首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term potentiation (LTP) of synaptic transmission in the hippocampus is a robust form of synaptic plasticity that may contribute to mammalian memory formation. A variety of pharmacological evidence suggests that persistent kinase activation contributes to the maintenance of LTP. To determine whether persistent activation of protein kinases was associated with the maintenance phase of LTP, protein kinase activity was measured in control and LTP samples using exogenous protein kinase substrates in an in vitro assay of homogenates of the CA1 region of rat hippocampal slices. After LTP, protein kinase activity was persistently increased, and the induction of this effect was blocked by the N-methyl-D-aspartate receptor antagonist DL-2-amino-5-phosphonovaleric acid. The increased protein kinase activity was found to be significantly attenuated by PKC(19-36), a selective peptide inhibitor of protein kinase C. Thus, LTP is associated with an N-methyl-D-aspartate receptor-mediated generation of a persistently activated form of protein kinase C. These data lend strong support to the model that persistent protein kinase activation contributes to the maintenance of LTP.  相似文献   

2.
Direct phosphorylation of GluA1 by PKC controls α‐amino‐3‐hydroxy‐5‐methyl‐isoxazole‐4‐propionic acid (AMPA) receptor (AMPAR) incorporation into active synapses during long‐term potentiation (LTP). Numerous signalling molecules that involved in AMPAR incorporation have been identified, but the specific PKC isoform(s) participating in GluA1 phosphorylation and the molecule triggering PKC activation remain largely unknown. Here, we report that the atypical isoform of PKC, PKCλ, is a critical molecule that acts downstream of phosphatidylinositol 3‐kinase (PI3K) and is essential for LTP expression. PKCλ activation is required for both GluA1 phosphorylation and increased surface expression of AMPARs during LTP. Moreover, p62 interacts with both PKCλ and GluA1 during LTP and may serve as a scaffolding protein to place PKCλ in close proximity to facilitate GluA1 phosphorylation by PKCλ. Thus, we conclude that PKCλ is the critical signalling molecule responsible for GluA1‐containing AMPAR phosphorylation and synaptic incorporation at activated synapses during LTP expression.  相似文献   

3.
Hippocampal long-term potentiation (LTP) is a persistent increase in the efficacy of synaptic transmission, which is widely thought to be a cellular mechanism that could contribute to learning and memory. Studies on the biochemical mechanisms underlying LTP suggest the involvement of protein kinases in both LTP induction and maintenance. In this report we describe an LTP-associated increase in the phosphorylation in vitro of a 17-kDa protein kinase C (PKC) substrate protein, which we have termed P17, in homogenates from the CA1 region of rat hippocampal slices. This LTP-associated increase in phosphorylation was expressed independent of significant levels of free Ca2+, as phosphorylation reactions were performed in the presence of 500 microM EGTA. The increased phosphorylation of P17 was substantially inhibited by PKC(19-36), a selective inhibitor of PKC. These data support the model that persistent PKC activation contributes to the maintenance of LTP and implicate P17 as a potential target for PKC in the CA1 region of the hippocampus.  相似文献   

4.
Activation of protein kinase C (PKC) is one of the biochemical pathways thought to be activated during activity-dependent synaptic plasticity in the brain, and long-term potentiation (LTP) and long-term depression (LTD) are two of the most extensively studied models of synaptic plasticity. Here we have examined changes in the in situ phosphorylation level of two major PKC substrates, myristoylated alanine-rich C kinase substrate (MARCKS) and growth-associated protein (GAP)-43/B-50, after pharmacological stimulation or induction of LTP or LTD in the CA1 field of the hippocampus. We find that direct PKC activation with phorbol esters, K+-induced depolarization, and activation of metabotropic glutamate receptors increase the in situ phosphorylation of both MARCKS and GAP-43/B-50. The induction of LTP increased the in situ phosphorylation of both MARCKS and GAP-43/B-50 at 10 min following high-frequency stimulation, but only GAP-43/B-50 phosphorylation remained elevated 60 min after LTP induction. Furthermore, blockade of LTP induction with the NMDA receptor antagonist D-2-amino-5-phosphonopentanoic acid prevented elevations in GAP-43/B-50 phosphorylation but did not prevent the elevation in MARCKS phosphorylation 10 min following LTP induction. The induction of LTD resulted in a reduction in GAP-43/B-50 phosphorylation but did not affect MARCKS phosphorylation. Together these findings show that activity-dependent synaptic plasticity elicits PKC-mediated phosphorylation of substrate proteins in a highly selective and coordinated manner and demonstrate the compartmentalization of PKC-substrate interactions. Key Words: Protein kinase C-Myristoylated alanine-rich C kinase substrate-Growth-associated protein-43-Long-term potentiation-Long-term depression-(RS)-alpha-Methyl-4-carboxyphenylglycine-D-2-Amino-5-ph osphonopentanoic acid-Glutamate.  相似文献   

5.
Abstract: Activation of protein kinase C (PKC) and phosphorylation of its presynaptic substrate, the 43-kDa growth-associated protein GAP-43, may contribute to the maintenance of hippocampal long-term potentiation (LTP) by enhancing the probability of neurotransmitter release and/or modifying synaptic morphology. Induction of LTP in rat hippocampal slices by high-frequency stimulation of Schaffer collateral-CA1 synapses significantly increased the PKC-dependent phosphorylation of GAP-43, as assessed by quantitative immunoblotting with a monoclonal antibody that recognizes an epitope that is specifically phosphorylated by PKC. The stimulatory effect of high-frequency stimulation on levels of immunoreactive phosphorylated GAP-43 was not observed when 4-amino-5-phosphonovalerate (50 µM), an N-methyl-d -aspartate (NMDA) receptor antagonist, was bath-applied during the high-frequency stimulus. This observation supports the hypothesis that a retrograde messenger is produced postsynaptically following NMDA receptor activation and diffuses to the presynaptic terminal to activate PKC. Two retrograde messenger candidates—arachidonic acid and nitric oxide (sodium nitroprusside was used to generate nitric oxide)—were examined for their effects in hippocampal slices on PKC redistribution from cytosol to membrane as an indirect measure of enzyme activation and PKC-specific GAP-43 phosphorylation. Bath application of arachidonic acid, but not sodium nitroprusside, at concentrations that produce synaptic potentiation (100 µM and 1 mM, respectively) significantly increased translocation of PKC immunoreactivity from cytosol to membrane as well as levels of immunoreactive, phosphorylated GAP-43. The stimulatory effect of arachidonic acid on GAP-43 phosphorylation was also observed in hippocampal synaptosomes. These results indicate that arachidonic acid may contribute to LTP maintenance by activation of presynaptic PKC and phosphorylation of GAP-43 substrate. The data also suggest that nitric oxide does not activate this signal transduction system and, by inference, activates a distinct biochemical pathway.  相似文献   

6.
Abstract: One important aspect of synaptic plasticity is that transient stimulation of neuronal cell surface receptors can lead to long-lasting biochemical and physiological effects in neurons. In long-term potentiation (LTP), generation of autonomously active protein kinase C (PKC) is one biochemical effect persisting beyond the NMDA receptor activation that triggers plasticity. We previously observed that the expression of early LTP is associated with a phosphatase-reversible alteration in PKC immunoreactivity, suggesting that autophosphorylation of PKC might be elevated in LTP. In the present studies we tested the hypothesis that PKC phosphorylation is persistently increased in the early maintenance of LTP. We generated an antiserum that selectively recognizes the α and βII isoforms of PKC autophosphorylated in the C-terminal domain. Using western blotting with this antiserum we observed an NMDA receptor-mediated increase in phosphorylation of PKC 1 h after LTP was induced. How is the increased phosphorylation maintained in the cell in the face of ongoing phosphatase activity? We observed that dephosphorylation of PKC in vitro requires the presence of cofactors normally serving to activate PKC, i.e., Ca2+, phosphatidylserine, and diacylglycerol. Based on these observations and computer modeling of the three-dimensional structure of the PKC catalytic core, we propose a “protected site” model of PKC autophosphorylation, whereby the conformation of PKC regulates accessibility of the phosphates to phosphatase. Although we have proposed the protected site model based on our studies of PKC phosphorylation in LTP, phosphorylation of protected sites might be a general biochemical mechanism for the generation of stable, long-lasting physiologic changes.  相似文献   

7.
The basal ganglia is a brain region critically involved in reinforcement learning and motor control. Synaptic plasticity in the striatum of the basal ganglia is a cellular mechanism implicated in learning and neuronal information processing. Therefore, understanding how different spatio-temporal patterns of synaptic input select for different types of plasticity is key to understanding learning mechanisms. In striatal medium spiny projection neurons (MSPN), both long term potentiation (LTP) and long term depression (LTD) require an elevation in intracellular calcium concentration; however, it is unknown how the post-synaptic neuron discriminates between different patterns of calcium influx. Using computer modeling, we investigate the hypothesis that temporal pattern of stimulation can select for either endocannabinoid production (for LTD) or protein kinase C (PKC) activation (for LTP) in striatal MSPNs. We implement a stochastic model of the post-synaptic signaling pathways in a dendrite with one or more diffusionally coupled spines. The model is validated by comparison to experiments measuring endocannabinoid-dependent depolarization induced suppression of inhibition. Using the validated model, simulations demonstrate that theta burst stimulation, which produces LTP, increases the activation of PKC as compared to 20 Hz stimulation, which produces LTD. The model prediction that PKC activation is required for theta burst LTP is confirmed experimentally. Using the ratio of PKC to endocannabinoid production as an index of plasticity direction, model simulations demonstrate that LTP exhibits spine level spatial specificity, whereas LTD is more diffuse. These results suggest that spatio-temporal control of striatal information processing employs these Gq coupled pathways.  相似文献   

8.
A leading candidate in the process of memory formation is hippocampal long-term potentiation (LTP), a persistent enhancement in synaptic strength evoked by the repetitive activation of excitatory synapses, either by experimental high-frequency stimulation (HFS) or, as recently shown, during actual learning. But are the molecular mechanisms for maintaining synaptic potentiation induced by HFS and by experience the same? Protein kinase Mzeta (PKMζ), an autonomously active atypical protein kinase C isoform, plays a key role in the maintenance of LTP induced by tetanic stimulation and the storage of long-term memory. To test whether the persistent action of PKMζ is necessary for the maintenance of synaptic potentiation induced after learning, the effects of ZIP (zeta inhibitory peptide), a PKMζ inhibitor, on eyeblink-conditioned mice were studied. PKMζ inhibition in the hippocampus disrupted both the correct retrieval of conditioned responses (CRs) and the experience-dependent persistent increase in synaptic strength observed at CA3-CA1 synapses. In addition, the effects of ZIP on the same associative test were examined when tetanic LTP was induced at the hippocampal CA3-CA1 synapse before conditioning. In this case, PKMζ inhibition both reversed tetanic LTP and prevented the expected LTP-mediated deleterious effects on eyeblink conditioning. Thus, PKMζ inhibition in the CA1 area is able to reverse both the expression of trace eyeblink conditioned memories and the underlying changes in CA3-CA1 synaptic strength, as well as the anterograde effects of LTP on associative learning.  相似文献   

9.
Regulation of neuronal NMDA receptor (NMDAR) is critical in synaptic transmission and plasticity. Protein kinase C (PKC) promotes NMDAR trafficking to the cell surface via interaction with NMDAR-associated proteins (NAPs). Little is known, however, about the NAPs that are critical to PKC-induced NMDAR trafficking. Here, we showed that calcium/calmodulin-dependent protein kinase II (CaMKII) could be a NAP that mediates the potentiation of NMDAR trafficking by PKC. PKC activation promoted the level of autophosphorylated CaMKII and increased association with NMDARs, accompanied by functional NMDAR insertion, at postsynaptic sites. This potentiation, along with PKC-induced long term potentiation of the AMPA receptor-mediated response, was abolished by CaMKII antagonist or by disturbing the interaction between CaMKII and NR2A or NR2B. Further mutual occlusion experiments demonstrated that PKC and CaMKII share a common signaling pathway in the potentiation of NMDAR trafficking and long-term potentiation (LTP) induction. Our results revealed that PKC promotes NMDA receptor trafficking and induces synaptic plasticity through indirectly triggering CaMKII autophosphorylation and subsequent increased association with NMDARs.  相似文献   

10.
11.
Nefiracetam is a pyrrolidine-related nootropic drug exhibiting various pharmacological actions such as cognitive-enhancing effect. We previously showed that nefiracetam potentiates NMDA-induced currents in cultured rat cortical neurons. To address questions whether nefiracetam affects NMDA receptor-dependent synaptic plasticity in the hippocampus, we assessed effects of nefiracetam on NMDA receptor-dependent long-term potentiation (LTP) by electrophysiology and LTP-induced phosphorylation of synaptic proteins by immunoblotting analysis. Nefiracetam treatment at 1-1000 nM increased the slope of fEPSPs in a dose-dependent manner. The enhancement was associated with increased phosphorylation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) without affecting synapsin I phosphorylation. In addition, nefiracetam treatment increased PKCalpha activity in a bell-shaped dose-response curve which peaked at 10 nM, thereby increasing phosphorylation of myristoylated alanine-rich protein kinase C substrate and NMDA receptor. Nefiracetam treatment did not affect protein kinase A activity. Consistent with the bell-shaped PKCalpha activation, nefiracetam treatment enhanced LTP in the rat hippocampal CA1 region with the same bell-shaped dose-response curve. Furthermore, nefiracetam-induced LTP enhancement was closely associated with CaMKII and PKCalpha activation with concomitant increases in phosphorylation of their endogenous substrates except for synapsin I. These results suggest that nefiracetam potentiates AMPA receptor-mediated fEPSPs through CaMKII activation and enhances NMDA receptor-dependent LTP through potentiation of the post-synaptic CaMKII and protein kinase C activities. Together with potentiation of nicotinic acetylcholine receptor function, nefiracetam-enhanced AMPA and NMDA receptor functions likely contribute to improvement of cognitive function.  相似文献   

12.
Kindling is a use-dependent form of synaptic plasticity and a widely used model of epilepsy. Although kindling has been widely studied, the molecular mechanisms underlying induction of this phenomenon are not well understood. We determined the effect of amygdala kindling on protein kinase C (PKC) activity in various regions of rat brain. Kindling stimulation markedly elevated basal (Ca(2+)-independent) and Ca(2+)-stimulated phosphorylation of an endogenous PKC substrate (which we have termed P17) in homogenates of dentate gyrus, assayed 2 h after kindling stimulation. The increase in P17 phosphorylation appeared to be due at least in part to persistent PKC activation, as basal PKC activity assayed in vitro using an exogenous peptide substrate was increased in kindled dentate gyrus 2 h after the last kindling stimulation. A similar increase in basal PKC activity was observed in dentate gyrus 2 h after the first kindling stimulation. These results document a kindling-associated persistent PKC activation and suggest that the increased activity of PKC could play a role in the induction of the kindling effect.  相似文献   

13.
Abstract: Hippocampal long-term potentiation (LTP) is a long-lasting and rapidly induced increase in synaptic strength. Previous experiments have determined that persistent activation of protein kinase C (PKC) contributes to the early maintenance phase of LTP (E-LTP). Using the back-phosphorylation method, we observed an increase in the phosphorylation of a 21-kDa PKC substrate, termed p21, 45 min after LTP was induced in the CA1 region of the hippocampus. p21 was found to have the same apparent molecular weight as the 18.5-kDa isoform of myelin basic protein (MBP) and was recognized by an antibody to MBP in western blotting and immunoprecipitation. Furthermore, p21 from control and potentiated hippocampal slices and purified MBP have identical phosphopeptide maps when back-phosphorylated and then digested with either endoproteinase Lys-C or endoproteinase Asp-N, suggesting that p21 and MBP are identical proteins. As there was no observed change in the amount of MBP in LTP, the increase in MBP phosphorylation during LTP cannot be explained by a change in the amount of protein. From these experiments, we conclude that the phosphorylation of the 18.5-kDa isoform of MBP is increased during E-LTP.  相似文献   

14.
15.
Incorporation of GluR1-containing AMPA receptors into synapses is essential to several forms of neural plasticity, including long-term potentiation (LTP). Numerous signaling pathways that trigger this process have been identified, but the direct modifications of GluR1 that control its incorporation into synapses are unclear. Here, we show that phosphorylation of GluR1 by PKC at a highly conserved serine 818 residue is increased during LTP and critical for LTP expression. GluR1 is phosphorylated by PKC at this site in vitro and in vivo. In addition, acute phosphorylation at GluR1 S818 by PKC, as well as a phosphomimetic mutation, promotes GluR1 synaptic incorporation. Conversely, preventing GluR1 S818 phosphorylation reduces LTP and blocks PKC-driven synaptic incorporation of GluR1. We conclude that the phosphorylation of GluR1 S818 by PKC is a critical event in the plasticity-driven synaptic incorporation of AMPA receptors.  相似文献   

16.
17.
Long-term potentiation (LTP) is a long-lasting enhancement of synaptic transmission efficacy and is considered the base for some forms of learning and memory. Nitric oxide (NO)-induced formation of cGMP is involved in hippocampal LTP. We have studied in hippocampal slices the effects of application of a tetanus to induce LTP on cGMP metabolism and the mechanisms by which cGMP modulates LTP. Tetanus application induced a transient rise in cGMP, reaching a maximum at 10s and decreasing below basal levels 5 min after the tetanus, remaining below basal levels after 60 min. Soluble guanylate cyclase (sGC) activity increased 5 min after tetanus and returned to basal levels at 60 min. The decrease in cGMP was due to sustained tetanus-induced increase in cGMP-degrading phosphodiesterase activity, which remained activated 60 min after tetanus. Tetanus-induced activation of PDE and decrease of cGMP were prevented by inhibiting protein kinase G (PKG). This indicates that the initial increase in cGMP activates PKG that phosphorylates (and activates) cGMP-degrading PDE, which, in turn, degrades cGMP. Inhibition of sGC, of PKG or of cGMP-degrading phosphodiesterase impairs LTP, indicating that proper induction of LTP involves transient activation of sGC and increase in cGMP, followed by activation of cGMP-dependent protein kinase, which, in turn, activates cGMP-degrading phosphodiesterase, resulting in long-lasting reduction of cGMP content. Hyperammonemia is the main responsible for the neurological alterations found in liver disease and hepatic encephalopathy, including impaired intellectual function. Hyperammonemia impairs LTP in hippocampus by altering the modulation of this sGC-PKG-cGMP-degrading PDE pathway. Exposure of hippocampal slices to 1 mM ammonia completely prevents tetanus-induced decrease of cGMP by impairing PKG-mediated activation of cGMP-degrading phosphodiesterase. This impairment is responsible for the loss of the maintenance of LTP in hyperammonemia, and may be also involved in the cognitive impairment in patients with hyperammonemia and hepatic encephalopathy.  相似文献   

18.
Studies performed on low-density primary neuronal cultures have enabled dissection of molecular and cellular changes during N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP). Various electrophysiological and chemical induction protocols were developed for the persistent enhancement of excitatory synaptic transmission in hippocampal neuronal cultures. The characterisation of these plasticity models confirmed that they share many key properties with the LTP of CA1 neurons, extensively studied in hippocampal slices using electrophysiological techniques. For example, LTP in dissociated hippocampal neuronal cultures is also dependent on Ca(2+) influx through post-synaptic NMDA receptors, subsequent activation and autophosphorylation of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and an increase in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor insertion at the post-synaptic membrane. The availability of models of LTP in cultured hippocampal neurons significantly facilitated the monitoring of changes in endogenous postsynaptic receptor proteins and the investigation of the associated signalling mechanisms that underlie LTP. A central feature of LTP of excitatory synapses is the recruitment of AMPA receptors at the postsynaptic site. Results from the use of cell culture-based models started to establish the mechanism by which synaptic input controls a neuron's ability to modify its synapses in LTP. This review focuses on key features of various LTP induction protocols in dissociated hippocampal neuronal cultures and the applications of these plasticity models for the investigation of activity-induced changes in native AMPA receptors.  相似文献   

19.
The acute hippocampal slice preparation has been widely used to study the cellular mechanisms underlying activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD). Although protein phosphorylation has a key role in LTP and LTD, little is known about how protein phosphorylation might be altered in hippocampal slices maintained in vitro. To begin to address this issue, we examined the effects of slicing and in vitro maintenance on phosphorylation of six proteins involved in LTP and/or LTD. We found that AMPA receptor (AMPAR) glutamate receptor 1 (GluR1) subunits are persistently dephosphorylated in slices maintained in vitro for up to 8 h. alpha calcium/calmodulin-dependent kinase II (alphaCamKII) was also strongly dephosphorylated during the first 3 h in vitro but thereafter recovered to near control levels. In contrast, phosphorylation of the extracellular signal-regulated kinase ERK2, the ERK kinase MEK, proline-rich tyrosine kinase 2 (Pyk2), and Src family kinases was significantly, but transiently, increased. Electrophysiological experiments revealed that the induction of LTD by low-frequency synaptic stimulation was sensitive to time in vitro. These findings indicate that phosphorylation of proteins involved in N-methyl-D-aspartate (NMDA) receptor-dependent forms of synaptic plasticity is altered in hippocampal slices and suggest that some of these changes can significantly influence the induction of LTD.  相似文献   

20.
We have been investigating the hypothesis that the membrane-permeant molecules nitric oxide (NO) and carbon monoxide(CO) may act as retrograde messengers during long-term potentiation (LTP). Inhibitors of either NO synthase or heme oxygenase, the enzyme that produces CO, blocked induction of LTP in the CA1 region of hippocampal slices. Brief application of either NO or CO to slices produced a rapid and long-lasting increase in the size of synaptic potentials if, and only if, the application occurred at the same time as weak tetanic stimulation of the presynaptic fibers. The long-term enhancement by NO or CO was spatially restricted to synapses from active presynaptic fibers and appeared to involve mechanisms utilized by LTP, occluding the subsequent induction of LTP by strong tetanic stimulation. The enhancement by No or CO was not blocked by the NMDA receptor blocker APV, suggesting that NO and CO act downstream for the NMDA receptor. In other systems, both NO and CO produce many of their effects by activation of soluble guanylyl cyclase nd cGMP-dependent protein kinase. An inhibitor of soluble guabylyl cyclase blocked the induction of normal LTP. Conversely, membrane-permeabel analog 8-Br-cGMP produced a rapid onset and long-lasting synaptic enhancement if, and only if, it was applied at the same time as weak presynaptic stimulation. Similarly, two inhibitors of cGMP-dependent protein kinase blocked the induction of normal LTP, and a selective activator of cGMP-dependent protein kinase produced activity-dependent long-lasting synaptic enhancement. 8-Br-cGMP also produced and activity-dependent, long-lasting increase in the amplitude of evoked synaptic current between pairs of hippocampal neurons in dissociated cell culture. In addition, 8-Br-cGMP, like NO, produced a long-lasting increase in the frequency of spontaneous miniature synaptic currents. These results are consistent with the hypothesis that NO and CO, either alone or in combination, serve as retrograde messengers that produce activity-dependent presynaptic enhancement, perhaps by stimulating soluble guanbylyl cyclase and cGMP-dependent protein kinase, during LTP in hippocampus. 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号