees C and a hydrolysis time of 165 min were found to be the optimum conditions to obtain a higher degree of hydrolysis of >48% using multifect-neutral. The amino acid composition of the protein hydrolysate prepared using the optimized conditions revealed that the protein hydrolysate was similar to FAO/WHO reference protein. The chemical scores computed indicated methionine to be the most limiting amino acid. The protein hydrolysate has the potential for application as an ingredient in balanced fish diets.  相似文献   

13.
Proteins in delimed tannery fleshings were fermentatively hydrolysed using Enterococcus faecium NCIM5335 and also hydrolysed using mild organic acids (formic acid and propionic acid). The liquor portion containing hydrolysed proteins was spray dried, in both the cases, to obtain a powder. The spray dried powder was evaluated for in vitro antioxidant activities with respect to scavenging different free radicals and antibacterial properties against nine different pathogens. Fermentation and acid hydrolysates scavenged 83 and 75.3% of 2,2-azino-bis-3-ethyl-benzthiazoline-6-sulphonic acid (ABTS) radicals, respectively, at a protein concentration of 0.25 mg. Further, fermentation hydrolysate showed higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of 59% as compared to 56% scavenging by acid hydrolysate at a protein concentration of 5 mg. Acid hydrolysate exhibited lesser (82.3%) peroxy radical scavenging compared to hydrolysate from fermentation (88.2%) at a protein concentration of 10 mg. However, acid hydrolysate exhibited higher (89.2%) superoxide anion scavenging while its fermentation counterpart showed lower activity (85.4%) at 2.5 mg hydrolysate protein. Well as superoxide anion scavenging properties. All the in vitro antioxidant properties exhibited dose dependency. Fermentation hydrolysate exhibited maximum antagonistic activity against Salmonella typhi FB231, from among host of pathogens evaluated. Both the hydrolysates have potential to be ingredients in animal feeds and can help reduce oxidative stress in the animals.  相似文献   

14.
A fusion protein composed of a cellulose-binding module (CBM) from Neocallimastix patriciarum cellulase 6A and lipase B from Candida antarctica (CALB), was produced by Pichia pastoris Mut(+) in high-cell density bioreactor cultures. The production was induced by switching from growth on glycerol to growth on methanol. The lipase activity in the culture supernatant increased at an almost constant rate up to a value corresponding to 1.3 g x l(-1) of CBM-CALB. However, only about 40% of the product was of full-length according to Western blot analysis. This loss was due to a cleavage of the protein in the linker between the CBM and the CALB moieties. The cleavage was catalyzed by serine proteases in the culture supernatant. The CALB-moiety was subjected to further slow degradation by cell-associated proteolysis. Different strategies were used to reduce the proteolysis. Previous efforts to shorten the linker region resulted in a stable protein but with ten times reduced product concentration in bioreactor cultures (Gustavsson et al. 2001, Protein Eng. 14, 711-715). Addition of rich medium for protease substrate competition had no effect on the proteolysis of CBM-CALB. The kinetics for the proteolytic reactions, with and without presence of cells were shown to be influenced by pH. The fastest reaction, cleavage in the linker, was substantially reduced at pH values below 5.0. Decreasing the pH from 5.0 to 4.0 in bioreactor cultures resulted in an increase of the fraction of full-length product from 40 to 90%. Further improvement was achieved by decreasing the temperature from 30 to 22 degrees C during the methanol feed phase. By combining the optimal pH and the low temperature almost all product (1.5 g x l(-1)) was obtained as full-length protein with a considerably higher purity in the culture supernatant compared with the original cultivation.  相似文献   

15.
A divalent cation-independent and spermine-stimulated phosphatase (protein phosphatase SP) that is active toward the phosphorylated pyruvate dehydrogenase complex has been purified about 15,000-fold to near homogeneity from extracts of bovine kidney mitochondria. Half-maximal stimulation, 1.5- to 3-fold at pH 7.0-7.3, occurred at 0.5 mM spermine. Protein phosphatase SP exhibited an apparent Mr = 140,000-170,000 as estimated by gel-filtration chromatography on Sephacryl S-300. Two major subunits, with apparent Mr = 60,000 and 34,000, were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel-permeation chromatography of protein phosphatase SP on Sephacryl S-200 in the presence of 6 M urea and 1.4 M NaCl increased its activity 3- to 6-fold and was accompanied by conversion to the catalytic subunit with an apparent Mr = approximately 34,000. Protein phosphatase SP was inactive with p-nitrophenyl phosphate and was not inhibited by protein phosphatase inhibitor 1, inhibitor 2, or the protein inhibitor of branched-chain alpha-keto acid dehydrogenase phosphatase. Protein phosphatase SP was inhibited by sheep antibody to the catalytic subunit of protein phosphatase 2A from rabbit skeletal muscle. It appears that protein phosphatase SP is related to protein phosphatase 2A.  相似文献   

16.
Active nonphosphorylated fructose bisphosphatase (EC 3.1.3.11) was purified from bakers' yeast. After chromatography on phosphocellulose, the enzyme appeared as a homogeneous protein as deduced from polyacrylamide gel electrophoresis, gel filtration, and isoelectric focusing. A Stokes radius of 44.5 A and molecular weight of 116,000 was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate resulted in three protein bands of Mr = 57,000, 40,000, and 31,000. Only one band of Mr = 57,000 was observed, when the single band of the enzyme obtained after polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate was eluted and then resubmitted to electrophoresis in the presence of sodium dodecyl sulfate. Amino acid analysis indicated 1030 residues/mol of enzyme including 12 cysteine moieties. The isoelectric point of the enzyme was estimated by gel electrofocusing to be around pH 5.5. The catalytic activity showed a maximum at pH 8.0; the specific activity at the standard pH of 7.0 was 46 units/mg of protein. Fructose 1,6-bisphosphatase b, the less active phosphorylated form of the enzyme, was purified from glucose inactivated yeast. This enzyme exhibited maximal activity at pH greater than or equal to 9.5; the specific activity measured at pH 7.0 was 25 units/mg of protein. The activity ratio, with 10 mM Mg2+ relative to 2 mM Mn2+, was 4.3 and 1.8 for fructose 1,6-bisphosphatase a and fructose 1,6-bisphosphatase b, respectively. Activity of fructose 1,6-bisphosphatase a was 50% inhibited by 0.2 microM fructose 2,6-bisphosphate or 50 microM AMP. Inhibition by fructose 2,6-bisphosphate as well as by AMP decreased with a more alkaline pH in a range between pH 6.5 and 9.0. The inhibition exerted by combinations of the two metabolites at pH 7.0 was synergistic.  相似文献   

17.
Tauropine dehydrogenase (tauropine:NAD oxidoreductase) was purified from the shell adductor muscle of the ormer, Haliotis lamellosa. The enzyme was found to utilize stoichiometrically NADH as co-enzyme and pyruvate and taurine as substrates producing tauropine [rhodoic acid; N-(D-1-carboxyethyl)-taurine]. The enzyme was purified to a specific activity of 463 units/mg protein using a combination of ammonium sulphate fractionation, ion-exchange and affinity chromatography. The relative molecular mass was 38,000 +/- 1000 when assessed by gel filtration on Ultrogel AcA 54 and 42,000 +/- 150 by electrophoresis on 5-10% polyacrylamide gels in the presence of 1% sodium dodecyl sulphate; the data suggest a monomeric structure. Tauropine and pyruvate were found to be the preferred substrates. Among the amino acids tested for activity with the enzyme, only alanine is used as an alternative substrate, but with a rate less than 6% of the enzyme activity with taurine. Of the oxo acids tested, 2-oxobutyrate and 2-oxovalerate were also found to be substrates. Apparent Km values for the substrates NADH, pyruvate and taurine are 0.022 +/- 0.003 mM, 0.64 +/- 0.07 mM and 64.7 +/- 5.4 mM, respectively, at pH 7.0 and for the products, NAD+ and tauropine, are 0.29 +/- 0.01 mM and 9.04 +/- 1.27 mM, respectively, at pH 8.3. Apparent Km values for both pyruvate and taurine decrease with increasing co-substrate (taurine or pyruvate) concentration. NAD+ and tauropine were found to be product inhibitors of the forward reaction. NAD+ was a competitive inhibitor of NADH, whereas tauropine gave a mixed type of inhibition with respect to pyruvate and taurine. Succinate was found to inhibit non-competitively with respect to taurine and pyruvate with an apparent Ki value in the physiological range of this anaerobic end product. The inhibition by L-lactate, not an end product in the ormer, was competitive with respect to pyruvate. The physiological role or tauropine dehydrogenase during anaerobiosis is discussed.  相似文献   

18.
Regulation of Staphylococcal Enterotoxin B   总被引:18,自引:1,他引:17       下载免费PDF全文
Several factors influenced the formation of enterotoxin B by Staphylococcus aureus strain S-6. In the standard casein hydrolysate medium, toxin was not produced in detectable quantities during exponential growth; it was produced during the post-exponential phase when total protein synthesis was arithmetic. The rate of toxin synthesis was much greater than the rate of total protein synthesis. The appearance of enterotoxin was inhibited by chloramphenicol; thus, the presence of toxin was dependent on de novo protein synthesis. When low concentrations of glucose (<0.30%) were added to the casein hydrolysate medium, growth was diauxic; glucose was completely metabolized during the first growth period. During the second growth period, enterotoxin was synthesized. In unbuffered casein hydrolysate medium containing excess glucose, toxin synthesis was completely repressed. The absence of toxin production under such conditions might be explained by the low (4.6) pH resulting from the acid end products of glucose metabolism. At pH <5.0, little or no toxin was produced. Toxin synthesis was initiated in the presence of glucose when the medium were buffered at any pH above 5.6. In such media, the differential rates of toxin synthesis, with respect to the rates of total protein synthesis, were lower than the differential rates in casein hydrolysate medium alone. Addition of glucose to a culture synthesizing toxin resulted in an immediate decrease in the differential rate without any change in pH. Thus, toxin synthesis appeared to be regulated by catabolite repression.  相似文献   

19.
Rodis P  Hoff JE 《Plant physiology》1984,74(4):907-911
Protein crystals isolated from potato tubers were found to consist of a proteinase inhibitor active against the cysteine proteinases papain, chymopapain, and ficin. The molecular weight as determined by gel filtration at pH 4.3 or by gel electrophoresis in the presence of dodecylsulfate was 80 kilodaltons. When the inhibitor was evaluated at pH 8.4 in a linear concentration (4-30% polyacrylamide) under nondenaturing conditions, it appeared as two bands of approximately 320 to 350 kilodaltons indicating that the inhibitor forms tetrameric aggregates in neutral or weakly alkaline media, while the monomeric form predominates under acidic conditions. Gel filtration in the presence of varying amounts of papain suggested that the monomer combines with four papain molecules. The inhibitor contains no cystine.  相似文献   

20.
Protein kinases were separated from rat kidney nuclear extract by hydroxylapatite column chromatography. Five (I-V) different protein kinases were isolated when histone was used as a substrate. Two (I and III) of them stimulated phosphorylation of c-erb A-beta protein (50 kDa) expressed in Escherichia coli. The c-erb A product has an activity of high affinity T3 binding. One (I) of the kinases was dependent on cyclic adenosine 3',5'-monophosphate (cyclic AMP). The other kinase (III) was not dependent on cyclic nucleotides. The latter kinase was eluted from hydroxylapatite column with 0.05 M PO4 at pH 7.4. The sedimentation coefficient(s) estimated by continuous sucrose density gradient centrifugation was approximately 6.0 Km values for ATP were estimated by double reciprocal analyses, which gave 110.0 microM in the protein kinase I (in the presence of 10(-6) M cyclic AMP) and 25 microM in the protein kinase III, respectively. The data showed that 1.0 mol phosphate was incorporated into 80 mol of c-erb A protein (50 kDa) either in the presence of protein kinase I (with 10(-6) M cyclic AMP) or in the presence of protein kinase III. These results suggested that there are protein kinases for c-erb A protein, whose functional properties are similar to those of nuclear T3 receptor, in rat kidney nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号