首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R E Bradshaw  T M Pillar 《Gene》1991,108(1):157-162
A genomic clone has been isolated from Aspergillus nidulans which is homologous to the ribosomal (r) protein S16-encoding gene of Saccharomyces cerevisiae (S16A) and the r-protein S19-encoding gene of rat (S19). The amino acid (aa) sequences, deduced from nucleotide (nt) sequence analysis, show that in both cases more than 63% of the aa are conserved. The proposed A. nidulans r-protein S16 gene (rps16) differs from that of S. cerevisiae in that it occurs as a single copy in the haploid genome (rather than two copies as in yeast) and contains two putative introns (rather than one). The mRNA leader is long compared to many Aspergillus genes, commencing 293 nt upstream from the coding region, and contains an open reading frame of 13 codons.  相似文献   

2.
The heterotrimeric CCAAT-binding complex is evolutionarily conserved in eukaryotic organisms, including fungi, plants and mammals. In the filamentous fungus Aspergillus nidulans, the corresponding complex was designated AnCF (A.nidulans CCAAT-binding factor). AnCF consists of the subunits HapB, HapC and HapE. All three subunits are necessary for DNA binding. HapB contains two putative nuclear localisation signal sequences (NLSs) designated NLS1 and NLS2. Previously, it was shown that only NLS2 was required for nuclear localisation of HapB. Furthermore, HapC and HapE are transported to the nucleus only in complex with HapB via a piggy back mechanism. Here, by using various GFP constructs and by establishing a novel marker gene for transformation of A.nidulans, i.e. the pabaA gene encoding p-aminobenzoic acid synthase, it was shown that the HapB homologous proteins of both Saccharomyces cerevisiae (Hap2p) and human (NF-YA) use an NLS homologous to HapB NLS1 for nuclear localisation in S.cerevisiae. Interestingly, for A.nidulans HapB, NLS1 was sufficient for nuclear localisation in S.cerevisiae. In A.nidulans, HapB NLS1 was also functional when present in a different protein context. However, in A.nidulans, both S.cerevisiae Hap2p and human NF-YA entered the nucleus only when HapB NLS2 was present in the respective proteins. In that case, both proteins Hap2p and NF-YA complemented, at least in part, the hap phenotype of A.nidulans with respect to lack of growth on acetamide. Similarly, A.nidulans HapB and human NF-YA complemented a hap2 mutant of S.cerevisiae. In summary, HapB, Hap2p and NF-YA are interchangeable. Because the A.nidulans hapB mutant was complemented, at least in part, by both the human NF-YA and S.cerevisiae Hap2p this finding suggests that the piggy-back mechanism of nuclear transport found for A.nidulans is conserved in yeast and human.  相似文献   

3.
4.
A gene whose product has homology to protein kinases and is closely related to the Aspergillus nidulans nimA cell-cycle gene was identified on chromosome I of the yeast, Saccharomyces cerevisiae. This gene has been temporarily designated FUN52, where FUN is the acronym for 'function unknown now'. In A. nidulans, nimA is required to enter mitosis. In addition, overexpression of nimA causes premature onset of mitosis and cell cycle arrest. In contrast, S. cerevisiae cells that were either deleted for FUN52 or were overexpressing it had no detectable growth phenotypes. FUN52 proved to be the same as the previously identified KIN3 gene [Jones and Rosamond, Gene 90 (1990) 87-92] that was reported to map on chromosome VI.  相似文献   

5.
6.
7.
cDNAs encoding three protein phosphatases, termed PP2Bw (Da Cruz e Silva, E.F. and Cohen, P.T.W. (1989) Biochim. Biophys. Acta 1009, 293-296), PPZ1 and PPZ2 that have been isolated from a Clontech 'rabbit brain' library are shown to be Saccharomyces cerevisiae clones. PPZ1 and PPZ2 are two novel yeast phosphatases showing 93% amino acid sequence identity to one another. PPZ1 shows approx. 60% sequence identity to S. cerevisiae or mammalian PP1 and approx. 40% identity to S. cerevisiae or mammalian PP2A. These and other observations suggest that the two isoforms of PPZ have functions distinct from those of PP1.  相似文献   

8.
9.
We report here probable nutrient-sensing signal transduction pathways in Aspergillus nidulans, a model filamentous fungus, based on sequence homology studies with known Saccharomyces cerevisiae and Schizosaccharomyces pombe proteins. Specifically, we identified A. nidulans homologs for yeast proteins involved in (1) filamentation-invasion, (2) cAMP-PKA, (3) pheromone response, (4) cell integrity and (5) TOR signaling pathways. We have also studied autophagy, one of the most important cellular responses regulated by TOR signaling. The Basic Local Alignment Search Tool program "blastp" was used to assess the homology of proteins. We note that by using a highly conservative approach, 70% of the S. cerevisiae signal transduction proteins (107 proteins out of 153 proteins studied) have significant homologs in A. nidulans. Using a slightly less conservative approach, we are able to identify homologs for as high as 91% of the S. cerevisiae signal transduction proteins (139 proteins out of 153 proteins studied). The filamentation-invasion, cell integrity and TOR signaling pathways showed greatest similarity with S. cerevisiae, while the cAMP-PKA and pheromone response pathways showed greater similarity with S. pombe. Based on these results, probable pathways in A. nidulans were constructed using well-established S. cerevisiae and S. pombe models.  相似文献   

10.
Tarutani Y  Ohsumi K  Arioka M  Nakajima H  Kitamoto K 《Gene》2001,268(1-2):23-30
In Saccharomyces cerevisiae, vacuoles play very important roles in pH and osmotic regulation, protein degradation and storage of amino acids, small ions as well as polyphosphates. In filamentous fungi, however, little is known about vacuolar functions at a molecular level. In this paper, we report the isolation of the vpsA gene from the filamentous fungus Aspergillus nidulans as a homologue of the VPS1 gene of S. cerevisiae which encodes a dynamin-related protein. The vpsA gene encodes a polypeptide consisting of 696 amino acids that is nearly 60% homologous to the S. cerevisiae Vps1. Similar to Vps1, VpsA contains a highly conserved tripartite GTPase domain but lacks the pleckstrin homology domain and proline-rich region. The vpsA disruptant shows poor growth and contains highly fragmented vacuoles. These results suggest that A. nidulans VpsA functions in the vacuolar biogenesis.  相似文献   

11.
12.
13.
14.
15.
16.
The gene encoding the homologue of the catalytic subunit of the Ca2+/calmodulin-regulated protein phosphatase 2B (calcineurin A) has been isolated from Aspergillus nidulans. This gene, cnaA+, is essential in this fungal system. Analysis of growth-arrested cells following gene disruption by homologous recombination reveals that they are blocked early in the cell cycle. The cnaA+ gene encodes a 2.5 kb mRNA and the deduced protein sequence is highly homologous to the calcineurin A subunit of other species. The mRNA varies in a cell cycle-dependent manner with maximal levels found early in G1 and considerably before the G1/S boundary. As calmodulin is also essential for A.nidulans cell cycle progression and levels rise before the G1/S boundary, our data suggest that calcineurin may represent a primary target for calmodulin at this cell cycle transition point.  相似文献   

17.
The gene encoding the homologue of the catalytic subunit of the Ca2+/calmodulin-regulated protein phosphatase 2B (calcineurin A) has been isolated from Aspergillus nidulans. This gene, cnaA+, is essential in this fungal system. Analysis of growth-arrested cells following gene disruption by homologous recombination reveals that they are blocked early in the cell cycle. The cnaA+ gene encodes a 2.5 kb mRNA and the deduced protein sequence is highly homologous to the calcineurin A subunit of other species. The mRNA varies in a cell cycle-dependent manner with maximal levels found early in G1 and considerably before the G1/S boundary. As calmodulin is also essential for A. nidulans cell cycle progression and levels rise before the G1/S boundary, our data suggest that calcineurin may represent a primary target for calmodulin at this cell cycle transition point.  相似文献   

18.
G Vautard  P Cotton  M Fèvre 《FEBS letters》1999,453(1-2):54-58
We isolated the putative glucose repressor gene cre1 from the phytopathogenic fungus Sclerotinia sclerotiorum. cre1 encodes a 429 amino acid protein 59% similar to the carbon catabolite repressor CREA from Aspergillus nidulans. In addition to the overall amino acid sequence relatedness between CRE1 and CREA proteins, cre1 can functionally complement the A. nidulans creAd30 mutation as assessed by repression of the alcohol dehydrogenase I gene expression. The CREI region carrying the two zinc fingers is also very similar to the DNA binding domains of the Saccharomyces cerevisiae glucose repressors Mig1p and Mig2p. Despite the presence in the CRE1 protein of several motifs involved in the regulation of Miglp activity, cre1 cannot complement mig deficiencies in S. cerevisiae. These data suggest that glucose repression pathways may have evolved differently in yeasts and filamentous fungi.  相似文献   

19.
Mitochondria form a dynamic network of interconnected tubes in the cells of Saccharomyces cerevisiae or filamentous fungi such as Aspergillus nidulans, Neurospora crassa, or Podospora anserina. The dynamics depends on the separation of mitochondrial fragments, their movement throughout the cell, and their subsequent fusion with the other parts of the organelle. Interestingly, the microtubule network is required for the distribution in N. crassa and S. pombe, while S. cerevisiae and A. nidulans appear to use the actin cytoskeleton. We studied a homologue of S. cerevisiae Mdm10 in A. nidulans, and named it MdmB. The open reading frame is disrupted by two introns, one of which is conserved in mdm10 of P. anserina. The MdmB protein consists of 428 amino acids with a predicted molecular mass of 46.5 kDa. MdmB shares 26% identical amino acids to Mdm10 from S. cerevisiae, 35% to N. crassa, and 32% to the P. anserina homologue. A MdmB-GFP fusion protein co-localized evenly distributed along mitochondria. Extraction of the protein was only possible after treatment with a non-ionic and an ionic detergent (1% Triton X-100; 0.5% SDS) suggesting that MdmB was tightly bound to the mitochondrial membrane fraction. Deletion of the gene in A. nidulans affected mitochondrial morphology and distribution at 20 degrees C but not at 37 degrees C. mdmB deletion cells contained two populations of mitochondria at lower temperature, the normal tubular network plus some giant, non-motile mitochondria.  相似文献   

20.
Several different 5S rRNA genes from Aspergillus nidulans cloned in an Escherichia coli--Saccharomyces cerevisiae shuttle vector were introduced into S. cerevisiae cells by transformation. The A. nidulans 5S rRNA genes were not transcribed in S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号