首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Ethanol, at low concentrations, specifically stimulates the Na(+)-dependent Ca2(+)-efflux in brain mitochondria. In addition, at higher concentrations, ethanol inhibits the Na(+)-independent Ca2(+)-efflux. The electrogenic Ca(+)-uptake system is not affected by ethanol. The specific stimulation of Na+/Ca2+ exchange reaches a maximum of 60% stimulation, with half-maximal stimulation at 130 mM ethanol. The inhibition of the Na(+)-independent efflux is proportional to the ethanol concentration, becoming significant only above 200 mM, with 50% inhibition at 0.5 M. The inhibition of the Na(+)-independent efflux is, in large part, due to an inhibition of the activation of the Cyclosporin-sensitive pore. Long-term ethanol-feeding had no effect on the Ca2+ transport systems and their sensitivity to acute ethanol treatment. It is suggested that the stimulation of the Na(+)-dependent Ca2(+)-efflux, which is the dominant Ca2+ efflux pathway in brain mitochondria, contributes to the intoxicating effects of ethanol.  相似文献   

2.
A method is described for the preparation of ;free' and ;synaptosomal' brain mitochondria from fractions of guinea-pig cerebral cortex respectively depleted and enriched in synaptosomes. Both preparations of mitochondria have a low membrane H(+) conductance, a high capacity to phosphorylate ADP, and a capacity to accumulate Ca(2+) at rates limited by the activity of the respiratory chain. Ca(2+) transport by ;free' brain mitochondria is compared with that of heart mitochondria. The Ca(2+) conductance of ;free' brain mitochondria was at least 20 times that for rat heart mitochondria. Ca(2+) uptake by brain mitochondria increased the pH gradient and decreased membrane potential, whereas little change occurred during the much slower uptake by heart mitochondria. In the presence of ionophore A23187, dissipative Ca(2+) cycling decreased the H(+) electrochemical potential gradient of brain mitochondria from 190 to 60mV, but caused only a slight decrease with heart mitochondria, although the ionophore lowered the pH gradient and increased membrane potential. The Ca(2+) conductance of ;free' brain mitochondria is distinctive in showing a hyperbolic dependency on free Ca(2+) concentration. In the presence of Ruthenium Red, a rapid Na(+)-dependent Ca(2+) efflux occurs. The H(+) electrochemical potential gradient is maintained during this efflux, and membrane potential increases, with both ;free' brain and heart mitochondria. The Na(+) requirement for Ca(2+) efflux appears not to be related to the high Na(+)/H(+) exchange activity but may represent a direct exchange of Na(+) for Ca(2+).  相似文献   

3.
The influence of mitochondrial ATP-dependent K(+)-channel (K+(ATP)-channel) opener, diazoxide (DZ) on the mitochondrial permeability transition pore (MPTP) opening in rat liver mitochondria is studied. In the absence of DZ the MPTP opening leads to the increase in the rate of K(+)- and Ca(2+)-cycling supported by the simultaneous functioning of K(+)-channels and K+/H(+)-antiporter, and also Ca(2+)-uniporter together with MPTP as the cations influx and efflux pathways. Independent of MPTP opening, the activation of both constitutes of K(+)-cycle, K(+)-uptake as well as K+/H(+)-exchange, by DZ is observed. It is shown that the activation of transmembrane exchange of K+, combined with MPTP opening, results in partial inhibition of the latter. A simple methodical approach for the estimation of DZ influence on the open state of mitochondrial pore is proposed. It is shown that MPTP closure followed by Ca2+ reentry to the matrix is accompanied by the K+/H(+)-exchange inhibition which takes place in the same timeframes as the increase in matrix Ca2+ content. Relevant to physiological conditions, an important physiological function of MPTP is revealed, that is the maintenance of relatively low matrix level of Ca2+ accompanied by the acceleration of transmembrane ion exchange (K+ and Ca2+) which could strongly influence the energy state and energy-dependent processes in mitochondria.  相似文献   

4.
We examined effects of ethanol and dimethyl sulfoxide on the regulation and apparent thermodynamic properties of moderate affinity Na+ and K+ binding that regulates the K+-dependent phosphatase activity of (Na+,K+)-ATPase. Ethanol and other alcohols reduced the apparent affinity for Na+ and K+ at their moderate affinity sites and increased the negative delta H and delta S of cation binding. Dimethyl sulfoxide had the opposite effects. Inhibition by ethanol was favored by high temperature or low K+. Ethanol potentiated inhibition of K+ binding by ATP or Mg2+. Ethanol also shifted the equilibrium between K+-sensitive and -insensitive forms of (Na+,K+)-ATPase toward the K+-sensitive form; in this case, it reduced the negative delta H and delta S for the transition to K+-sensitive enzyme. Again, dimethyl sulfoxide had the opposite effects. These data indicate that ethanol and other agents considered to affect membrane fluidity act by a combination of membrane (on cation binding) and solvent (on conformation) effects. The most important effect of ethanol and similar agents on the enzyme is to prevent the formation of K+-sensitive enzyme by cation binding and to destabilize K+-sensitive enzyme in the presence of ATP. These results also add further evidence that the sites by which Na+ and K+ produce K+-sensitive enzyme are similar or identical.  相似文献   

5.
New indicators for fluorescent measurement of Na+ and K+ ions should prove particularly useful for studies of reconstituted carriers of these ions. We show that PBFI, a K(+)-specific probe, provides a convenient and sensitive assay for the study of K+ uptake mediated by the reconstituted mitochondrial K+/H+ (Na+/H+) antiporter. Fluorescent measurements have enabled us for the first time to establish reconstitution of the K+/H+ (Na+/H+) antiporter from beef heart as well as from rat liver mitochondria. This technique has also enabled us to establish that dicyclohexylcarbodiimide is capable of complete inhibition of K+/H+ antiport in the reconstituted system, in accord with findings in intact mitochondria. PBFI fluorescence, which measures net K+ uptake, was essential for this corroboration, since dicyclohexylcarbodiimide is not capable of complete inhibition of 42K+/K+ or 86Rb+/Rb+ exchange, presumably because it acts selectively on proton transport within the carrier.  相似文献   

6.
The transport of Na+ and Ca2+ ions in the cardiac Na(+)-Ca2+ exchanger can be described as separate events (Khananshvili, D. (1990) Biochemistry 29, 2437-2442). Thus, the Na(+)-Na+ and Ca(2+)-Ca2+ exchange reactions reflect reversible partial reactions of the transport cycle. The effect of diffusion potentials (K(+)-valinomycin) on different modes of the Na(+)-Ca2+ exchanger (Na(+)-Ca2+, Ca(2+)-Ca2+, and Na(+)-Na+ exchanges) were tested in reconstituted proteoliposomes, obtained from the Triton X-100 extracts of the cardiac sarcolemmal membranes. The initial rates of the Nai-dependent 45Ca-uptake (t = 1 s) were measured in EGTA-entrapped proteoliposomes at different voltages. At the fixed values of voltage [45 Ca]o was varied from 4 to 122 microM, and [Na]i was saturating (150 mM). Upon varying delta psi from -94 to +91 mV, the Vmax values were increased from 9.5 +/- 0.5 to 26.5 +/- 1.5 nmol.mg-1.s-1 and the Km from 17.8 +/- 2.5 to 39.1 +/- 5.2 microM, while the Vmax/Km values ranged from only 0.53 +/- 0.08 to 0.73 +/- 0.17 nmol.mg-1.s-1.microM-1. The equilibrium Ca(2+)-Ca2+ exchange was voltage sensitive at very low [Ca]o = [Ca]i = 2 microM, while at saturating [Ca]o = [Ca]i = 200 microM the Ca(2+)-Ca2+ exchange became voltage-insensitive. The rates of the equilibrium Na(+)-Na+ exchange appears to be voltage insensitive at saturating [Na]o = [Na]i = 160 mM. Under the saturating ionic conditions, the rates of the Na(+)-Na+ exchange were at least 2-3-fold slower than the Ca(2+)-Ca2+ exchange. The following conclusions can be drawn. (a) The near constancy of the Vmax/Km for Na(+)-Ca2+ exchange at different voltages is compatible with the ping-pong model proposed previously. (b) The effects of voltage on Vmax of Na(+)-Ca2+ exchange are consistent with the existence of a single charge carrying transport step. (c) It is not yet possible to clearly assign this step to the Na+ or Ca2+ transport half of the cycle although it is more likely that 3Na(+)-transport is a charge carrying step. Thus, the unloaded ion-binding domain contains either -2 or -3 charges (presumably carboxyl groups). (d) The binding of Na+ and Ca2+ appears to be weakly voltage-sensitive. The Ca(2+)-binding site may form a small ion-well (less than 2-3 A).  相似文献   

7.
The effects of ethanol and other aliphatic alcohols on energy-dependent Ca2+ transport in endoplasmic reticulum and mitochondria were studied in digitonin-treated myometrium cells. The Ca2+ uptake in mitochondria increased (on 15-20%) with increasing methanol, ethanol and propanol concentrations in medium, whereas further rise of concentration inhibited this process. Treatments of myometrial cells with short-chain alcohols caused an inhibition of calcium uptake in endoplasmic reticulum. Butanol inhibited both calcium uptake in mitochondria and endoplasmic reticulum. Ca2+ accumulation in intracellular pools is inhibited by aliphatic alcohols in the following order of potency: butanol > propanol > ethanol > methanol. It is concluded that modifying effect of aliphatic alcohols on energy dependent calcium accumulation in intracellular membrane structures is defined as on origin of Ca(2+)-transporting system and (or) properties of these membrane structures so on properties of alcohols.  相似文献   

8.
Studies of the effect of strophanthidin on H(+)-transporting ATPase, Ca(2+)-transporting ATPase and H+/K(+)-transporting ATPase activities are reported. Inhibition observations and kinetic results suggest the existence of a common digitalis aglycone binding site located on the extracellular surface of the enzyme, which is affected competitively by the binding of potassium to H(+)-transporting ATPase, Ca(2+)-transporting ATPase, as well as H+/K(+)-transporting ATPase and Na+/K(+)-transporting ATPase. This may lead to a better understanding of the mechanism of the pharmacological action of cardiac glycosides and imply the possibility that the positive inotropic effect may result from the inhibition of both Ca(2+)-transporting ATPase and Na+/K(+)-transporting ATPase.  相似文献   

9.
Cardiac cells in culture (from rat and chick heart) have a membrane Na+/H+ exchange system that is inhibited by amiloride (K0.5 = 5 microM) and by its more potent N-5-disubstituted derivatives dimethylamiloride (K0.5 = 300 nM) and ethylisopropylamiloride (K0.5 = 30 nM). The properties of the cardiac Na+/H+ exchange system are similar to those found for the Na+/H+ exchanger in other cellular types. The Na+/H+ exchange system is a major pathway for Na+ uptake by cardiac cells. Ouabain which inhibits the (Na+,K+)-ATPase, a major pathway for Na+ efflux, is known to provoke Na+ accumulation and to stimulate 45Ca2+ entry via the Na+/Ca2+ exchange mechanism, thereby producing an inotropic effect. N-5-Disubstituted amiloride derivatives, by blocking Na+ entry into cardiac cells, antagonize both ouabain-induced intracellular Na+ accumulation and the ouabain-induced acceleration of 45Ca2+ uptake.  相似文献   

10.
The survey is aimed to review the data from literature, concerning possible mechanisms of Ca2+ and H+ transport through the plasma membrane of a cells, and also possibility of existence of Ca2+/H(+)-exchange in the plasma membrane of the muscle cells. It is known that the modification of pHl (delta pH) also can influence the work of the contractile system of muscle cells, and the transition of Ca2+ through the plasma membrane of the cells. Thus, one can suppose a direct relation between Ca2+ and H+ transport, through Ca2+/H+ exchange, and indirect relation through connection with other systems of transport of both Ca2+ (Ca(2+)-ATPase, Na+/Ca2+ exchange), and H+ (Na+/H(+)-exchange, H(+)-ATPase). For example it is shown, that the activator (inhibitor) of the Na+/H(+)-exchange through the plasma membrane of muscle cells, influence the work of the retractive system. And as is known, Ca2+ takes main part in involvement in the system excitation--contraction, and, thus, influencing the work of the Na+/H(+)-exchange, it is possible to regulate transport of Ca2+ through the plasma membrane of a muscle cell. The problem about a possibility of existence of Ca2+/H+ exchange, or functioning of Ca2+/H(+)-exchanger, is still far from the solution. Therefore, in the given review the attempt is made to analyze available information about possible connection between Ca2+ and H+ transport through the plasma cell membrane.  相似文献   

11.
Whether the Na(2+)-independent Ca2+ efflux mechanism of liver mitochondria is a Ca2+/2H+ exchanger and whether this exchanger is a passive mechanism have been controversial since shortly after the discovery of this mechanism. Here, a new approach to determining if the mechanism is passive is developed based on the energy available to a passive Ca2+/2H+ exchanger. Conditions are identified in which the Na(+)-independent Ca2+ efflux mechanism transports Ca2+ out of mitochondria against a Ca2+ gradient many times greater than that possible for a passive Ca2+/2H+ exchanger, thus ruling this out as a possible mechanism.  相似文献   

12.
The role of ADP in the regulation of Ca2+ efflux in rat brain mitochondria was investigated. ADP was shown to inhibit Ruthenium-Red-insensitive H+- and Na+-dependent Ca2+-efflux rates if Pi was present, but had no effect in the absence of Pi. The primary effect of ADP is an inhibition of Pi efflux, and therefore it allows the formation of a matrix Ca2+-Pi complex at concentrations above 0.2 mM-Pi and 25 nmol of Ca2+/mg of protein, which maintains a constant free matrix Ca2+ concentration. ADP inhibition of Pi and Ca2+ efflux is nucleotide-specific, since in the presence of oligomycin and an inhibitor of adenylate kinase ATP does not substitute for ADP, is dependent on the amount of ADP present, and requires ADP concentrations in excess of the concentrations of translocase binding sites. Brain mitochondria incubated with 0.2 mM-Pi and ADP showed Ca2+-efflux rates dependent on Ca2+ loads at Ca2+ concentrations below those required for the formation of a Pi-Ca2+ complex, and behaved as perfect cytosolic buffers exclusively at high Ca2+ loads. The possible role of brain mitochondrial Ca2+ in the regulation of the tricarboxylic acid-cycle enzymes and in buffering cytosolic Ca2+ is discussed.  相似文献   

13.
We have recently described a novel K(+)-dependent Na(+)/Ca(2+) exchanger, NCKX2, that is abundantly expressed in brain neurons (Tsoi, M., Rhee, K.-H., Bungard, D., Li, X.-F., Lee, S.-L., Auer, R. N., and Lytton, J. (1998) J. Biol. Chem. 273, 4115--4162). The precise role for NCKX2 in neuronal Ca(2+) homeostasis is not yet clearly understood but will depend upon the functional properties of the molecule. Here, we have performed whole-cell patch clamp analysis to characterize cation dependences and ion stoichiometry for rat brain NCKX2, heterologously expressed in HEK293 cells. Outward currents generated by reverse NCKX2 exchange depended on external Ca(2+) with a K(12) of 1.4 or 101 microm without or with 1 mm Mg(2+), and on external K(+) with a K(1/2) of about 12 or 36 mm with choline or Li(+) as counter ion, respectively. Na(+) inhibited outward currents with a K(1/2) of about 60 mm. Inward currents generated by forward NCKX2 exchange depended upon external Na(+) with a K(1/2) of 30 mm and a Hill coefficient of 2.8. K(+) inhibited the inward currents by a maximum of 40%, with a K(1/2) of 2 mm or less, depending upon the conditions. The transport stoichiometry of NCKX2 was determined by observing the change in reversal potential as individual ion gradients were altered. Our data support a stoichiometry for rat brain NCKX2 of 4 Na(+):(1 Ca(2+) + 1 K(+)). These findings provide the first electrophysiological characterization of rat brain NCKX2, and the first evidence that a single recombinantly expressed NCKX polypeptide encodes a K(+)-transporting Na(+)/Ca(2+) exchanger with a transport stoichiometry of 4 Na(+):(1 Ca(2+) + 1 K(+)).  相似文献   

14.
The Na+ and K+ permeability properties of rat brain mitochondria were determined to explain the influences of these cations upon respiration. A new procedure for isolating exceptionally intact mitochondria with minimal contamination by synaptosomes was developed for this purpose. Respiration was uncoupled by Na+ and less so by K+. Uncoupling was maximal in the presence of EDTA plus Pi and was decreased by Mg2+. Maximal uncoupler-stimulated respiration rates were inhibited by Na+ but largely unaffected by K+. The inhibition by Na+ was relatively insensitive to Mg2+. Membrane Na+ and K+ conductances as well as neutral exchanges (Na+/H+ and K+/H+ antiport activities) were determined by swelling measurements and correlated with metabolic effects of the cations. Cation conductance, i.e. electrophoretic Na+ or K+ permeation, was increased by EDTA (Na+ greater than K+) and decreased by Mg2+. Magnesium preferentially suppressed Na+ conductance so as to reverse the cation selectivity (K+ greater than Na+). Neutral cation/H+ exchange rates (Na+ greater than K+) were not influenced by chelator or Mg2+. The extent of cation-dependent uncoupling of respiration correlated best with the inner membrane conductance of the ion according to an empirical relationship derived with the model K+ conductor valinomycin. The metabolic influences of Na+ and K+ can be explained in terms of coupled flow of these ions with protons and their effect upon the H+ electrochemical gradient although alternative possibilities are discussed. These in vitro studies are compared to previous observations in situ to assess their physiological significance.  相似文献   

15.
The mitochondrial Na+/Ca2+ antiporter plays a key role in the physiological regulation of intramitochondrial Ca2+, which in turn attunes mitochondrial enzymes to the changing demands of the cell for ATP. We have now purified the Na+/Ca2+ antiporter from beef heart mitochondria by assaying detergent-solubilized chromatography fractions for reconstitutive activity. Na+ and Ca2+ transport were assayed using the fluorescent probes, sodium-binding benzofuran isophthalate and Fura-2, respectively. This approach enabled us to identify Na+/Ca2+ exchange activity with a 110-kDa inner membrane protein that catalyzed Na(+)-dependent Ca2+ transport and Ca(2+)-dependent Na+ transport. A new finding was that the Na+/Ca2+ antiporter also catalyzed Na+/Li+ exchange in the absence of Ca2+. All modes of transport were electroneutral and were inhibited by diltiazem and tetraphenylphosphonium cation. Monospecific polyclonal antibodies to the 110-kDa protein inhibited Na+/Ca2+ and Na+/Li+ exchange in the reconstituted system and recognized 110-kDa proteins in mitochondrial membranes isolated from rat heart, liver, and kidney.  相似文献   

16.
Rat hearts were depleted of Ca2+ (less than 10(-9) M) for 10 min, followed by 15 min of Ca2+-repletion. The calcium paradox injury occurs during Ca2+-repletion, after a period of calcium depletion. The calcium paradox injury was assessed by percent recovery (hemodynamics, [Ca2+]i, and energy levels) during Ca2+-repletion. A decrease in Na+ concentration during Ca2(+)-depletion did not allow for recovery during Ca2(+)-repletion, however 2.5% and 5% ethanol during Ca2(+)-depletion allowed for an approximate 50% recovery during Ca2(+)-repletion. A combination of ethanol (2.5% or 5%) with a low extracellular Na+ concentration (88 mM) allowed for complete recovery. Ethanol prevented a depletion of diastolic [Ca2+]i during Ca2(+)-depletion, and allowed for a return of normal diastolic [Ca2+]i during Ca2(+)-repletion. Ethanol modulates the activity of the Na+/Ca2+ exchanger and protects against the Ca2(+)-paradox injury.  相似文献   

17.
The K(+)-dependence of the rod photoreceptor sodium-calcium exchanger was investigated using the Ca2(+)-sensitive dye arsenazo III after reconstitution of the purified protein into proteoliposomes. The uptake of Ca2+ by Na(+)-loaded liposomes was found to be greatly enhanced by the presence of external K+ (EC50 approximately 1 mM) in a Michaelis-Menten manner, suggesting that one K+ ion is involved in the transport of one Ca2+ ion. We also found a minimal degree of Ca2+ uptake in the total absence of K+. Other alkali cations, notably Rb+ and, to a lesser extent, Cs+, were also able to stimulate Na(+)-Ca2+ exchange. We also investigated the K(+)-dependence of the photoreceptor Na(+)-Ca2+ exchanger by determining the effects of electrochemical K+ gradients on the Na(+)-activated Ca2+ efflux from proteoliposomes. We found that, under conditions of membrane voltage clamp with FCCP, inwardly directed electrochemical K+ gradients (i.e., K0+ greater than Ki+) inhibited, whereas an outwardly directed electrochemical K+ gradient (i.e., Ki+ greater than K0+) enhanced, Na(+)-dependent Ca2+ efflux, consistent with the notion that K+ is cotransported in the same direction as Ca2+. The investigation of the reconstituted exchanger at physiological (i.e. Ki+ = 110 mM, K0+ = 2.5 mM) potassium concentrations revealed that the Na(+)-dependence of Ca2(+)-efflux was highly cooperative (n = 3.01 from Hill plots), indicating that at least three, but possibly four, Na+ ions are exchanged for one Ca2+ ion. Under these conditions the reconstituted exchanger showed a Km for Na+ of 26.1 mM, and a turnover number of 115 Ca2+.s-1 per exchanger molecule. Our results with the purified and reconstituted sodium-calcium exchanger from rod photoreceptors are therefore consistent with previous reports (Cervetto, L., Lagnado, L., Perry, R.J., Robinson, D.W. and McNaughton, P.A. (1989) Nature 337, 740-743; Schnetkamp, P.P.M., Basu, D.K. and Szerencsei, R.T. (1989) Am. J. Physiol. 257, C153-C157) that the sodium-calcium exchanger of rod photoreceptors cotransports K+ under physiological conditions with a stoichiometry of 4 Na+:1 Ca2+, 1K+.  相似文献   

18.
The C-terminal 165 amino acids of the rat brain plasma membrane (PM) Ca(2+)-ATPase II containing the calmodulin binding auto-inhibitory domain was connected to the C-terminus of the ouabain sensitive chicken Na+,K(+)-ATPase alpha 1 subunit. Expression of this chimeric molecule in ouabain resistant mouse L cells was assured by the high-affinity binding of [3H]ouabain. In the presence of Ca2+/calmodulin, this chimeric molecule exhibited ouabain inhibitable Na+,K(+)-ATPase activity; the putative chimeric ATPase activity was absent in the absence of Ca2+/calmodulin and activated by Ca2+/calmodulin in a dose-dependent manner. Furthermore, this chimeric molecule could bind monoclonal IgG 5 specific to the chicken Na+,K(+)-ATPase alpha 1 subunit only in the presence of Ca2+/calmodulin, suggesting that the epitope for IgG 5 in this chimera is masked in the absence of Ca2+/calmodulin and uncovered in their presence. These results propose a direct interaction between the calmodulin binding auto-inhibitory domain of the PM Ca(2+)-ATPase and the specific regions of the Na+,K(+)-ATPase alpha 1 subunit that are structurally homologous to the PM Ca(2+)-ATPase. A comparison of the deduced amino acid sequences revealed several possible regions within the Na+,K(+)-ATPase that might interact with the auto-inhibitory domain of the PM Ca(2+)-ATPase.  相似文献   

19.
The binding of [3H]nimodipine to purified synaptic plasma membranes (SPM) isolated from sheep brain cortex was characterized, and the effects of nimodipine, nifedipine, and (+)-verapamil on the [3H]nimodipine binding were compared to the effects on 45Ca2+ translocation under conditions that separate 45Ca2+ fluxes through Ca2+ channels from 45Ca2+ uptake via Na+/Ca2+ exchange. [3H]Nimodipine labels a single class of sites in SPM, with a KD of 0.64 +/- 0.1 nM, a Bmax of 161 +/- 27 fmol X mg-1 protein, and a Hill slope of 1.07, at 25 degrees C. Competition of [3H]nimodipine binding to purified SPM with unlabelled Ca2+ channel blockers shows that: nifedipine and nimodipine are potent competitors, with IC50 values of 4.7 nM and 5.9 nM, respectively; verapamil and (-)-D 600 are partial competitors, with biphasic competition behavior. Thus, (+)-verapamil shows an IC50 of 708 nM for the higher affinity component and the maximal inhibition is 50% of the specific binding, whereas for (-)-verapamil the IC50 is 120 nM, and the maximal inhibition is 30%; (-)-D 600 is even less potent than verapamil in inhibiting [3H]nimodipine binding (IC50 = 430 nM). However, (+)-verapamil, nifedipine, and nimodipine are less potent in inhibiting depolarization-induced 45Ca2+ influx into synaptosomes in the absence of Na+/Ca2+ exchange than in competing for [3H]nimodipine binding. Thus, (+)-verapamil inhibits Ca2+ influx by 50% at about 500 microM, whereas it inhibits 50% of the binding at concentrations 200-fold lower, and the discrepancy is even larger for the dihydropyridines. The Na+/Ca2+ exchange and the ATP-dependent Ca2+ uptake by SPM vesicles are also inhibited by the Ca2+ channel blockers verapamil, nifedipine, and d-cis-diltiazem, with similar IC50 values and in the same concentration range (10(-5)-10(-3) M) at which they inhibit Ca2+ influx through Ca2+ channels. We conclude that high-affinity binding of the Ca2+ blockers by SPM is not correlated with inhibition of the Ca2+ fluxes through channels in synaptosomes under conditions of minimal Na+/Ca2+ exchange. Furthermore, the relatively high concentrations of blockers required to block the channels also inhibit Ca2+ translocation through the Ca2+-ATPase and the Na+/Ca2+ exchanger. In this study, clear differentiation is made of the effects of the Ca2+ channel blockers on these three mechanisms of moving Ca2+ across the synaptosomal membrane, and particular care is taken to separate the contribution of the Na+/Ca2+ exchange from that of the Ca2+ channels under conditions of K+ depolarization.  相似文献   

20.
(Na+ + K+)-ATPase was isolated from the grey matter of brain and incorporated into liposomes. Most of the reconstituted enzyme was oriented 'inside-out' with respect to its in vivo orientation and externally added ATP promoted Na+ uptake that was inhibitable by internally trapped ouabain. Using the same proteoliposomes, an Na+ - Ca2+ exchange system was observed as indicated by the following pieces of evidence. (1) The Na+ gradient provided the only readily apparent driving force for acceleration of Ca2+ accumulation into proteoliposomes. (2) The antiporter was specific for Ca2+, high Mg2+ excess did not inhibit Ca2+ antiport. (3) The Na+ efflux was dependent on the extravesicular Ca2+ concentration. (4) The Na+ efflux was not inhibited by tetrodotoxin. The demonstrated Na+ - Ca2+ exchange could not be related to (Na+ + K+)-ATPase protein, since it was not purified with (Na+ + K+)-ATPase, as followed from transport studies with liposomes containing (Na+ + K+)-ATPase of different specific activity. The results strongly indicate that plasma membranes isolated from the grey matter of brain contain an Na+ - Ca2+ exchange system and that the proteoliposomes are suitable for further purification of the carrier molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号