首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibody engineering is increasingly being used to influence the properties of monoclonal antibodies to improve their biotherapeutic potential. One important aspect of this is the modulation of glycosylation as a strategy to improve efficacy. Here, we describe mutations of Y407 in the CH3 domain of IgG1 and IgG4 that significantly increase sialylation, galactosylation, and branching of the N-linked glycans in the CH2 domain. These mutations also promote the formation of monomeric assemblies (one heavy-light chain pair). Hydrogen-deuterium exchange mass spectrometry was used to probe conformational changes in IgG1-Y407E, revealing, as expected, a more exposed CH3–CH3 dimerization interface. Additionally, allosteric structural effects in the CH2 domain and in the CH2–CH3 interface were identified, providing a possible explanation for the dramatic change in glycosylation. Thus, the mutation of Y407 in the CH3 domain remarkably affects both antibody conformation and glycosylation, which not only alters our understanding of antibody structure, but also reveals possibilities for obtaining recombinant IgG with glycosylation tailored for clinical applications.  相似文献   

2.
In recent years a number of aglycosylated therapeutic antibodies have entered the clinic. The clinical evaluation of these antibodies has served to dispel concerns that the absence of the ubiquitous N297 glycan in the Fc of IgG might result in immunogenicity, poor in vivo stability or unfavorable pharmacokinetics. Importantly, recent studies have now demonstrated that aglycosylated antibodies can be engineered to display novel effector functions and mechanisms of action that do not appear to be possible with their glycosylated counterparts. Moreover, the ability to manufacture aglycosylated antibodies in lower eukaryotes or in bacteria provides significant bioprocessing advantages in terms of shorter bioprocess development and running times and by completely bypassing the problems associated with the glycan heterogeneity of conventional antibodies. These advantages are poised to catapult aglycosylated antibodies to the forefront of protein therapeutics.  相似文献   

3.
Various biological activities of immunoglobulin G (IgG) including antibody-dependent cellular cytotoxicity (ADCC) are modulated by the structural features of the N-glycans in the Fc part. In this study, we describe a population of IgG1 alloantibodies which are formed during pregnancy against human platelet antigens (HPA) of the fetus, causing fetoneonatal alloimmune thrombocytopenia. By analyzing the Fc-glycosylation of the pathogenic, affinity-purified IgG1 alloantibodies at the glycopeptide level using mass spectrometry, we found markedly decreased levels of core-fucosylation as well as increased levels of galactosylation and sialylation as compared to glycosylation patterns of total serum IgG1 of the same patients. Because IgG1 Fc-core-fucosylation is known to influence ADCC activity, modulation of core-fucosylation may have a profound effect on disease severity and prognosis. Studies in large patient cohorts will have to be performed to establish such correlations. Moreover, experiments in animal models as well as in vitro immunological tests will be needed to unravel the mechanisms regulating IgG Fc glycosylation.  相似文献   

4.
Analysis of the role of glycosylation of the human fibronectin receptor   总被引:11,自引:0,他引:11  
1-Deoxymannojirimycin (MNJ), an inhibitor of Golgi alpha-mannosidase IA and IB, was used to assess the possible roles of asparagine-linked oligosaccharides in the structure and function of the integrin fibronectin receptor from cultured human fibroblasts. These cells normally attach well to fibronectin substrates and have only mature forms of the fibronectin receptor on their surfaces. MNJ inhibits the intracellular trimming of high mannose oligosaccharides, and cells treated with 0.2 mg/ml MNJ synthesize only immature precursor forms of both the alpha and beta subunits of the fibronectin receptor. The immature receptor polypeptides were found to be nonfunctional by two criteria: 1) cells treated with MNJ attached poorly to fibronectin substrates; and 2) receptor from the treated cells was defective in binding to fibronectin affinity columns. The precursor forms of the fibronectin receptor subunits were found on the surfaces of cells treated with MNJ, demonstrating that processing of receptor carbohydrates to mature forms was not necessary for receptor insertion into the plasma membrane. A monoclonal antibody that specifically bound the alpha subunit of the fibronectin receptor immunoprecipitated both alpha and beta subunit polypeptides from both control cells and cells treated with MNJ. Similarly, a monoclonal antibody that specifically bound only the beta subunit also immunoprecipitated both alpha and beta subunit polypeptides of the receptor from extracts of both control and MNJ-treated cells. These results indicate that receptor assembly can occur in the absence of complete oligosaccharide processing. Thus, oligosaccharide processing to the mature form of the fibronectin receptor is important for its binding function but not for receptor assembly or insertion into the plasma membrane.  相似文献   

5.
The human immunoglobulin G (IgG) class is the most prevalent antibody in serum, with the IgG1 subclass being the most abundant. IgG1 is composed of two Fab regions connected to a Fc region through a 15-residue hinge peptide. Two glycan chains are conserved in the Fc region in IgG; however, their importance for the structure of intact IgG1 has remained unclear. Here, we subjected glycosylated and deglycosylated monoclonal human IgG1 (designated as A33) to a comparative multidisciplinary structural study of both forms. After deglycosylation using peptide:N-glycosidase F, analytical ultracentrifugation showed that IgG1 remained monomeric and the sedimentation coefficients s020,w of IgG1 decreased from 6.45 S by 0.16–0.27 S. This change was attributed to the reduction in mass after glycan removal. X-ray and neutron scattering revealed changes in the Guinier structural parameters after deglycosylation. Although the radius of gyration (RG) was unchanged, the cross-sectional radius of gyration (RXS-1) increased by 0.1 nm, and the commonly occurring distance peak M2 of the distance distribution curve P(r) increased by 0.4 nm. These changes revealed that the Fab-Fc separation in IgG1 was perturbed after deglycosylation. To explain these changes, atomistic scattering modeling based on Monte Carlo simulations resulted in 123,284 and 119,191 trial structures for glycosylated and deglycosylated IgG1 respectively. From these, 100 x-ray and neutron best-fit models were determined. For these, principal component analyses identified five groups of structural conformations that were different for glycosylated and deglycosylated IgG1. The Fc region in glycosylated IgG1 showed a restricted range of conformations relative to the Fab regions, whereas the Fc region in deglycosylated IgG1 showed a broader conformational spectrum. These more variable Fc conformations account for the loss of binding to the Fcγ receptor in deglycosylated IgG1.  相似文献   

6.
7.
It is now well established that rheumatoid arthritis patients have reduced levels of galactose on their immunoglobulin G (IgG) molecules compared with normal individuals. We have investigated whether, in an experimentally induced model of arthritis, similar glycosylation changes on IgG are to be found. Serum IgG was isolated from collagen-induced arthritic DBA/1 mice and a control group, and the glycosylation of the IgG in these preparations was compared using lectin blotting. The glycosylation of IgG in immune complexes was also analysed. Arthritic mice exhibited similar glycosylation changes on their IgG as observed for rheumatoid arthritis patients. On average, there was less galactose on the IgG from arthritic mice than from the control group, but this difference was of borderline significance. However, theN-acetylglucosamine content of IgG was significatly elevated in arthritic mice. There was no difference in the sialic acid content of IgG in the two groups. The results for immune complexes were similar to those obtained for serum IgG, but the data were limited by insufficient numbers. The similarity in glycosylation changes in collagen-induced arthritis and in patients with rheumatoid arthritis suggests that common pathogenic mechanisms may be involved.  相似文献   

8.
Wei Y  Li C  Huang W  Li B  Strome S  Wang LX 《Biochemistry》2008,47(39):10294-10304
The presence and precise structures of the glycans attached at the Fc domain of monoclonal antibodies play an important role in determining antibodies' effector functions such as antibody-dependent cell cytotoxicity (ADCC), complement activation, and anti-inflammatory activity. This paper describes a novel approach for glycoengineering of human IgG1-Fc that combines high-yield expression of human IgG1-Fc in yeast and subsequent in vitro enzymatic glycosylation, using the endoglycosidase-catalyzed transglycosylation as the key reaction. Human IgG1-Fc was first overproduced in Pichia pastoris. Then the heterogeneous yeast glycans were removed by Endo-H treatment to give the GlcNAc-containing IgG1-Fc as a homodimer. Finally, selected homogeneous glycans were attached to the GlcNAc-primer in the IgG1-Fc through an endoglycosidase-catalyzed transglycosylation, using sugar oxazolines as the donor substrates. It was found that the enzymatic transglycosylation was efficient with native GlcNAc-containing IgG1-Fc homodimer without the need to denature the protein, and the reaction could proceed to completion to give homogeneous glycoforms of IgG1-Fc when an excess of oligosaccharide oxazolines was used as the donor substrates. The binding of the synthetic IgG1-Fc glycoforms to the FcgammaIIIa receptor was also investigated. This novel glycoengineering approach should be useful for providing various homogeneous, natural or synthetic glycoforms of IgG1-Fc for structure-function relationship studies, and for future clinical applications.  相似文献   

9.
Recently determined crystal structures of the complex between immunoglobulin constant regions (Fc) and their Fc-respective receptors (FcR) have revealed the detailed molecular interactions of this receptor-ligand pair. Of particular interest is the contribution of a glycosylation at Asn(297) of the C(H)2 domain of IgG to receptor recognition. The carbohydrate moieties are found outside the receptor.Fc interface in all receptor.Fc complex structures. To understand the role of glycosylation in FcR recognition, the receptor affinities of a deglycosylated IgG1 and its Fc fragment were determined by solution binding studies using surface plasmon resonance. The removal of carbohydrates resulted in a non-detectable receptor binding to the Fc alone and a 15- to 20-fold reduction of the receptor binding to IgG1, suggesting that the carbohydrates are important in the function of the FcgammaRIII. Structurally, the carbohydrates attached to Asn(297) fill the cavity between the C(H)2 domains of Fc functioning equivalently as a hydrophobic core. This may stabilize a favorable lower hinge conformation for the receptor binding. The structure of the complex also revealed the dominance of the lower hinge region in receptor.Fc recognition. To evaluate the potential of designing small molecular ligands to inhibit the receptor function, four lower hinge peptides were investigated for their ability to bind to the receptor FcgammaRIII. These peptides bind specifically to FcgammaRIII with affinities 20- to 100-fold lower than IgG1 and are able to compete with Fc in receptor binding. The results of peptide binding illustrate new ways of designing therapeutic compounds to block Fc receptor activation.  相似文献   

10.
All immunoglobulin G molecules carry N-glycans, which modulate their biological activity. Changes in N-glycosylation of IgG associate with various diseases and affect the activity of therapeutic antibodies and intravenous immunoglobulins. We have developed a novel 96-well protein G monolithic plate and used it to rapidly isolate IgG from plasma of 2298 individuals from three isolated human populations. N-glycans were released by PNGase F, labeled with 2-aminobenzamide and analyzed by hydrophilic interaction chromatography with fluorescence detection. The majority of the structural features of the IgG glycome were consistent with previous studies, but sialylation was somewhat higher than reported previously. Sialylation was particularly prominent in core fucosylated glycans containing two galactose residues and bisecting GlcNAc where median sialylation level was nearly 80%. Very high variability between individuals was observed, approximately three times higher than in the total plasma glycome. For example, neutral IgG glycans without core fucose varied between 1.3 and 19%, a difference that significantly affects the effector functions of natural antibodies, predisposing or protecting individuals from particular diseases. Heritability of IgG glycans was generally between 30 and 50%. The individual's age was associated with a significant decrease in galactose and increase of bisecting GlcNAc, whereas other functional elements of IgG glycosylation did not change much with age. Gender was not an important predictor for any IgG glycan. An important observation is that competition between glycosyltransferases, which occurs in vitro, did not appear to be relevant in vivo, indicating that the final glycan structures are not a simple result of competing enzymatic activities, but a carefully regulated outcome designed to meet the prevailing physiological needs.  相似文献   

11.
Abstract The N and C domains of somatic angiotensin-converting enzyme (sACE) differ in terms of their substrate specificity, inhibitor profiling, chloride dependency and thermal stability. The C domain is thermally less stable than sACE or the N domain. Since both domains are heavily glycosylated, the effect of glycosylation on their thermal stability was investigated by assessing their catalytic and physicochemical properties. Testis ACE (tACE) expressed in mammalian cells, mammalian cells in the presence of a glucosidase inhibitor and insect cells yielded proteins with altered catalytic and physicochemical properties, indicating that the more complex glycans confer greater thermal stabilization. Furthermore, a decrease in tACE and N-domain N-glycans using site-directed mutagenesis decreased their thermal stability, suggesting that certain N-glycans have an important effect on the protein's thermodynamic properties. Evaluation of the thermal stability of sACE domain swopover and domain duplication mutants, together with sACE expressed in insect cells, showed that the C domain contained in sACE is less dependent on glycosylation for thermal stabilization than a single C domain, indicating that stabilizing interactions between the two domains contribute to the thermal stability of sACE and are decreased in a C-domain-duplicating mutant.  相似文献   

12.
Podoplanin (Aggrus) is a mucin-type sialoglycoprotein that plays a key role in tumor cell-induced platelet aggregation. Podoplanin possesses a platelet aggregation-stimulating (PLAG) domain, and Thr52 in the PLAG domain of human podoplanin is important for its activity. Endogenous or recombinant human podoplanin were purified, and total glycosylation profiles were surveyed by lectin microarray. Analyses of glycopeptides produced by Edman degradation and mass spectrometry revealed that the disialyl-corel (NeuAc alpha2-3Gal beta l-3(NeuAc alpha2-6)GalNAc alpha l-O-Thr) structure was primarily attached to a glycosylation site at residue Thr52. Sialic acid-deficient podoplanin recovered its activity after additional sialylation. These results indicated that the sialylated Corel at Thr52 is critical for podoplanin-induced platelet aggregation.  相似文献   

13.
Streptococcus pneumoniae is an important cause of morbitity and mortality worldwide. Capsule-specific IgG1 and IgG2 Abs are induced upon vaccination with polysaccharide-based vaccines that mediate host protection. We compared the protective capacity of human recombinant serogroup 6-specific IgG1 and IgG2 Abs in mice deficient for either leukocyte FcR or complement factors. Human IgG1 was found to interact with mouse leukocyte FcR in vitro, whereas human IgG2 did not. Both subclasses induced complement activation, resulting in C3c deposition on pneumococcal surfaces. Passive immunization of C57BL/6 mice with either subclass before intranasal challenge with serotype 6A induced similar degrees of protection. FcgammaRI- and III-deficient mice, as well as the combined FcgammaRI, II, and III knockout mice, were protected by passive immunization, indicating FcR not to be essential for protection. C1q or C2/factor B knockout mice, however, were not protected by passive immunization. Passively immunized C2/factor B(-/-) mice displayed higher bacteremic load than C1q(-/-) mice, supporting an important protective role of the alternative complement pathway. Spleens from wild-type and C1q(-/-) mice showed hyperemia and thrombotic vessel occlusion, as a result of septicemic shock. Notably, thrombus formation was absent in spleens of C2/factor B(-/-) mice, suggesting that the alternative complement pathway contributes to shock-induced intravascular coagulation. These studies demonstrate complement to play a central role in Ab-mediated protection against pneumococcal infection in vivo, as well as in bacteremia-associated thrombotic complications.  相似文献   

14.
15.
16.
BackgroundImage-guided tumor ablation is a technique whereby needle-like applicators are placed directly into solid tumors under guidance typically with computed tomography or ultrasound. Changes in IgG and IgM antibody glycosylation were studied during ablation-induced immune response to cancer, and the use of glycosylation as a biomarker for diagnosis, prognosis and disease treatment was examined.MethodsPlasma from 27 tumor patients was collected immediately before, after and for 6 months following ablation. IgG and IgM antibodies were isolated by use high-throughput chromatography, and analyzed by hydrophilic liquid chromatography. Thorough identification of glycan structures in each chromatography peak was performed by nano-liquid chromatography electrospray ionization mass spectrometry.ResultsAlthough antibody glycosylation was found to vary with cancer type, discernable patterns of change based on the successful treatment of tumors by ablation were not identified. One patient with renal clear cell carcinoma and poor disease outcome had unexpectedly high amount of oligomannose IgG glycans during the whole period of monitoring. In contrast, IgM antibodies did not follow the same pattern.ConclusionsThese findings suggest that glycosylation patterns are indicative of an immune system that is unable to prevent different types of cancer, rather than products of the immunostimulatory response to the ablation of tumor itself. Analyses of the outcome effect suggested that IgG glycosylation and IgM glycosylation are not associated with tumor ablation.General significancePresent work opens a new way for parallel determination of glycosylation changes of both IgG and IgM antibodies by use of high-throughput methods, and their future use as biomarkers for disease diagnosis and prognosis. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.  相似文献   

17.
Ha S  Ou Y  Vlasak J  Li Y  Wang S  Vo K  Du Y  Mach A  Fang Y  Zhang N 《Glycobiology》2011,21(8):1087-1096
N-glycosylation of immunoglobulin G (IgG) at asparigine residue 297 plays a critical role in antibody stability and immune cell-mediated Fc effector function. Current understanding pertaining to Fc glycosylation is based on studies with IgGs that are either fully glycosylated [both heavy chain (HC) glycosylated] or aglycosylated (neither HC glycosylated). No study has been reported on the properties of hemi-glycosylated IgGs, antibodies with asymmetrical glycosylation in the Fc region such that one HC is glycosylated and the other is aglycosylated. We report here for the first time a detailed study of how hemi-glycosylation affects the stability and functional activities of an IgG1 antibody, mAb-X, in comparison to its fully glycosylated counterpart. Our results show that hemi-glycosylation does not impact Fab-mediated antigen binding, nor does it impact neonatal Fc receptor binding. Hemi-glycosylated mAb-X has slightly decreased thermal stability in the CH2 domain and a moderate decrease (~20%) in C1q binding. More importantly, the hemi-glycosylated form shows significantly decreased binding affinities toward all Fc gamma receptors (FcγRs) including the high-affinity FcγRI, and the low-affinity FcγRIIA, FcγRIIB, FcγRIIIA and FcγRIIIB. The decreased binding affinities to FcγRs result in a 3.5-fold decrease in antibody-dependent cell cytotoxicity (ADCC). As ADCC often plays an important role in therapeutic antibody efficacy, glycosylation status will not only affect the antibody quality but also may impact the biological function of the product.  相似文献   

18.
The melanocortin 1 receptor (MC1R), a major determinant of skin pigmentation and phototype, mediates the actions of α-melanocyte-stimulating hormone on melanocytes and is critical for melanocyte proliferation and differentiation. MC1R has two putative N-glycosylation targets, Asn15 and Asn29. It has been shown that MC1R is a glycoprotein with an unusual sensitivity to endoglycosidase H digestion. However, the occupancy and functional importance of each specific glycosylation sequon remains unknown. We demonstrate that MC1R is N-glycosylated at Asn15 and Asn29, with structurally and functionally different glycan chains. N-glycosylation is not necessary for high affinity agonist binding or functional coupling but has a strong effect on the availability of MC1R molecules on the plasma membrane, most likely by a combination of improved forward trafficking and decreased internalization. Finally, we found that MC1R variants exhibit different degrees of glycosylation which do not show a simple correlation with their functional status or intracellular trafficking.  相似文献   

19.
Treatment of covalently cross-linked or heat-aggregated oligomers of human IgG with 4 mM-tetranitromethane abrogated their C1q-binding activity. In contrast, tetranitromethane modification of rabbit IgG oligomers, under identical conditions, had no effect upon their C1q-binding activity. The tetranitromethane treatment led to nitration of about ten tyrosine residues per IgG molecule in both species, and the modification was specific for tyrosine residues. Reduction of the nitrated protein with Na2S2O4 did not lead to recovery of C1q-binding activity in human IgG oligomers or to loss of activity in rabbit IgG oligomers. Tryptic peptides from the nitrated proteins were isolated and a peptide containing nitrotyrosine-319 was recovered from human IgG, as well as peptides from both species corresponding to the region around nitrotyrosine-278. These data are consistent with the inactivation of C1q-binding activity in human IgG being the result of nitration of tyrosine-319; the rabbit IgG is unaffected by nitration because position 319 is phenylalanine. The evidence supports the C1q-receptor site proposed by Burton, Boyd, Brampton, Easterbrook-Smith, Emanuel, Novotny, Rademacher, van Schravendijk, Sternberg & Dwek [(1980) Nature (London) 288, 338-344]: residues 316-338.  相似文献   

20.
Lactoferrin (LF) is an iron-binding glycoprotein of the innate host defence system. To elucidate the role of N-linked glycosylation in protection of LF against proteolysis, we compared the tryptic susceptibility of human LF (hLF) variants from human milk, expressed in human 293(S) cells or in the milk of transgenic mice and cows. The analysis revealed that recombinant hLF (rhLF) with mutations Ile130-->Thr and Gly404-->Cys was about twofold more susceptible than glycosylated and unglycosylated variants with the naturally occurring Ile130 and Gly404. Hence, N-linked glycosylation is not involved in protection of hLF against tryptic proteolysis. Apparently, the previously reported protection by N-linked glycosylation of hLF [van Berkel, P.H.C., Geerts, M.E.J., van Veen, H.A., Kooiman, P.M., Pieper, F., de Boer, H.A. & Nuijens, J.H. (1995) Biochem. J. 312, 107-114] is restricted to rhLF containing the Thr130 and Cys404. Comparison of the tryptic proteolysis of hLF and bovine LF (bLF) revealed that hLF is about 100-fold more resistant than bLF. Glycosylation variants A and B of bLF differed by about 10-fold in susceptibility to trypsin. This difference is due to glycosylation at Asn281 in bLF-A. Hence, glycosylation at Asn281 protects bLF against cleavage by trypsin at Lys282.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号