首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Downy mildew is probably the most widespread and potentially destructive global disease of spinach (Spinacia oleracea). The causal agent of downy mildew disease on various plants of Chenopodiaceae, including spinach, is regarded as a single species, Peronospora farinosa. In the present study, the ITS rDNA sequence and morphological data demonstrated that P. farinosa from S. oleracea is distinct from downy mildew of other chenopodiaceous hosts. Fifty-eight spinach specimens were collected or loaned from 17 countries of Asia, Europe, Oceania, North and South America, which all formed a distinct monophyletic group. No intercontinental genetic variation of the ITS rDNA within Peronospora accessions causing spinach downy mildew disease was found. Phylogenetic trees supported recognition of Peronospora from spinach as a separate species. Microscopic examination also revealed morphological differences between Peronospora specimens from Spinacia and P. farinosa s. lat. specimens from Atriplex, Bassia, Beta, and Chenopodium. Consequently, the name Peronospora effusa should be reinstated for the downy mildew fungus found on spinach. Here, a specimen of the original collections of Peronospora effusa is designated as lectotype.  相似文献   

2.
Choi YJ  Denchev CM  Shin HD 《Mycopathologia》2008,165(3):155-164
About 20 species of Peronospora have been reported to cause downy mildew on Chenopodium, but, particularly in plant pathology literature, only one species, P. farinosa, is considered to be involved. We performed sequence analysis of the ITS rDNA to reveal the phylogenetic relationships of Peronospora specimens from five species of Chenopodium, viz. C. album, C. ambrosioides, C. bonus-henricus, C. hybridum, and C. polyspermum. The five clades corresponded to particular Chenopodium species, and showed a high level of sequence divergence. Differences in the morphology of the conidia and ultimate branchlets also supported the separation of the five groups at the host species level. These results suggest that the names P. variabilis, P. boni-henrici, P. chenopodii, and P. chenopodii-polyspermi should be used for the four downy mildew pathogens specific to C. album, C. bonus-henricus, C. hybridum, and C. polyspermum, respectively. The Peronospora on C. ambrosioides was found to be an independent species.  相似文献   

3.
4.
On the family Brassicaceae, the causal agent responsible for downy mildew disease was originally regarded as a single species, Peronospora parasitica (now under Hyaloperonospora), but it was recently reconsidered to consist of many distinct species. In this study, 11 specimens of Peronospora drabae and P. norvegica parasitic on the genus Draba were investigated morphologically and molecularly. Pronounced differences in conidial sizes (P. drabae: 14–20 × 12.5–15.5 μm; P. norvegica: 20–29 × 15.5–22 μm) and 7.8% sequence distance between their ITS1-5.8S-ITS2 rDNA sequences confirmed their status as distinct species. Based on ITS phylogeny and morphology (monopodially branching conidiophores, flexuous to sigmoid ultimate branchlets, hyaline conidia and lobate haustoria), the two species unequivocally belong to the genus Hyaloperonospora and not to Peronospora to which they were previously assigned. Therefore, two new combinations, Hyaloperonospora drabae and H. norvegica, are proposed. The two taxa are illustrated and compared using the type specimen for H. norvegica and authentic specimens for H. drabae, which is lectotypified.  相似文献   

5.
6.
Choi YJ  Hong SB  Shin HD 《Mycopathologia》2007,164(2):91-95
Bremia lactucae Regel (Chromista, Peronosporaceae) is an economically destructive pathogen, which causes downy mildew disease on lettuce (Lactuca sativa L.) worldwide. The ribosomal internal transcribed spacer (ITS) of Bremia lactucae isolates was analyzed for the first time. The ITS region of lettuce downy mildew was observed to have a size of 2458 bp; thereby, having one of the longest ITS sizes recorded to date. The majority of the extremely large sized ITS2 length of 2086 was attributed to the additional presences of nine repetitive elements with lengths of 179–194 bp, which between them shared the low homology of 48–69%. Comparison of the ITS2 sequences with the B. lactucae isolates from other host plants showed that isolates present on Lactuca sativa were distinct from those on L. indica var. laciniata, as well as Hemistepta and Youngia. We suggest the high degree of sequence heterogeneity exhibited in the ITS2 region of B. lactucae may warrant the specific detection and diagnosis of this destructive pathogen or its division into several distinct species.  相似文献   

7.
AIMS: The purpose of the study was to characterize the internal transcribed spacer (ITS) regions of Peronospora parasitica (crucifer downy mildew) in order to evaluate their potential as molecular markers for pathogen identification. METHODS AND RESULTS: PCR amplification of ribosomal RNA gene block (rDNA) spacers (ITS1 and ITS2) performed in 44 P. parasitica isolates from different Brassica oleracea cultivars and distinct geographic origins, revealed no length polymorphisms. ITS restriction analysis with three endonucleases, confirmed by sequencing, showed no fragment length polymorphisms among isolates. Furthermore, ITS amplification with DNA isolated from infected host tissues also allowed the detection of the fungus in incompatible interactions. The combination of the universal ITS4 and ITS5 primers, for amplification of full ITS, with a new specific forward internal primer for ITS2 (PpITS2F), originates a P. parasitica specific amplicon, suitable for diagnosis. CONCLUSIONS: As ITS2 regions of P. parasitica, B. oleracea, other B. oleracea fungal pathogens and other Peronospora species are clearly distinct, a fast and reliable molecular identification method based on multiplex PCR amplification of full ITS and P. parasitica ITS2 is proposed for the diagnosis of crucifer downy mildew. SIGNIFICANCE AND IMPACT OF THE STUDY: The method can be applied to diagnose the disease in the absence of fungal reproductive structures, thus being useful to detect nonsporulating interactions, early stages of infection on seedlings, and infected young leaves packed in sealed plastic bags. Screening of seed stocks in sanitary control is also a major application of this diagnostic method.  相似文献   

8.
[目的]为从天敌病原生物方面探索外来入侵植物南美蟛蜞菊的生物防治,对新发现的南美蟛蜞菊霜霉病进行病原鉴定和系统发育分析。[方法]在广东省广州市对南美蟛蜞菊霜霉病的发生及危害情况进行调查,并通过病害症状识别、病原显微形态记录与比较、病原菌及其近似种ITS序列结构比较、LSU序列和ITS序列系统发育分析,对南美蟛蜞菊霜霉病病原进行鉴定和系统发育分析。[结果]南美蟛蜞菊霜霉病在广州零星发生,但该病害在华南农业大学校园内发生较严重,发病率达50%~70%,病情指数为30~35。经鉴定,其病原菌为南美蟛蜞菊单轴霉,是国内一新记录种。基于病原菌LSU序列和ITS序列的系统发育分析显示,侵染菊科植物的单轴霉属菌种聚在一个分枝,亲缘关系密切,与侵染其他不同科寄主植物的单轴霉亲缘关系较远。ITS序列结构比较显示,寄生于菊科向日葵族植物的单轴霉属菌种的ITS2区包含多个重复序列,不同菌种间的ITS2区重复序列相似度不同,说明侵染菊科向日葵簇植物的单轴霉属菌物可细分成多个种,而不是只有向日葵单轴霉。[结论]广州发生的南美蟛蜞菊霜霉病是该寄主上首次正式报道的病害,鉴定的病原菌也是国内一新记录种;寄生在菊科植物上的单轴霉属种类不尽相同,但亲缘关系紧密。  相似文献   

9.
Heterogeneity of the rDNA ITS region in Pythium helicoides and the phylogenetic relationship between P. helicoides and closely related species were investigated. In PCR-RFLP analysis of the rDNA ITS region of six P. helicoides isolates investigated, including the type culture, intraspecific variation was found at the HhaI site. The total length of fragments was longer than before cutting, indicating sequence heterogeneity within isolates. Digestion of the cloned rDNA ITS region derived from seven isolates with HhaI revealed polymorphisms among and within single zoospore isolates, and variability of the region was also present among the clones derived from the same isolate. To test whether the rDNA ITS region of closely related species and other regions in the genome of P. helicoides are also variable, the rDNA ITS region of P. ultimum and the cytochrome oxydase II (cox II) gene encoded in mitochondria were sequenced. P. ultimum had little variation in the rDNA ITS region. The cox II gene sequences of both species revealed only a low intraspecific variability and no intra-isolate variation. In the phylogenic tree based on the rDNA ITS sequences, all clones of P. helicoides formed one large clade that was distinct from the clades comprising morphologically similar species, such as P. oedochilum and P. ostracodes, and was closely related to P. chamaehyphon rather than the other species.  相似文献   

10.
Powdery mildew of rubber tree caused by Oidium heveae is an important disease of rubber plantations worldwide. Identification and classification of this fungus is still uncertain because there is no authoritative report of its morphology and no record of its teleomorphic stage. In this study, we compared five specimens of the rubber powdery mildew fungus collected in Malaysia, Thailand, and Brazil based on morphological and molecular characteristics. Morphological results showed that the fungus on rubber tree belongs to Oidium subgen. Pseudoidium. Nucleotide sequence analysis of the ribosomal DNA internal transcribed spacer (ITS) region and the large subunit rRNA gene (28S rDNA) were conducted to determine the relationships of the rubber powdery mildew fungus and to link this anamorphic fungus with its allied teleomorph. The results showed that the rDNA sequences of the two specimens from Malaysia were identical to a specimen from Thailand, whereas they differed by three bases from the two Brazilian isolates: one nucleotide position in the ITS2 and two positions in the 28S sequences. The ITS sequences of the two Brazilian isolates were identical to sequences of Erysiphe sp. on Quercus phillyraeoides collected in Japan, although the 28S sequences differed at one base from sequences of this fungus. Phylogenetic trees of both rDNA regions constructed by the distance and parsimony methods showed that the rubber powdery mildew fungus grouped with Erysiphe sp. on Q. phillyraeoides with 100% bootstrap support. Comparisons of the anamorph of two isolates of Erysiphe sp. from Q. phillyraeoides with the rubber mildew did not reveal any obvious differences between the two powdery mildew taxa, which suggests that O. heveae may be an anamorph of Erysiphe sp. on Q. phillyraeoides. Cross-inoculation tests are required to substantiate this conclusion.  相似文献   

11.
Several Peronospora species are carried by wind over short and long distances, from warmer climates where they survive on living plants to cooler climates. In eastern Canada, this annual flow of sporangia was thought to be the main source of Peronospora destructor responsible for onion downy mildew. However, the results of a recent study showed that the increasing frequency of onion downy mildew epidemics in eastern Canada is associated with warmer autumns, milder winters, and previous year disease severity, suggesting overwintering of the inoculum in an area where the pathogen is not known to be endogenous. In this study, genotyping by sequencing was used to investigate the population structure of P. destructor at the landscape scale. The study focused on a particular region of southwestern Québec—Les Jardins de Napierville—to determine if the populations were clonal and regionally differentiated. The data were characterized by a high level of linkage disequilibrium, characteristic of clonal organisms. Consequently, the null hypothesis of random mating was rejected when tested on predefined or nonpredefined populations, indicating that linkage disequilibrium was not a function of population structure and suggesting a mixed reproduction mode. Discriminant analysis of principal components performed with predefined population assignment allowed grouping P. destructor isolates by geographical regions, while analysis of molecular variance confirmed that this genetic differentiation was significant at the regional level. Without using a priori population assignment, isolates were clustered into four genetic clusters. These results represent a baseline estimate of the genetic diversity and population structure of P. destructor.  相似文献   

12.
Several Peronospora species are carried by wind over short and long distances, from warmer climates where they survive on living plants to cooler climates. In eastern Canada, this annual flow of sporangia was thought to be the main source of Peronospora destructor responsible for onion downy mildew. However, the results of a recent study showed that the increasing frequency of onion downy mildew epidemics in eastern Canada is associated with warmer autumns, milder winters, and previous year disease severity, suggesting overwintering of the inoculum in an area where the pathogen is not known to be endogenous. In this study, genotyping by sequencing was used to investigate the population structure of P. destructor at the landscape scale. The study focused on a particular region of southwestern Québec—Les Jardins de Napierville—to determine if the populations were clonal and regionally differentiated. The data were characterized by a high level of linkage disequilibrium, characteristic of clonal organisms. Consequently, the null hypothesis of random mating was rejected when tested on predefined or nonpredefined populations, indicating that linkage disequilibrium was not a function of population structure and suggesting a mixed reproduction mode. Discriminant analysis of principal components performed with predefined population assignment allowed grouping P. destructor isolates by geographical regions, while analysis of molecular variance confirmed that this genetic differentiation was significant at the regional level. Without using a priori population assignment, isolates were clustered into four genetic clusters. These results represent a baseline estimate of the genetic diversity and population structure of P. destructor.  相似文献   

13.
In Baja California Sur, Mexico, a foliar disease occurred on sweet basil which seriously affected its quality and yield. The most common symptoms were yellowing and necrosis on leaves, caused by a downy mycelium growth on the lower leaf surface. Symptomatic leaves from two sampling sites were collected for morphological studies and molecular analysis of pathogen DNA. Based on morphological characteristics (sporangiophore size of 240–530 × 7–11 μm, branches of 5–8 order and a sporangia size of 27–31 × 21–25 μm) and molecular analysis (the GenBank blast of the PCR assays showed unique rDNA sequence data with 99% similarity to P. belbahrii), the pathogen was identified as Peronospora belbahrii, the causal agent of basil downy mildew. This is the first report of P. belbahrii affecting sweet basil in Mexico.  相似文献   

14.
An improved protocol, including DNA extraction with Chelex, two amplifications with a nested primer set, and DNA purification by electrophoresis, made it possible to analyze nuclear rDNA sequences of powdery mildew fungi using at most several hundred conidia or 20 cleistothecia. Nucleotide sequence diversity of the nuclear rDNA region containing the two internal transcribed spacers (ITS1 and ITS2) and 5.8S rRNA gene derived from conidia and cleistothecia was investigated for four kinds of powdery mildew fungi including two isolates of the same species. The results showed that the nucleotide sequences of the nuclear rDNA region were highly conserved between the teleomorph and the anamorph. Thus, the nucleotide sequence data obtained from either developmental stage can be used for phylogenetic studies of powdery mildew fungi. The nucleotide sequences of the 5.8S rRNA genes of the four species were highly conserved, but those of their ITS regions were variable. This suggests that the nuclear rDNA region is not suitable for phylogenetic studies of distantly related powdery mildew fungi, because too much sequence diversity exists, within the ITS, and too little phylogenetic information is contained within the 5.8S rRNA gene. However, the ITS region will be useful for phylogenetic comparison of closely related species or intraspecies. Contribution No. 132 from the Laboratory of Plant Pathology, Mie University.  相似文献   

15.
We previously reported the occurrence of genetically‐diverse symbiotic dinoflagellates (zooxanthellae) within and between 7 giant clam species (Tridacnidae) from the Philippines based on the algal isolates' allozyme and random amplified polymorphic DNA (RAPD) patterns. We also reported that these isolates all belong to clade A of the Symbiodinium phylogeny with identical 18S rDNA sequences. Here we extend the genetic characterization of Symbiodinium isolates from giant clams and propose that they are conspecific. We used the combined DNA sequences of the internal transcribed spacer (ITS)1, 5.8S rDNA, and ITS2 regions (rDNA‐ITS region) because the ITS1 and ITS2 regions evolve faster than 18S rDNA and have been shown to be useful in distinguishing strains of other dinoflagellates. DGGE of the most variable segment of the rDNA‐ITS region, ITS1, from clonal representatives of clades A, B, and C showed minimal intragenomic variation. The rDNA‐ITS region shows similar phylogenetic relationships between Symbiodinium isolates from symbiotic bivalves and some cnidarians as does 18S rDNA, and that there are not many different clade A species or strains among cultured zooxanthellae (CZ) from giant clams. The CZ from giant clams had virtually identical sequences, with only a single nucleotide difference in the ITS2 region separating two groups of isolates. These data suggest that there is one CZ species and perhaps two CZ strains, each CZ strain containing individuals that have diverse allozyme and RAPD genotypes. The CZ isolated from giant clams from different areas in the Philippines (21 isolates, 7 clam species), the Australian Great Barrier Reef (1 isolate, 1 clam species), Palau (8 isolates, 7 clam species), and Okinawa, Japan (1 isolate, 1 clam species) shared the same rDNA‐ITS sequences. Furthermore, analysis of fresh isolates from giant clams collected from these geographical areas shows that these bivalves also host indistinguishable clade C symbionts. These data demonstrate that conspecific Symbiodinium genotypes, particularly clade A symbionts, are distributed in giant clams throughout the Indo‐Pacific.  相似文献   

16.
The occurrence of an epidemic outbreak of a powdery mildew disease on mulberry in Yunnan province, China, is reported. Its symptoms are characteristic for powdery mildews and visible as white pathches covering the abaxial surfaces of leaves leading to chlorosis and necrosis. The pathogen is morphologically barely distinguishable from Phyllactinia moricola. However, it exhibits several new morphological characteristics which 2–3 conidia could be formed in short chains at the apex of the conidiophores and the conidia could produce two germ tubes in any position. Phylogenetic analyses of ITS sequences show that the pathogen has a close genetic relationship with P. moricola and Ph. broussonetiae‐kaempferi, two species on hosts belonging to family Moraceae. However, the ITS differences between Japanese sequences and the Chinese sequence derived from mulberry are greater than expected for a single species and suggest a cryptic species in China, but the present data are not sufficient for a final conclusion. Therefore, the Morus powdery mildew in Yunnan can currently only be classified as Phyllactinia sp. Morphological features, including conidial germination pattern of this powdery mildew are described in detail, and the local climatic conditions of the disease are analysed, which will provide the base for finding an effective method, including bio‐control, to control the disease under local conditions.  相似文献   

17.
Isolates of the most important Puccinia species that have been reported on Chrysanthemum × morifolium were collected and the sequences of their ribosomal DNA internal transcribed spacers ITS1 and ITS2 were determined and used as phylogenetic markers. The focus of this study was on Puccinia horiana, due to its quarantine status and its impact in commercial chrysanthemum production. Three technical adjustments were needed to reliably obtain the nucleotide sequences starting from fresh or dried samples. The complete rDNA ITS nucleotide sequences of P. horiana, Puccinia chrysanthemi, and Puccinia tanaceti isolates of varying age and geographic origin were determined. We also identified an as yet undescribed Puccinia species on six old herbarium samples from chrysanthemum. This new species is morphologically similar to P. chrysanthemi and near identical to recent rust samples from Artemisia tridentata. P. tanaceti could not be confirmed as a pathogen of chrysanthemum. Different rDNA ITS sequences were present in P. horiana, with intra-isolate and inter-isolate variability in the length of three nucleotide repeat regions in the different rDNA tandem copies. We also identified three ITS types within P. horiana, with the rarer types displaying up to 67 bp nucleotide sequence differences. These rarer ITS types were detected at low copy number in all isolates. In general, very little rDNA ITS sequence variation was observed between P. horiana isolates from 1903 and 2003, and among isolates from different continents. Phylogenetic analyses using distance, Maximum Likelihood and Bayesian methods confirmed P. horiana, P. chrysanthemi, and the new Puccinia sp. as well-resolved groups, with P. horiana clustering in the clade where the economically important rust species of the Poaceae are located, and P. chrysanthemi and the new Puccinia sp. clustering in the clade where the majority of the rust fungi with hosts in the Asteraceae is located.  相似文献   

18.
19.
The germination of conidia of Peronospora farinosa f. sp. betae, collected from sugar beet and suspended in deionized water, was inhibited by dilution with 10% solutions of glycerol, glucose or sucrose and with sap from sugar-beet leaves. Germination was stimulated by diluting with deionized water but not with tap water or biological saline. Substances that diffused from excised buds of sugar-beet plants into deionized water also stimulated germination of conidia but diffusates from leaves did not. This may partly explain why buds are more susceptible to downy mildew than leaves in sugar beet. Germination of conidia was apparently stimulated more by diffusates from buds of seedlings than by those from buds of older plants; this may help to explain why sugar-beet seedlings are more susceptible to downy mildew than older plants. Diffusates from plants of four sugar-beet stocks, that differed from each other in susceptibility to downy mildew, had very similar effects on germination of P. farinosa conidia. Stimulation of spore germination on the surfaces of buds and leaves did not seem, therefore, to be an important factor in determining resistance or susceptibility to downy mildew in these stocks.  相似文献   

20.
Pythium grandisporangium was isolated from roots of common reed and seawater in a saline marsh in Osaka Bay for the first time in Japan. Morphological features and rDNA ITS sequences were described on isolates of the species. The isolates grew on corn meal agar containing 0–9% sea salts, with 1–3% being the ideal range for growth. The isolates produced no disease on roots of common reed, but they colonized root surfaces in in vitro inoculation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号