首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pacu, Piaractus mesopotamicus (=Colossoma mitrei), is a South American warm water fish species found in the temperature range of 15–35°C. The culture of a warm water species in temperate regions demands knowledge on its temperature requirements. Pacu introduction into the Israeli fish culture system is being considered. Temperature range in the region is 8–33°C, thus the minimum winter water temperatures might be a limiting factor. To determine what is the minimum temperature pacu would tolerate, and hence which overwintering operations in warm-temperate regions are required for this warm water species, low temperature tolerance tests in the laboratory and observations in the field were carried out. Laboratory experiments reducing temperature by 1–3°C per day were carried out with fish of 150–200g, about the size pacu reach after one culture season. The field observations compared survival of two-year-old pacu of 1.3kg mean weight overwintered in outdoors and in greenhouse ponds. For one-year-old fish 7.5°C was found to be the lower temperature tolerance limit. Two-year-old fish withstand short exposures to this temperature rather well and their lower tolerance limit might be lower. This indicates that in warm-temperate regions pacu should survive in outdoors ponds. In this case some loss of weight should be expected, and suspension of feeding when temperature drops below 16–18°C is recommended to avoid wasting feed that the fish will not consume anyway. To be in the safe side, inflow of the warmest available water into the ponds is recommended if maximum water temperature drops to 10°C or below. Overwintering in greenhouses or other heated facilities would be recommended if an exceptionally cold winter is expected and for regions with lower winter minimum temperatures.  相似文献   

2.
The distribution and abundance of Thelypteris limbosperma, Athyrium distentifolium, and Matteuccia struthiopteris are modelled statistically in relation to 14 environmental variables along the major climatic, topographic, and edaphic gradients in western Norway. The data are from 624 stands from which measurements or estimates of mean January and mean July temperatures, humidity, altitude, aspect, and slope are available. From 182 of these stands eight soil variables have also been measured. The species responses are quantified by two numerical methods: Gaussian logit regression and weighted averaging (WA) regression. The estimated WA optima suggest that A. distentifolium has an ecological preference for low July and January temperatures, high altitudes, and soils of low-medium pH and base content. The species shows statistically significant Gaussian responses with summer temperature, humidity (= Martonnes humidity index), altitude, slope, aspect, pH, cation exchange capacity, and base saturation with optima of 8.7 °C, 188.9, 1220 m, 28°, 29°, 4.8, 13.77 mEq 100 g dry soil-1, and 13.4%, respectively. These suggest that the occurrence and relative abundance of A. distentifolium are well predicted by summer temperature, topography, and soil pH and base status. T. limbosperma has WA optima that suggest that it favours moderately high winter and summer temperatures, high humidity, medium altitude, and soils of low pH and base content. It has significant Gaussian responses to summer temperature (optimum =12.6 °C), winter temperature (-1.8 °C), humidity (179.2), altitude (459.5 m), slope (22.5°), and Na (0.7 mg 100 g dry soil-1). These suggest that climatic factors, altitude, and slope are significant predictors for its occurrence and abundance. M. struthiopteris has high WA optima for summer temperature, pH, Ca, Mg, K, Na, cation exchange capacity (CEC), and base saturation, and a low optima for humidity and winter temperature. Of these, summer temperature (16.0 °C), Ca (63.1 mg 100 g dry soil-1), Mg (41.0 mg 100 g dry soil-1), K (23.6 mg 100 g dry soil-1), Na (5.0 mg 100 g dry soil-1), CEC (60.7 mEq 100 g dry soil-1), and base saturation (56.3%) have significant Gaussian logit responses, as do aspect (150.2°) and loss-on-ignition (9.4%). These results suggest that the occurrence and relative abundance of M. struthiopteris are well predicted by high soil base cations, a generally southern aspect, low organic content in the soil, and high July temperatures.  相似文献   

3.
The aim of this study was to evaluate how the summer and winter conditions affect the photosynthesis and water relations of well-watered orange trees, considering the diurnal changes in leaf gas exchange, chlorophyll (Chl) fluorescence, and leaf water potential (Ψ) of potted-plants growing in a subtropical climate. The diurnal pattern of photosynthesis in young citrus trees was not significantly affected by the environmental changes when compared the summer and winter seasons. However, citrus plants showed higher photosynthetic performance in summer, when plants fixed 2.9 times more CO2 during the diurnal period than in the winter season. Curiously, the winter conditions were more favorable to photosynthesis of citrus plants, when considering the air temperature (< 29 °C), leaf-to-air vapor pressure difference (< 2.4 kPa) and photon flux density (maximum values near light saturation) during the diurnal period. Therefore, low night temperature was the main environmental element changing the photosynthetic performance and water relations of well-watered plants during winter. Lower whole-plant hydraulic conductance, lower shoot hydration and lower stomatal conductance were noticed during winter when compared to the summer season. In winter, higher ratio between the apparent electron transport rate and leaf CO2 assimilation was verified in afternoon, indicating reduction in electron use efficiency by photosynthesis. The high radiation loading in the summer season did not impair the citrus photochemistry, being photoprotective mechanisms active. Such mechanisms were related to increases in the heat dissipation of excessive light energy at the PSII level and to other metabolic processes consuming electrons, which impede the citrus photoinhibition under high light conditions.  相似文献   

4.
Seasonal variations in the ex vivo phagocytic function of blood cells from tench, including ingestion capacity of inert particles and its destruction (microbicide capacity) assessed by measurement of superoxide anion production, were studied. Tench were maintained under natural conditions throughout the year, and the different assays of samples taken during each season were initially performed in vitro at 22°C and the results compared. Subsequently, assays were performed at the same temperature as that of the water ponds in which the fish were kept (“seasonal temperature”: 12°C in winter, 22°C in spring and autumn and 30°C in summer) and the results compared seasonally. The results at 22°C showed that phagocytic capacity was greatest in spring and summer and lowest in winter. However, when phagocytic capacity was measured at seasonal temperature, highest values appeared in winter and lowest in summer and autumn. Nitroblue tetrazolium reduction by tench phagocytes after phagocytosing latex beads demonstrated a similar seasonal behaviour at both 22°C in each season and at seasonal temperature. The highest values appeared in summer, which suggests a better microbicide capacity in this season. The results obtained in this study suggest that for a correct interpretation of ex vivo phagocytic capacity of fish through the year it is necessary to use the same assay temperature as that of the water in which the fish is kept.  相似文献   

5.
The life cycles of Cyclops vicinus and Thermocyclops crassusin two shallow eutrophic habitats, Junsainuma and Naganuma Ponds,Hokkaido, Japan, were investigated. Both ponds exhibited similarseasonal patterns of temperature, oxygen levels and pH duringice-free periods; however, oxygen levels were extremely lowerunder the ice in Naganuma Pond. Cyclops vicinus showed differentlife cycles in the two ponds; in Junsainuma Pond, it reproducedin winter and spring (January-May) and entered diapause duringsummer and autumn (June-October) as copepodite IV stage, whileit reproduced in autumn (October-November) and spring (April-May),and entered diapause in summer (June-September) and winter (Januaryand February) as copepodite V stage in Naganuma Pond. Thermocyclopscrassus entered diapause during winter (December-April) as copepoditeIV and V stages in both ponds, and egg-bearing females appearedonly during the warmseason, from early May to late October,when water temperatures were >10°C. Summer diapause inC.vicinus was suggested to be an adaptation against fish predation,whereas C.vicinus entered winter diapause in Naganuma Pond probablyto avoid low oxygen levels. Thermocyclops crassus entered diapausein both ponds to avoid low water temperature. These resultssuggest that biotic and abiotic factors are important for leadingto specific life cycles of cyclopoid copepods in small waterbodies.  相似文献   

6.
The range of temperature and humidity conditions that can exist simultaneously at or near the ground surface on a bright summer day in a temperate climate are shown in a diagram. Cool and warm conditions are defined as having respectively a lower and a higher temperature than the air at a height of 1.50 m above the surface of the ground. Similarly, humid and dry conditions are defined by a lower and a higher saturation deficit (S.D.), respectively. Cool, humid conditions are found in the open shade where only diffuse solar radiation is received. In high reed vegetations on wet soil, temperatures can lie 8°C below that of the free atmosphere and humidity is close to the saturation point. Warm and humid conditions are found in thin vegetations on damp soil with a temperature excess of up to 10°C and a strongly reduced S.D. In dry grassland, air temperatures 1 cm above the ground are up to 20°C higher and S.D. up to 40 mm Hg higher than at a height of 1.50 m. On suitably oriented slopes covered with dark organic material, surface temperatures can reach 50°C above the air temperature.Presented at the Eighth International Congress of Biometeorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

7.
Taulavuori  Kari  Niinimaa  Ahti  Laine  Kari  Taulavuori  Erja  Lähdesmäki  Pekka 《Plant Ecology》1997,133(2):181-189
The annual course of frost resistance (LT50) and the pH of the cell effusate in needles of two-year-old Scots pine seedlings were monitored in a field experiment in Oulu, Northern Finland (65° N, 25° E) during 1995. The aim of the work was to to develop model to predict the annual variation in frost resistance by pH of the cell effusate and meteorological data. The seedlings were covered with a fibre cloth shelter which transmitted sufficient light for them to experience the photoperiod, but prevented the accumulation of snow over them. The shelter above the seedlings was removed at the beginning of May and erected again at the end of September. The seedlings were watered only for the time when the shelter was removed, and received fertilizer only during the previous summer (1994).Frost resistance was only -5° C during the growing season but more than -100° C during the winter rest period. It was about -10° C at the end of August, increased to -55° C in the next three weeks, and reached -100° C at the beginning of October. The pH of the cell effusate was lowest during the growing season and highest in winter, the difference being about one and half pH unit. Needles exposed to -196° C showed pH from 4.0 in summer to 5.5 in winter, while pH of the non-frozen needles varied from 5.0 to 6.5, respectively. Seasonal variation in frost resistance was explained by a regression model well (R2 = 0.9) when day length, minimum air temperature and pH were entered as variables.  相似文献   

8.
B. W. Webb  F. Nobilis 《Hydrobiologia》1994,291(2):105-113
Monthly mean water temperatures in the River Danube at Linz, Austria during the period 1901–1990 have been investigated in relation to equivalent information on air temperature and river discharge. Statistical analysis revealed a significant increase in monthly mean water temperatures of 0.8 °C and showed strongest rises in mean values for autumn and early winter months. No statistically significant trends were evident for air temperature or river discharge, and rising water temperatures are likely to reflect increasing human modification of the river system. A strong overall correlation between monthly mean water and air temperatures at Linz was made up of a series of more scattered and less steep water/air temperature relationships for individual months, while the influence of snowmelt runoff depressed average water temperatures in the spring and early summer period by 1.5 °C. Multiple regression relationships developed for individual months from data on air temperature, river discharge and time trend during the study period were able to predict monthly mean water temperatures in 1991 and 1992 with a root mean square error of 0.5 °C. These regression equations, when combined with scenarios of future changes in air temperature and river flow as a consequence of global warming, suggest that only modest rises in monthly mean water temperature will be experienced in the River Danube by the end of the present century, but that increases of > 1 °C for all months, and > 2 °C for the autumn period of low flows, can be anticipated by the year 2030.  相似文献   

9.
Refuge habitats increase survival rate and recovery time of populations experiencing environmental disturbance, but limits on the ability of refuges to buffer communities are poorly understood. We hypothesized that importance of refuges in preventing population declines and alteration in community structure has a non‐linear relationship with severity of disturbance. In the Florida Everglades, alligator ponds are used as refuge habitat by fishes during seasonal drying of marsh habitats. Using an 11‐year record of hydrological conditions and fish abundance in 10 marshes and 34 alligator ponds from two regions of the Everglades, we sought to characterize patterns of refuge use and temporal dynamics of fish abundance and community structure across changing intensity, duration, and frequency of drought disturbance. Abundance in alligator ponds was positively related to refuge size, distance from alternative refugia (e.g. canals), and abundance in surrounding marsh prior to hydrologic disturbance. Variables negatively related to abundance in alligator ponds included water level in surrounding marsh and abundance of disturbance‐tolerant species. Refuge community structure did not differ between regions because the same subset of species in both regions used alligator ponds during droughts. When time between disturbances was short, fish abundance declined in marshes, and in the region with the most spatially extensive pattern of disturbance, community structure was altered in both marshes and alligator ponds because of an increased proportion of species more resistant to disturbance. These changes in community structure were associated with increases in both duration and frequency of hydrologic disturbance. Use of refuge habitat had a modal relationship with severity of disturbance regime. Spatial patterns of response suggest that decline in refuge use was because of decreased effectiveness of refuge habitat in reducing mortality and providing sufficient time for recovery for fish communities experiencing reduced time between disturbance events.  相似文献   

10.
On the basis of distribution maps showing the first pollen occurrences in the Holocene of the well-known climate indicators Hedera, Ilex and Viscum as well as data for Corylus, a series of maps have been prepared that show summer and winter isotherms at various time intervals during the Holocene. From these maps climate curves for Amsterdam, the Netherlands have been set out. These were compared with curves for the Eemian at the same site. In both of these warm periods there is evidence for increased seasonality in the early phases which were relatively continental. Changes in insolation could account for such differences. Summer optima occurred earlier than winter optima. Changes in land-sea distribution are important, especially with regard to the patterns in winter climate. During the latter half of the Eemian, the climate was distinctly more oceanic than in the Holocene. Early in the Holocene, an influx of warm ocean water resulted in higher winter temperatures in the Gulf of Biscay, the Irish Sea, and areas east of Skagerrak-Kattegat. Temperature decline after the climatic optimum was greatest in the north, i.e. at 60°N, where a depression in the order of 2°C in summer and 2–3°C in winter occurred. Temperature decline was less farther south, i.e. at ca. 50°N, where a distinct west-east gradient in temperature change can be observed.  相似文献   

11.
Wolanski  Eric  Gereta  Emmanuel 《Hydrobiologia》2001,458(1-3):169-180
Thirty nine years of rainfall data from 232 sites, 5 years of river discharge data from 3 rivers, 4 years of animal migration data and 4 years of water quality data at 60 sites were explored to quantify the role of water in the Serengeti ecosystem. Seasonal variations in rainfall are largely predictable; interannual fluctuations are huge and not predictable solely from the Southern Oscillation Index. The wildebeest and zebras start their annual migration at the end of the wet season well before surface water runs out, however these waters are very saline (salinity 5–17 psu). The timing of the migration appears predictable from a salinity model. Salinity is also important for the vegetation because high salinity coincides with the transition between wooded savanna and grassland. This transition has moved markedly southward in the last 30 years, this change may be due to decadal changes in annual rainfall. Most rivers are commonly ponded, with ponds having a flushing rate of 1 month in the wet season and zero flushing in the dry season. These ponds form the only source of water for wildlife for several months a year. The water quality varies spatially and temporally. pH values vary between 5.9 and 10 and are correlated with salinity. Surface waters are heavily eutrophicated from animal dung. As a result, the dissolved oxygen concentration near the surface fluctuates widely between 1 and 200% of saturation. Direct solar heating is restricted to the top few cm because of low visibility. A strong thermal stratification in temperature (2 °C/m) results and inhibits aeration. Bottom waters can be anoxic and are aerated only when hippopotamus stir the water. Poor water quality may affect wildlife health and production.  相似文献   

12.
Body temperatures of 13 Paleosuchus palpebrosus, 7 males and 6 females, were monitored by radio-telemetry during cold periods (dry season) and warm periods (wet and dry seasons) in a stream draining into the Brazilian Pantanal. The mass of the caimans varied from 2.5 to 20.0 kg, and snout–vent length from 47.5 to 95.0 cm. Mean monthly body temperature was 21.6 °C, and varied from 20.1 to 25.6 °C throughout the year. Body temperature was correlated with air and water temperature but did not differ between males and females. Unlike all other crocodilians investigated in detail to date, the caimans did not show evidence of attempts to obtain higher body temperatures when ambient temperatures were low, and had low and generally constant temperatures in relation to the surrounding air and water throughout the year. The caimans remained in burrows during cold periods in the dry season, which may explain why they did not seek higher temperatures. Tolerance of relatively low and constant body temperatures may be a key adaptation of species of Paleosuchus, allowing them to occupy environments inhospitable to other crocodilians.  相似文献   

13.
Juniperus virginiana plants grow faster than other associated tree species in abandoned fields. During the summer the needles of the species do not light saturate even at 1,750 E m-2 s-1, reach optimum photosynthesis at 20°C, and maintain maximum photosynthesis at-8 to-12 bar twig water potential. In the field, the plants experience pronounced daily changes in water potential. The magnitude of the changes becomes more pronounced later in the summer. Leaves of the mature plants have highest rate of photosynthesis, young trees intermediate, and seedlings lowest. In winter there is a slight shift in optimum temperature for photosynthesis and the plants photosynthesize at 0°C. The rates of photosynthesis are lower in winter than in summer. On sunny days with calm winds, mature individuals and seedlings maintain significantly higher temperatures than air temperature while intermediate plants do not. The latter exhibit a lower photosynthetic rate than both mature plants and seedlings. The trends of photosynthesis, in the 3 size classes, both in winter and summer, correspond to the chlorophyll content of their leaves. It is concluded that J. virginiana grows well in open field habitats because it is a sun-adapted, drought resistant species with a long growing season which includes winter. The species is excluded from mature forests because it is shade-intolerant.  相似文献   

14.
Surveys of water quality in the surface waters in the Serengeti National Park were undertaken in both the wet and dry seasons of 1996. Most rivers were ponded, with ponds having a flushing time of 1 month in the wet season and zero flushing in the dry season. pH values varied spatially from extremely alkaline conditions (pH>10) in the southern plains to acidic conditions in the northern region (pH=5·9). In the southern plains at the end of the dry season the salinity of surface waters was high (5–17‰) while there was abundant surface water and the zebras and wildebeest had started to migrate away, a finding suggesting excessive salinity may be the trigger initiating the annual migration. Most surface waters were heavily eutrophicated as a result of animal dung. As a result, the dissolved oxygen concentration near the surface fluctuated widely between 1 and 200% of saturation, smaller values occurring deeper in the water column. Stirring and mechanical aeration by hippos, crocodiles and mammals crossing the rivers prevented the formation of anoxic conditions. The oxygen stress was measurably lessened in wetland‐fringed water bodies as a result of filtering. Light penetration was high (≥10 cm) in saline waters as a result of flocculation enhanced by bacteria and vegetation detritus, elsewhere the euphotic zone was less than 1 cm thick and the waters generally inhospitable to aquatic life. The discontinuity between wooded savanna and grassland coincides with the occurrence of alkaline, high salinity waters in the dry season.  相似文献   

15.
The night monkeys (Aotus azarai) of Formosa, Argentina provide an opportunity to investigate the influences of ambient temperature and photoperiod on reproduction in a highly seasonal environment: the Chaco. Between 1997 and 2000, we collected data to evaluate the relationship between rainfall, ambient temperature, photoperiod and food availability and the annual distribution of mating behavior and births in 15 groups of monkeys in the forests of the Eastern Argentinean Chaco. Our data show that the area is highly seasonal, characterized by significant fluctuations in rainfall, temperature, photoperiod and food availability. There are two rain peaks in April and November and a dry season lasting from June to August. Monthly mean temperatures were on average 11°C lower during winter months than they were during summer months. Temperatures <10°C and >33°C were also frequent through the year. Days are 3 h longer during the summer than during the winter months. Insect abundance and the percentage of tree species producing fruits, flowers or new leaves reached a low in the coldest winter months. Mating was infrequent, and we only observed it between May and September. Half the births (n = 13) occurred during a 2-week period in October. Infant survival during the first 6 mo of life was high (96%). Our findings suggest an environmental control of reproduction. Changes in photoperiod and temperature may promote reproductive activity in females that might conceive and begin pregnancy at a time void of high temperatures that could be metabolically challenging.  相似文献   

16.
Summary The influence of temperature on blood viscosity and consequently on the potential for oxygen transport by blood was determined using a controlled flow, variable pressure tube viscometer, and blood from adult bullfrogs. Blood viscosity was determined as a function of hematocrit and temperature, and oxygen capacity was determined as a function of hematocrit. These data were used to describe 1) the potential for oxygen transport in the tube viscometer, and 2) the relation between the optimal hematocrit, the hematocrit which provided the greates oxygen transport, and temperature. The optimal hematocrit increased at a rate of 0.237% per °C increase in temperature. This value is close to the rate of change inin vivo hematocrit of 0.246 and 0.240% per °C increase in body temperature (Tb) observed in winter bullforgs acclimated to 5 and 20°C, respectively. During the summer the hematocrit ratio showed no consistent relation to Tb. These results suggest that in bullfrogs the cardiovascular adjustments to change in Tb involve the optimal hematocrit in winter, but not in summer.  相似文献   

17.
Thermal regimes of Florida lakes   总被引:3,自引:3,他引:0  
Water column temperatures were determined monthly for 24 lakes and bimonthly for 5 lakes in peninsular Florida during 1979. Three geographical groups (north, central, south) were delineated from mean monthly water column temperatures for individual lakes. On a monthly basis, northern lakes were least similar to southern lakes, while central Florida lakes displayed greater affinity to the southern than to the northern lake group. Temperature differences between lake groups broke down during late summer. Subtropical lakes have been defined tentatively as those Florida lakes south of 28° latitude which possess warm monomictic circulation and a mean annual temperature of 24.2 ± 4.8 °C with minimum water column temperature rarely less than 14 °C and summer maxima rarely exceeding 31 °C. While all lakes in Florida are clearly warm monomictic annual nutrient cycling and productivity patterns may be influenced by inter-group differences in the timing and duration of water column circulation.  相似文献   

18.
This study was carried out to determine upper (CTMax) and lower (CTMin) thermal tolerance, acclimation response ratio (ARR) and thermal tolerance polygon of the European sea bass inhabiting the Iskenderun Bay, the most southeasterly part of the Mediterranean Sea, at three acclimation temperatures (15, 20, 25 °C). Acclimation temperature significantly affected the CTMin and CTMax values of the fish. At 0.3 °C min−1 cooling or heating rate, CTMin ranged from 4.10 to 6.77 °C and CTMax ranged from 33.23 to 35.95 °C in three acclimation temperatures from 15 to 25 °C. Thermal tolerance polygon for the juveniles at the tested acclimation temperatures was calculated to be 296.14 °C2. In general, the current data show that our sea bass population possesses acclimation response ratio (ARR) values (0.25-0.27) similar to some tropical species. The cold tolerance values attained for this species ranged from 4.10 to 6.77 °C, suggesting that cold winter temperatures may not pose danger during the culture of European sea bass in deep ponds or high water exchange rate systems. Upper thermal tolerance is more of a problem in the southern part of the Mediterranean as maximum water temperature in ponds may sometimes exceed 33-34 °C, during which underground cool-water should be used to lower ambient water temperature in the mid-summer. For successful culture of sea bass in ponds, temperature should be maintained around 25 °C throughout the year and this can be managed under greenhousing systems using underground well-waters, commonly available in the region.  相似文献   

19.
Jost Borcherding 《Oecologia》1991,87(2):208-218
Summary The annual development of the gonads of Dreissena polymorpha was studied at three sampling sites in two lakes over 3 and 1 1/2 years, respectively. A resting stage occurred after the last spawning in summer/autumn. Oogenesis (accompanied by multiplying segmentation of the oogonia and early growth processes of its oocytes) restarted in specimens at least 1 year old at low temperatures (below 10° C) during winter and early spring. At one location (Fühlinger See) the onset of the spawning season was correlated with an increase of water temperatures above 12° C. At 2 m depth, two main spawning periods in May and August were normally recognized, the first at temperatures of 12–16° C, the second at 16–21° C. It was clearly demonstrated for the first time in Dreissena polymorpha that the oocytes became mature in successive cohorts within one gonad. A female mussel may spawn several times during the reproductive season. At 9 m depth, the onset of spawning also started at about 12° C; this occurred in late summer, with two spawning periods within 1 month at a temperature range of 12–16° C. At another location (Heider Bergsee) the size of the gonads and the oocytes was reduced during April of both years studied, when food supply was low simultaneously with rapidly rising water temperatures in this shallow lake. There was no spawning period during spring. The major spawning period was delayed until July (temperatures 19–22°C). This shows (1) the synchronizing influence of low winter temperatures on the annual reproductive cycle and (2) a temperature threshold of at least 12° C for the start of the spawning processes. The results are discussed with regard to the geographical limits of further spread of Dreissena polymorpha.  相似文献   

20.
Thermoregulatory responses at ambient temperatures of 20 and 10° C in six male subjects wearing two different kinds of clothing were compared between summer and winter. The two different kinds of clothing were one insulating the upper half of the body lightly and the lower half of the body heavily (clothing A, the weight in the upper and lower halves of the body being, respectively, 489 g and 1278 g) and the other insulating the upper half of the body heavily and the lower half of the body lightly (clothing B: 1212 g and 559 g). The major findings are summarized as follow. (i) Rectal temperature was kept significantly higher in clothing B than in clothing A both in summer and winter. (ii) The fall of rectal temperature was significantly greater in summer than in winter in both types of clothing. (iii) Mean skin temperatures and skin temperatures in the face, chest, thigh and leg were significantly lower atT a of 10° C in summer than in winter in clothing A, while skin temperatures in the face and thigh were also significantly lower atT a of 10° C in summer than in winter in clothing B. (iv) Metabolic heat production was higher in summer than in winter at 20 and 10° C in both types of clothing. (v) The subjects felt cooler and colder toT a of 10° C in summer than in winter in both types of clothing. These different responses occurring between summer and winter are discussed mainly in terms of total conductance and dry heat loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号