首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Experimental chemotherapy and concepts related to the cell cycle   总被引:2,自引:0,他引:2  
Scheduling of chemotherapy is limited by damage to normal tissues, and tolerated schedules are dependent on normal tissue recovery. Most anticancer drugs are more toxic to proliferating cells and the fall and recovery of granulocyte counts after chemotherapy may be explained by the effect of drugs on rapidly proliferating precursor cells in the bone marrow. It is argued that serious toxicity due to myelosuppression most often occurs because of damage to proliferating precursors that may be recognized in bone marrow rather than to stem cells. In contrast, therapy that is aimed at producing cure or long-term remission of tumours must be directed at killing tumour stem cells. The evidence that tumours contain a limited population of cells which can repopulate the tumour after treatment (and are therefore tumour stem cells) is reviewed critically. While there is quite strong evidence for a limited population of target cells, evidence from studies on metastases suggests that the tumour cells which may express this stem cell property may change with time. The stem cell concept has major implications for predictive assays. Although colony-forming assays appear to have a sound biological background for predicting tumour response, technical problems prevent them from being used routinely in patient management. Cells in tumours are known to be heterogeneous and at least three types of heterogeneity may influence tumour response to drug treatment: the development of subclones with differing properties including drug resistance; variation in cellular properties due to differentiation during clonal expansion; and variation in properties due to nutritional status and micro-anatomy. Heterogeneity in drug distribution within solid tumours may occur because of limited drug penetration from blood vessels, and nutrient-deprived cells in solid tumours may be expected to escape the toxicity of some anticancer drugs as well as being resistant to radiation because of hypoxia. This may occur both because nutrient-deprived cells have a low rate of cell proliferation, and also because of poor drug penetration to them. There is a need for improved understanding of the mechanisms that lead to cell death in tumours. If these mechanisms were understood, it might be possible to simulate them by therapeutic manoeuvres. Recent research from our laboratory suggests that the combination of low extracellular pH and hypoxia may be very toxic to cells in nutrient-deprived regions. Drugs which limit the cell's ability to survive in regions of acid pH may provide strategy for therapy of nutrient-deprived cells.  相似文献   

2.
SP analysis may be used to identify cancer stem cell populations   总被引:28,自引:0,他引:28  
Side populations (SP), as defined by Hoechst exclusion in flow cytometry, have been described a few years ago. While they represent only a small fraction of the whole cell population, their properties confer an important place in several investigations. SP cells express high levels of various members of ABC transporters family, such as MDR1 and BCRP, which are responsible for drug resistance. Targeting SP could improve cancer therapy by blocking these transporters. In addition, SP appear to be enriched in stem cells, cells that play a pivotal role in normal development and cancer biology. Thus, they could provide a useful tool and a readily accessible source for stem cell studies in both the normal and cancerous settings. However, these cells are poorly defined and pose challenges in their identification and isolation, particularly since they are few in number. Thus, better characterization of SP will advance our understanding of stem cells and will provide us an accessible target for drug resistance in cancer therapy.  相似文献   

3.
Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity of P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.  相似文献   

4.
Mechanisms and strategies to overcome multiple drug resistance in cancer   总被引:10,自引:0,他引:10  
Ozben T 《FEBS letters》2006,580(12):2903-2909
One of the major problems in chemotherapy is multidrug resistance (MDR) against anticancer drugs. ATP-binding cassette (ABC) transporters are a family of proteins that mediate MDR via ATP-dependent drug efflux pumps. Many MDR inhibitors have been identified, but none of them have been proven clinically useful without side effects. Efforts continue to discover not toxic MDR inhibitors which lack pharmacokinetic interactions with anticancer drugs. Novel approaches have also been designed to inhibit or circumvent MDR. In this review, the structure and function of ABC transporters and development of MDR inhibitors are described briefly including various approaches to suppress MDR mechanisms.  相似文献   

5.
The development of multidrug resistance (MDR) not only actively transports a wide range of cytotoxic drugs across drug transporters but is also a complex interaction between a number of important cellular signalling pathways. Nitric oxide donors appear to be a new class of anticancer therapeutics for satisfying all the above conditions. Previously, we reported furoxan‐based nitric oxide‐releasing compounds that exhibited selective antitumour activity in vitro and in vivo. Herein, we demonstrate that bifendate (DDB)‐nitric oxide, a synthetic furoxan‐based nitric oxide‐releasing derivative of bifendate, effectively inhibits the both sensitive and MDR tumour cell viability at a comparatively low concentration. Interestingly, the potency of DDB‐nitric oxide is the independent of inhibition of the functions and expressions of three major ABC transporters. The mechanism of DDB‐nitric oxide appears to be in two modes of actions by inducing mitochondrial tyrosine nitration and apoptosis, as well as by down‐regulating HIF‐1α expression and protein kinase B (AKT), extracellular signal‐regulated kinases (ERK), nuclear factor κB (NF‐κB) activation in MDR cells. Moreover, the addition of a typical nitric oxide scavenger significantly attenuated all the effects of DDB‐nitric oxide, indicating that the cytotoxicity of DDB‐nitric oxide is as a result of higher levels of nitric oxide release in MDR cancer cells. Given that acquired MDR to nitric oxide donors is reportedly difficult to achieve and genetically unstable, compound like DDB‐nitric oxide may be a new type of therapeutic agent for the treatment of MDR tumours.  相似文献   

6.
Multidrug resistance (MDR) is the protection of a tumor cell population against numerous drugs differing in chemical structure and mechanisms of influence on the cells. MDR is one of the major causes of failures of chemotherapy of human malignancies. Recent studies show that the molecular mechanisms of MDR are numerous. Cellular drug resistance is mediated by different mechanisms operating at different steps of the cytotoxic action of the drug from a decrease of drug accumulation in the cell to the abrogation of apoptosis induced by the chemical substance. Often several different mechanisms are switched on in the cells, but usually one major mechanism is operating. The most investigated mechanisms with known clinical significance are: a) activation of transmembrane proteins effluxing different chemical substances from the cells (P-glycoprotein is the most known efflux pump); b) activation of the enzymes of the glutathione detoxification system; c) alterations of the genes and the proteins involved into the control of apoptosis (especially p53 and Bcl-2).  相似文献   

7.
Multidrug resistance (MDR) is a major impediment to curative cancer chemotherapy. The ATP-Binding Cassette transporters ABCG2, ABCB1 and ABCC2 form a unique defense network against multiple structurally and functionally distinct chemotherapeutics, thereby resulting in MDR. Thus, deciphering novel mechanisms of MDR and their overcoming is a major goal of cancer research. Recently we have shown that overexpression of ABCG2 in the membrane of novel extracellular vesicles (EVs) in breast cancer cells results in mitoxantrone resistance due to its dramatic sequestration in EVs. However, nothing is known about EVs structure, biogenesis and their ability to concentrate multiple antitumor agents. To this end, we here found that EVs are structural and functional homologues of bile canaliculi, are apically localized, sealed structures reinforced by an actin-based cytoskeleton and secluded from the extracellular milieu by the tight junction proteins occludin and ZO-1. Apart from ABCG2, ABCB1 and ABCC2 were also selectively targeted to the membrane of EVs. Moreover, Ezrin-Radixin-Moesin protein complex selectively localized to the border of the EVs membrane, suggesting a key role for the tethering of MDR pumps to the actin cytoskeleton. The ability of EVs to concentrate and sequester different antitumor drugs was also explored. Taking advantage of the endogenous fluorescence of anticancer drugs, we found that EVs-forming breast cancer cells display high level resistance to topotecan, imidazoacridinones and methotrexate via efficient intravesicular drug concentration hence sequestering them away from their cellular targets. Thus, we identified a new modality of anticancer drug compartmentalization and resistance in which multiple chemotherapeutics are actively pumped from the cytoplasm and highly concentrated within the lumen of EVs via a network of MDR transporters differentially targeted to the EVs membrane. We propose a composite model for the structure and function of MDR pump-rich EVs in cancer cells and their ability to confer multiple anticancer drug resistance.  相似文献   

8.
In this study, we investigated the role of c-Myc in overcoming multidrug resistance (MDR) in human ovarian and breast cancer cells by TRAIL. We showed that P-gp expressing MDR variants (Hey A8-MDR and MCF7-MDR cells) with high level of c-Myc were highly susceptible to TRAIL treatment when compared to their drug-sensitive parental human ovarian cancer Hey A8 and breast MCF-7 cells, respectively. Up-regulation of DR5 TRAIL receptor and down-regulation of c-FLIP and the promotion of caspase-dependent cell death, which contribute to TRAIL sensitization of MDR cells, were regulated by the over-expressed c-Myc in the MDR cells. After targeted inhibition of c-Myc with specific siRNA, these responses to TRAIL disappeared and TRAIL-induced apoptosis was also suppressed in MCF7-MDR cells. Treatment with TRAIL significantly reduced P-glycoprotein (P-gp)-mediated efflux of rhodamine123 in both Hey A8-MDR and MCF7-MDR cells. Furthermore, TRAIL significantly potentiated the cytotoxicity of vinblastine, vincristine, doxorubicin and VP-16 that are P-gp substrate anticancer drugs in both MDR cells, which resulted in the reversal effect of TRAIL on the MDR phenotype. The present study shows for the first time that elevated c-Myc expression in the MDR cells plays a critical role in overcoming MDR by TRAIL that can act as a specific sensitizer for P-gp substrate anticancer drug.  相似文献   

9.
线粒体DNA缺失细胞(ρ~0细胞)拮抗化疗药物诱导的凋亡,但其确切机制尚不明确。本研究探讨P-gp线粒体转位与人肝癌细胞(SK-Hepl)mtDNA缺失细胞(ρ~0SK-Hep1)多药耐药产生的关系。以SK-Hep1、ρ~0SK-Hep1和转线粒体细胞SK-Hep1Cyb为研究对象,CCK-8方法检测细胞对药物敏感性;AnnexinV/PI双染法及DAPI染色法检测细胞凋亡;Westernblot检测P-gp表达;激光共聚焦显微镜结合免疫荧光检测P-gP细胞内分布。结果显示,SK-Hep1、ρ~0SK-Hep1和SK-Hep1Cyb细胞对多柔比星(DOX)的IC_(50)分别为0.62±0.02μg/ml、4.93±0.17μg/ml和0.57±0.02μg/ml。SK-Hep1、ρ~0SK-Hep1和SK-Hep1Cyb细胞凋亡率分别为1 1.25%±1.36%、4.75%±0.98%和14.50%±1.57%,ρ~0SK-Hep1对细胞凋亡有明显抗性。Western blot检测发现ρ~0细胞内P-gP、Bax、Bcl-2表达增加,Bcl-2/Bax比值增加。免疫荧光共定位显示,ρ~0细胞线粒体内P-gP...  相似文献   

10.
Because melanomas are intrinsically resistant to conventional radiotherapy and chemotherapy, many alternative treatment approaches have been developed such as biochemotherapy and immunotherapy. The most common cause of multidrug resistance (MDR) in human cancers is the expression and function of one or more A TP‐b inding c assette (ABC) transporters that efflux anticancer drugs from cells. Melanoma cells express a group of ABC transporters (such as ABCA9, ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, and ABCD1) that may be associated with the resistance of melanoma cells to a broad range of anticancer drugs and/or of melanocytes to toxic melanin intermediates and metabolites. In this review, we propose a model (termed the ABC‐M model) in which the intrinsic MDR of melanoma cells is at least in part because of the transporter systems that may also play a critical role in reducing the cytotoxicity of the melanogenic pathway in melanocytes. The ABC‐M model suggests molecular strategies to reverse MDR function in the context of the melanogenic pathway, which could open therapeutic avenues towards the ultimate goal of circumventing clinical MDR in patients with melanoma.  相似文献   

11.
Low intracellular bioavailability, off-site toxicities, and multi drug resistance (MDR) are the major constraints involved in cancer chemotherapy. Many anticancer molecules fail to become a good lead in drug discovery because of their poor site-specific bioavailability. Concentration of a molecule at target sites is largely varied because of the wavering expression of transporters. Recent anticancer drug discovery strategies are paying high attention to enhance target site bioavailability by modulating drug transporters. The level of genetic expression of transporters is an important determinant to understand their ability to facilitate drug transport across the cellular membrane. Solid carrier (SLC) transporters are the major influx transporters involved in the transportation of most anti-cancer drugs. In contrast, ATP-binding cassette (ABC) superfamily is the most studied class of efflux transporters concerning cancer and is significantly involved in efflux of chemotherapeutics resulting in MDR. Balancing SLC and ABC transporters is essential to avoid therapeutic failure and minimize MDR in chemotherapy. Unfortunately, comprehensive literature on the possible approaches of tailoring site-specific bioavailability of anticancer drugs through transporter modulation is not available till date. This review critically discussed the role of different specific transporter proteins in deciding the intracellular bioavailability of anticancer molecules. Different strategies for reversal of MDR in chemotherapy by incorporation of chemosensitizers have been proposed in this review. Targeted strategies for administration of the chemotherapeutics to the intracellular site of action through clinically relevant transporters employing newer nanotechnology-based formulation platforms have been explained. The discussion embedded in this review is timely considering the current need of addressing the ambiguity observed in pharmacokinetic and clinical outcomes of the chemotherapeutics in anti-cancer treatment regimens.  相似文献   

12.
Although early detection of breast cancer improved in recent years, prognosis of patients with late stage breast cancer remains poor, mostly due to development of multidrug resistance (MDR) followed by tumor recurrence. Cancer stem cells (CSCs), with higher drug efflux capability and other stem cell-like properties, are concentrated in a side population (SP) of cells, which were proposed to be responsible for MDR and tumor repopulation that cause patients to succumb to breast cancer. Therefore, targeting of CSCs as an adjuvant to chemotherapy should be able to provide a more effective treatment of this disease. Here, we used IMD-0354, an inhibitor of NF-κB, identified for targeting CSCs, in a combination therapy with doxorubicin encapsulated in targeted nanoparticles. IMD-0354 did target CSCs, evidenced by a decrease in the SP, demonstrated by the inhibition of the following: dye/drug efflux, reduction in ABC transporters as well as in colony formation in soft agar and low attachment plates. Decrease of stem-like gene expression of Oct4, Nanog and Sox2, and apoptosis resistance related to the Survivin gene also was observed after treatment with this compound. In addition, IMD-0354 targeted non-CSCs as indicated by reducing viability and increasing apoptosis. Targeted drug delivery, achieved with a legumain inhibitor, proved to enhance drug delivery under hypoxia, a hallmark of the tumor microenvironment, but not under normoxia. Together, this allowed a safe, non-toxic delivery of both anticancer agents to the tumor microenvironment of mice bearing syngeneic metastatic breast cancer. Targeting both bulk tumor cells with a chemotherapeutic agent and CSCs with IMD-0354 should be able to reduce MDR. This could eventually result in decreasing tumor recurrences and/or improve the outcome of metastatic disease.  相似文献   

13.
The extensive progress of genome sequencing projects in recent years has demonstrated that multidrug resistance (MDR) transporters are widely spread among all domains of life. This indicates that they play crucial roles in the survival of organisms. Moreover, antibiotic and chemotherapeutic treatments have revealed that microorganisms and cancer cells may use MDR transporters to fight the cytotoxic action of drugs. Currently, several MDR extrusion systems are being investigated in detail. It is expected that understanding of the molecular basis of multidrug recognition and the transport mechanisms will allow a more rational design of new drugs which either will not be recognized and expelled by or will efficiently inhibit the activity of the MDR transporters. MDR transporters either utilize ATP hydrolysis or an ion motive force as an energy source to drive drugs out of the cell. This review summarizes the recent progress in the field of bacterial proton motive force driven MDR transporters.  相似文献   

14.
The acquisition of resistance to anticancer agents used in chemotherapy is the main cause of treatment failure in malignant disorders, provoking tumours to become resistant during treatment, although they initially respond to it. The main multidrug resistance (MDR) mechanism in tumour cells is the expression of P-gly-coprotein (P-gly), that acts as an ATP-dependent active efflux pump of chemotherapeutic agents. Furthermore, an increased detoxification of compounds mediated by high levels of glutathione (GSH) and glutathione S-transferase (GST), has been found in resistant cells. We developed a study aiming to evaluate the evolution of the main drug resistance markers in tumour cells: P-gly, GSH and GST, during the acquisition of resistance to colchicine, for the purpose of studying the adaptation process and its contribution to the MDR phenomenon. A human colon adenocarcinoma cell line was exposed to colchicine during 82 days, being P-gly, GSH levels and GST activity evaluated by flow cytometry, spectrofluorimetry and spectrophotometry, during exposure time. P-gly and GSH levels increased gradually during the exposure to colchicine, reaching 2.35 and 3.21 fold each. On day 82, GST activity increased 1.84 fold at the end of the exposure period. Moreover, an increment in drug cross-resistance was obtained that ranges from 2.62 to 5.22 fold for colchicine, vinblastine, vincristine and mitomycin C. The increments obtained in P-gly, GSH and GST could probably contribute to the MDR phenomenon in this human colon adenocarcinoma cell line.  相似文献   

15.
Multi drug resistance (MDR) or cross resistance to drugs was initially explained on the basis that MDR cells express drug transporters that expel membrane-embedded drugs. However, it is now clear that transporters are a single piece from a complex puzzle. An issue that has been solved recently is, given that these transporters have to handle drugs, why should a membrane-embedded drug and a transporter meet? To solve this problem, a theory has been suggested considering the interaction between the cell membrane mechanical properties and the size of drugs. In simple terms, this theory proposes that an excess in the packing of lipid in the inner leaflet of the membrane of MDR cells is responsible for blocking drugs mechanically as a function of their sizes at the membrane level, thus impairing their flux into the cytosol. In turn it is expected that this would allow any membrane embedded drug to diffuse toward transporters. The study concluded that the size of drugs is necessarily important regarding the mechanical interaction between the drug and the membrane, and likely to be central to MDR. Remarkably, an experimental study based on MDR and published years ago concluded that the molecular weight (MW) of drugs was central to MDR (Biedler and Riehm in Cancer Res 30:1174–1184, 1970). Given that size and MW are linked together, I have compared the former theory to the latter experimental data and demonstrate that, indeed, basic membrane mechanics is involved in high levels of cross resistance to drugs in Pgp expressing cells.  相似文献   

16.
Multidrug resistance (MDR), an unfavorable factor compromising the treatment efficacy of anticancer drugs, involves the upregulation of ATP binding cassette (ABC) transporters and induction of galectin-3 signaling. Galectin-3 plays an anti-apoptotic role in many cancer cells and regulates various pathways to activate MDR. Thus, the inhibition of galectin-3 has the potential to enhance the efficacy of the anticancer drug epirubicin. In this study, we examined the effects and mechanisms of silencing galectin-3 via RNA interference (RNAi) on the β-catenin/GSK-3β pathway in human colon adenocarcinoma Caco-2 cells. Galectin-3 knockdown increased the intracellular accumulation of epirubicin in Caco-2 cells; suppressed the mRNA expression of galectin-3, β-catenin, cyclin D1, c-myc, P-glycoprotein (P-gp), MDR-associated protein (MRP) 1, and MRP2; and downregulated the protein expression of P-gp, cyclin D1, galectin-3, β-catenin, c-Myc, and Bcl-2. Moreover, galectin-3 RNAi treatment significantly increased the mRNA level of GSK-3β, Bax, caspase-3, and caspase-9; remarkably increased the Bax-to-Bcl-2 ratio; and upregulated the GSK-3β and Bax protein expressions. Apoptosis was induced by galectin-3 RNAi and/or epirubicin as demonstrated by chromatin condensation, a higher sub-G1 phase proportion, and increased caspase-3 and caspase-9 activity, indicating an intrinsic/mitochondrial apoptosis pathway. Epirubicin-mediated resistance was effectively inhibited via galectin-3 RNAi treatment. However, these phenomena could be rescued after galectin-3 overexpression. We show for the first time that the silencing of galectin-3 sensitizes MDR cells to epirubicin by inhibiting ABC transporters and activating the mitochondrial pathway of apoptosis through modulation of the β-catenin/GSK-3β pathway in human colon cancer cells.  相似文献   

17.
MDR1 is highly expressed in MDR A2780DX5 ovarian cancer cells, MDR SGC7901R gastric cancer cells and recurrent tumours. It pumps cytoplasmic agents out of cells, leading to decreased drug accumulation in cells and making cancer cells susceptible to multidrug resistance. Here, we identified that miR‐495 was predicted to target ABCB1, which encodes protein MDR1. To reduce the drug efflux and reverse MDR in cancer cells, we overexpressed a miR‐495 mimic in SGC7901R and A2780DX cells and in transplanted MDR ovarian tumours in vivo. The results indicated that the expression of MDR1 in the above cells or tumours was suppressed and that subsequently the drug accumulation in the MDR cells was decreased, cell death was increased, and tumour growth was inhibited after treatment with taxol‐doxorubicin, demonstrating increased drug sensitivity. This study suggests that pre‐treatment with miR‐495 before chemotherapy could improve the curative effect on MDR1‐based MDR cancer.  相似文献   

18.
Conceptual and technical advances in neural stem cell biology are being applied to the study of human brain tumours. These studies suggest that human brain tumours are organized as a hierarchy and are maintained by a small number of tumour cells that have stem cell properties. Most of the bulk population of human brain tumours comprise cells that have lost the ability to initiate and maintain tumour growth. Although the cell of origin for human brain tumours is uncertain, recent evidence points towards the brain's known proliferative zones. The identification of brain tumour stem cells has important implications for understanding brain tumour biology and these cells may be critical cellular targets for curative therapy.  相似文献   

19.
Multidrug resistance (MDR) of cancer cells to a wide spectrum of anticancer drugs is a major obstacle to successful chemotherapy. It is usually mediated by the overexpression of one of the three major ABC transporters actively pumping cytotoxic drugs out of the cells. There has been great interest in the search for inhibitors toward these transporters with an aim to circumvent resistance. This is usually achieved by screening from natural product library and the subsequent structural modifications. This study reported the reversal of ABCG2-mediated MDR in drug-selected resistant cancer cell lines by a class of host defense antimicrobial peptides, the human cathelicidin LL37 and its fragments. The effective human cathelicidin peptides (LL17-32 and LL13-37) were found to increase the accumulation of mitoxantrone in cancer cell lines with ABCG2 overexpression, thereby circumventing resistance to mitoxantrone. At the effective concentrations of the cathelicidin peptides, cell proliferation of the parental cells without elevated ABCG2 expression was not affected. Result from drug efflux and ATPase assays suggested that both LL17-32 and LL13-37 interact with ABCG2 and inhibit its transport activity in an uncompetitive manner. The peptides were also found to downregulate ABCG2 protein expression in the resistant cells, probably through a lysosomal degradation pathway. Our data suggest that the human cathelicidin may be further developed for sensitizing resistant cancer cells to chemotherapy.  相似文献   

20.
Multidrug resistance (MDR) has been related to two members of the ABC-superfamily of transporters, P-glycoprotein (Pgp) and Multidrug Resistance-associated Protein (MRP). We have described a 110 kD protein termed the Lung Resistance-related Protein (LRP) that is overexpressed in several non-Pgp MDR cell lines of different histogenetic origin. Reversal of MDR parallels a decrease in LRP expression. In a panel of 61 cancer cell lines which have not been subjected to laboratory drug selection, LRP was a superior predictor forin vitro resistance to MDR-related drugs when compared to Pgp and MRP, and LRP's predictive value extended to MDR unrelated drugs, such as platinum compounds. LRP is widely distributed in clinical cancer specimens, but the frequency of LRP expression inversely correlates with the known chemosensitivity of different tumour types. Furthermore, LRP expression at diagnosis has been shown to be a strong and independent prognostic factor for response to chemotherapy and outcome in acute myeloid leukemia and ovarian carcinoma (platinum-based treatment) patients. Recently, LRP has been identified as the human major protein. Vaults are novel cellular organelles broadly distributed and highly conserved among diverse eukaryotic cells, suggesting that they play a role in fundamental cell processes. Vaults localise to nuclear pore complexes and may be the central plug of the nuclear pore complexes. Vaults structure and localisation support a transport function for this particle which could involve a variety of substrates. Vaults may therefore play a role in drug resistance by regulating the nucleocytoplasmic transport of drugs.Abbreviations LRP Lung Resistance-related Protein - MVP Major Vault Protein - MDR Multidrug resistance - MRP Multidrug resistance-associated Protein - NPC Nuclear Pore Complex - Pgp P-glycoprotein  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号