首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heme A is a prosthetic group of many respiratory oxidases. It is synthesized from protoheme IX (heme B) seemingly with heme O as a stable intermediate. The Bacillus subtilis ctaA and ctaB genes are required for heme A and heme O synthesis, respectively (B. Svensson, M. Lübben, and L. Hederstedt, Mol. Microbiol. 10:193-201, 1993). Tentatively, CtaA is involved in the monooxygenation and oxidation of the methyl side group on porphyrin ring D in heme A synthesis from heme B. B. subtilis ctaA and ctaB on plasmids in both B. subtilis and Escherichia coli were found to result in a novel membrane-bound heme-containing protein with the characteristics of a low-spin b-type cytochrome. It can be reduced via the respiratory chain, and in the reduced state it shows light absorption maxima at 428, 528, and 558 nm and the alpha-band is split. Purified cytochrome isolated from both B. subtilis and E. coli membranes contained one polypeptide identified as CtaA by amino acid sequence analysis, about 0.2 mol of heme B per mol of polypeptide, and small amounts of heme A.  相似文献   

2.
Cytochrome bd is one of the two quinol oxidases in the respiratory chain of Escherichia coli. The enzyme contains three heme prosthetic groups. The dioxygen binding site is heme d, which is thought to be part of the heme-heme binuclear center along with heme b(595), which is a high-spin heme whose function is not known. Protein sequence alignments [Osborne, J. P., and Gennis, R. B. (1999) Biochim. Biophys Acta 1410, 32--50] of cytochrome bd quinol oxidase sequences from different microorganisms have revealed a highly conserved sequence (GWXXXEXGRQPW; bold letters indicate strictly conserved residues) predicted to be on the periplasmic side of the membrane between transmembrane helices 8 and 9 in subunit I. The functional importance of this region is investigated in the current work by site-directed mutagenesis. Several mutations in this region (W441A, E445A/Q, R448A, Q449A, and W451A) resulted in a catalytically inactive enzyme with abnormal UV--vis spectra. E445A was selected for detailed analysis because of the absence of the absorption bands from heme b(595). Detailed spectroscopic and chemical analyses, indeed, show that one of the three heme prosthetic groups in the enzyme, heme b(595), is specifically perturbed and mostly missing from this mutant. Surprisingly, heme d, while known to interact with heme b(595), appears relatively unperturbed, whereas the low-spin heme b(558) shows some modification. This is the first report of a mutation that specifically affects the binding site of heme b(595).  相似文献   

3.
Recently we found that CYP4B1, and several other members of the CYP4 family of enzymes, are covalently linked to their prosthetic heme group through an ester linkage. In the current study, we mutated a conserved CYP4 I-helix residue, E310 in rabbit CYP4B1, to glycine, alanine, and aspartate to examine the effect of these mutations on the extent of covalent heme binding and catalysis. All mutants expressed well in insect cells and were isolated as a mixture of monomeric and dimeric forms as determined by LC/ESI-MS of the intact proteins. Rates of metabolism decreased in the order E310 > A310 > G310 > D310, with the A310 and G310 mutants exhibiting alterations in regioselectivity for omega-1 and omega-2 hydroxylation of lauric acid, respectively. In marked contrast to the wild-type E310 enzyme, the G310, A310, and D310 mutants did not bind heme covalently. Uniquely, the acid-dissociable heme obtained from the D310 mutant contained an additional 16 amu relative to heme and exhibited the same chromatographic behavior as the monohydroxyheme species released upon base treatment of the covalently linked wild-type enzyme. Expression studies with H(2)(18)O demonstrated incorporation of the heavy isotope from the media into the monohydroxyheme isolated from the D310 mutant at a molar ratio of approximately 0.8:1. These data show (i) that E310 serves as the site of covalent attachment of heme to the protein backbone of rabbit CYP4B1; (ii) this I-helix glutamate residue influences substrate orientation in the active site of CYP4B1; and (iii) the mechanism of covalent heme attachment most likely involves a carbocation species located on the porphyrin.  相似文献   

4.
Cytochrome bd is a quinol oxidase from Escherichia coli, which is optimally expressed under microaerophilic growth conditions. The enzyme catalyzes the two-electron oxidation of either ubiquinol or menaquinol in the membrane and scavenges O2 at low concentrations, reducing it to water. Previous work has shown that, although cytochrome bd does not pump protons, turnover is coupled to the generation of a proton motive force. The generation of a proton electrochemical gradient results from the release of protons from the oxidation of quinol to the periplasm and the uptake of protons used to form H2O from the cytoplasm. Because the active site has been shown to be located near the periplasmic side of the membrane, a proton channel must facilitate the delivery of protons from the cytoplasm to the site of water formation. Two conserved glutamic acid residues, E107 and E99, are located in transmembrane helix III in subunit I and have been proposed to form part of this putative proton channel. In the current work, it is shown that mutations in either of these residues results in the loss of quinol oxidase activity and can result in the loss of the two hemes at the active site, hemes d and b595. One mutant, E107Q, while being totally inactive, retains the hemes. Fourier transform infrared (FTIR) redox difference spectroscopy has identified absorption bands from the COOH group of E107. The data show that E107 is protonated at pH 7.6 and that it is perturbed by the reduction of the heme d/heme b595 binuclear center at the active site. In contrast, mutation of an acidic residue known to be at or near the quinol-binding site (E257A) also inactivates the enzyme but has no substantial influence on the FTIR redox difference spectrum. Mutagenesis shows that there are several acidic residues, including E99 and E107 as well as D29 (in CydB), which are important for the assembly or stability of the heme d/heme b595 active site.  相似文献   

5.
We constructed expression plasmids containing cbaAB, the structural genes for the two-subunit cytochrome bo(3)-type cytochrome c oxidase (SoxB type) recently isolated from a Gram-positive thermophile Bacillus stearothermophilus. B. stearothermophilus cells transformed with the plasmids over-expressed an enzymatically active bo(3)-type cytochrome c oxidase protein composed of the two subunits, while the transformed Escherichia coli cells produced an inactive protein composed of subunit I without subunit II. The oxidase over-expressed in B. stearothermophilus was solubilized and purified. The oxidase contained protoheme IX and heme O, as the main low-spin heme and the high-spin heme, respectively. Analysis of the substrate specificity indicated that the high-affinity site is very specific for cytochrome c-551, a cytochrome c that is a membrane-bound lipoprotein of thermophilic Bacillus. The purified enzyme reconstituted into liposomal vesicles with cytochrome c-551 showed H(+) pumping activity, although the efficiency was lower than those of cytochrome aa(3)-type oxidases belonging to the SoxM-type.  相似文献   

6.
Heme-regulated phosphodiesterase from Escherichia coli (Ec DOS) is a gas-sensor enzyme that hydrolyzes cyclic dinucleotide-GMP, and it is activated by O(2) or CO binding to the Fe(II) heme. In contrast to other well known heme-regulated gas-sensor enzymes or proteins, Ec DOS is not specific for a single gas ligand. Because Arg(97) in the heme distal side in Ec DOS interacts with the O(2) molecule and Met(95) serves as the axial ligand on the distal side of the Fe(II) heme-bound PAS domain of Ec DOS, we explored the effect of mutating these residues on the activity and gas specificity of Ec DOS. We found that R97A, R97I, and R97E mutations do not significantly affect regulation of the phosphodiesterase activities of the Fe(II)-CO and Fe(II)-NO complexes. The phosphodiesterase activities of the Fe(II)-O(2) complexes of the mutants could not be detected due to rapid autoxidation and/or low affinity for O(2). In contrast, the activities even of the gas-free M95A and M95L mutants were similar to that of the gas-activated wild-type enzyme. Interestingly, the activity of the M95H mutant was partially activated by O(2), CO, and NO. Spectroscopic analysis indicated that the Fe(II) heme is in the 5-coordinated high-spin state in the M95A and M95L mutants but that in the M95H mutant, like wild-type Ec DOS, it is in the 6-coordinated low-spin state. These results suggest that Met(95) coordination to the Fe(II) heme is critical for locking the system and that global structural changes around Met(95) caused by the binding of the external ligands or mutations at Met(95) releases the catalytic lock and activates catalysis.  相似文献   

7.
The effect of a single site mutation of Arg-54 to methionine in Paracoccus denitrificans cytochrome c oxidase was studied using a combination of optical spectroscopy, electrochemical and rapid kinetics techniques, and time-resolved measurements of electrical membrane potential. The mutation resulted in a blue-shift of the heme a alpha-band by 15 nm and partial occupation of the low-spin heme site by heme O. Additionally, there was a marked decrease in the midpoint potential of the low-spin heme, resulting in slow reduction of this heme species. A stopped-flow investigation of the reaction with ferrocytochrome c yielded a kinetic difference spectrum resembling that of heme a(3). This observation, and the absence of transient absorbance changes at the corresponding wavelength of the low-spin heme, suggests that, in the mutant enzyme, electron transfer from Cu(A) to the binuclear center may not occur via heme a but that instead direct electron transfer to the high-spin heme is the dominating process. This was supported by charge translocation measurements where Deltapsi generation was completely inhibited in the presence of KCN. Our results thus provide an example for how the interplay between protein and cofactors can modulate the functional properties of the enzyme complex.  相似文献   

8.
Two-subunit SoxB-type cytochrome c oxidase in Bacillus stearothermophilus was over-produced, purified, and examined for its active site structures by electron paramagnetic resonance (EPR) and resonance Raman (RR) spectroscopies. This is cytochrome bo3 oxidase containing heme B at the low-spin heme site and heme O at the high-spin heme site of the binuclear center. EPR spectra of the enzyme in the oxidized form indicated that structures of the high-spin heme O and the low-spin heme B were similar to those of SoxM-type oxidases based on the signals at g=6.1, and g=3.04. However, the EPR signals from the CuA center and the integer spin system at the binuclear center showed slight differences. RR spectra of the oxidized form showed that heme O was in a 6-coordinated high-spin (nu3 = 1472 cm(-1)), and heme B was in a 6-coordinated low-spin (nu3 = 1500 cm(-1)) state. The Fe2+-His stretching mode was observed at 211 cm(-1), indicating that the Fe2+-His bond strength is not so much different from those of SoxM-type oxidases. On the contrary, both the Fe2+-CO stretching and Fe2+-C-O bending modes differed distinctly from those of SoxM-type enzymes, suggesting some differences in the coordination geometry and the protein structure in the proximity of bound CO in cytochrome bo3 from those of SoxM-type enzymes.  相似文献   

9.
We have studied the unusual heme ligand structure of the ferric forms of a recombinant Chlamydomonas chloroplast hemoglobin and its several single-amino acid mutants by EPR, optical absorbance, and resonance Raman spectroscopy. The helical positions of glutamine-84, tyrosine-63, and lysine-87 are suggested to correspond to E7, B10, and E10, respectively, in the distal heme pocket on the basis of amino acid sequence comparison of mammalian globins. The protein undergoes a transition with a pK of 6.3 from a six-coordinate high-spin aquomet form at acidic pH to a six-coordinate low-spin form. The EPR signal of the low-spin form for the wild-type protein is absent for the Tyr63Leu mutant, suggesting that the B10 tyrosine in the wild-type protein ligates to the heme as tyrosinate. For the Tyr63Leu mutant, a new low-spin signal resembling that of alkaline cytochrome c (a His-heme-Lys species) is resolved, suggesting that the E10 lysine now coordinates to the heme. In the wild-type protein, the oxygen of the tyrosine-63 side chain is likely to share a proton with the side chain of lysine-87, suggested by the observation of a H/D sensitive resonance Raman line at 502 cm(-)(1) that is tentatively assigned as a vibrational mode of the Fe-O bond between the iron and the tyrosinate. We propose that the transition from the high-spin to the low-spin form of the protein occurs by deprotonation and ligation to the heme of the B10 tyrosine oxygen, facilitated by strong interaction with the E10 lysine side chain.  相似文献   

10.
Respiratory nitric oxide reductase (NOR) was purified from membrane extract of Pseudomonas (Ps.) nautica cells to homogeneity as judged by polyacrylamide gel electrophoresis. The purified protein is a heterodimer with subunits of molecular masses of 54 and 18 kDa. The gene encoding both subunits was cloned and sequenced. The amino acid sequence shows strong homology with enzymes of the cNOR class. Iron/heme determinations show that one heme c is present in the small subunit (NORC) and that approximately two heme b and one non-heme iron are associated with the large subunit (NORB), in agreement with the available data for enzymes of the cNOR class. Mo?ssbauer characterization of the as-purified, ascorbate-reduced, and dithionite-reduced enzyme confirms the presence of three heme groups (the catalytic heme b(3) and the electron transfer heme b and heme c) and one redox-active non-heme Fe (Fe(B)). Consistent with results obtained for other cNORs, heme c and heme b in Ps. nautica cNOR were found to be low-spin while Fe(B) was found to be high-spin. Unexpectedly, as opposed to the presumed high-spin state for heme b(3), the Mo?ssbauer data demonstrate unambiguously that heme b(3) is, in fact, low-spin in both ferric and ferrous states, suggesting that heme b(3) is six-coordinated regardless of its oxidation state. EPR spectroscopic measurements of the as-purified enzyme show resonances at the g ~ 6 and g ~ 2-3 regions very similar to those reported previously for other cNORs. The signals at g = 3.60, 2.99, 2.26, and 1.43 are attributed to the two charge-transfer low-spin ferric heme c and heme b. Previously, resonances at the g ~ 6 region were assigned to a small quantity of uncoupled high-spin Fe(III) heme b(3). This assignment is now questionable because heme b(3) is low-spin. On the basis of our spectroscopic data, we argue that the g = 6.34 signal is likely arising from a spin-spin coupled binuclear center comprising the low-spin Fe(III) heme b(3) and the high-spin Fe(B)(III). Activity assays performed under various reducing conditions indicate that heme b(3) has to be reduced for the enzyme to be active. But, from an energetic point of view, the formation of a ferrous heme-NO as an initial reaction intermediate for NO reduction is disfavored because heme [FeNO](7) is a stable product. We suspect that the presence of a sixth ligand in the Fe(II)-heme b(3) may weaken its affinity for NO and thus promotes, in the first catalytic step, binding of NO at the Fe(B)(II) site. The function of heme b(3) would then be to orient the Fe(B)-bound NO molecules for the formation of the N-N bond and to provide reducing equivalents for NO reduction.  相似文献   

11.
Shigella species can use heme as the sole source of iron. In this work, the heme utilization locus of Shigella dysenteriae was cloned and characterized. A cosmid bank of S. dysenteriae serotype 1 DNA was constructed in an Escherichia coli siderophore synthesis mutant incapable of heme transport. A recombinant clone, pSHU12, carrying the heme utilization system of S. dysenteriae was isolated by screening on iron-poor medium supplemented with hemin. Transposon insertional mutagenesis and subcloning identified the region of DNA in pSHU12 responsible for the phenotype of heme utilization. Minicell analysis indicated that a 70-kDa protein encoded by this region was sufficient to allow heme utilization in E. coli. Synthesis of this protein, designated Shu (Shigella heme uptake), was induced by iron limitation. The 70-kDa protein is located in the outer membrane and binds heme, suggesting it is the S. dysenteriae heme receptor. Heme iron uptake was found to be TonB dependent in E. coli. Transformation of an E. coli hemA mutant with the heme utilization subclone, pSHU262, showed that heme could serve as a source of porphyrin as well as iron, indicating that the entire heme molecule is transported into the bacterial cell. DNA sequences homologous to shu were detected in strains of S. dysenteriae serotype 1 and E. coli O157:H7.  相似文献   

12.
The heme environments of Met(95) and His(77) mutants of the isolated heme-bound PAS domain (Escherichia coli DOS PAS) of a direct oxygen sensing protein from E. coli (E. coli DOS) were investigated with resonance Raman (RR) spectroscopy and compared with the wild type (WT) enzyme. The RR spectra of both the reduced and oxidized WT enzyme were characteristic of six-coordinate low spin heme complexes from pH 4 to 10. The time-resolved RR spectra of the photodissociated CO-WT complex had an iron-His stretching band (nu(Fe-His)) at 214 cm(-1), and the nu(Fe-CO) versus nu(CO) plot of CO-WT E. coli DOS PAS fell on the line of His-coordinated heme proteins. The photodissociated CO-H77A mutant complex did not yield the nu(Fe-His) band but gave a nu(Fe-Im) band in the presence of imidazole. The RR spectrum of the oxidized M95A mutant was that of a six-coordinate low spin complex (i.e. the same as that of the WT enzyme), whereas the reduced mutant appeared to contain a five-coordinate heme complex. Taken together, we suggest that the heme of the reduced WT enzyme is coordinated by His(77) and Met(95), and that Met(95) is displaced by CO and O(2). Presumably, the protein conformational change that occurs upon exchange of an unknown ligand for Met(95) following heme reduction may lead to activation of the phosphodiesterase domain of E. coli DOS.  相似文献   

13.
Incubation of horseradish peroxidase with phenylhydrazine and H2O2 markedly depresses the catalytic activity and the intensity, but not position, of the Soret band. Approximately 11-13 mol of phenylhydrazine and 25 mol of H2O2 are required per mol of enzyme to minimize the chromophore intensity. The enzyme retains some activity after such treatment, but this activity is eliminated if the enzyme is isolated and reincubated with phenylhydrazine. The prosthetic heme of the enzyme does not react with phenylhydrazine to give a sigma-bonded phenyl-iron complex, as it does in other hemoproteins, but is converted instead to the delta-mesophenyl and 8-hydroxymethyl derivatives. The loss of activity is due more to protein than heme modification, however. The inactivated enzyme reacts with H2O2 to give a spectroscopically detectable Compound I. The results imply that substrates interact with the heme edge rather than with the activated oxygen of Compounds I and II and specifically identify the region around the delta-meso-carbon and 8-methyl group as the exposed sector of the heme. Horseradish peroxidase, in contrast to cytochrome P-450, generally does not catalyze oxygen-transfer reactions. The present results indicate that oxygen-transfer reactions do not occur because the activated oxygen and the substrate are physically separated by a protein-imposed barrier in horseradish peroxidase.  相似文献   

14.
Cytochrome c is synthesized in the cytoplasm as apocytochrome c, lacking heme, and then imported into mitochondria. The relationship between attachment of heme to the apoprotein and its import into mitochondria was examined using an in vitro system. Apocytochrome c transcribed and translated in vitro could be imported with high efficiency into mitochondria isolated from normal yeast strains. However, no import of apocytochrome c occurred with mitochondria isolated from cyc3- strains, which lack cytochrome c heme lyase, the enzyme catalyzing covalent attachment of heme to apocytochrome c. In addition, amino acid substitutions in apocytochrome c at either of the 2 cysteine residues that are the sites of the thioether linkages to heme, or at an immediately adjacent histidine that serves as a ligand of the heme iron, resulted in a substantial reduction in the ability of the precursor to be translocated into mitochondria. Replacement of the methionine serving as the other iron ligand, on the other hand, had no detectable effect on import of apocytochrome c in this system. Thus, covalent heme attachment is a required step for import of cytochrome c into mitochondria. Heme attachment, however, can occur in the absence of mitochondrial import since we have detected CYC3-encoded heme lyase activity in solubilized yeast extracts and in an Escherichia coli expression system. These results suggest that protein folding triggered by heme attachment to apocytochrome c is required for import into mitochondria.  相似文献   

15.
Cytochrome bd is a terminal quinol:O 2 oxidoreductase of the respiratory chain of Escherichia coli. The enzyme generates protonmotive force without proton pumping and contains three hemes, b 558, b 595, and d. A highly conserved glutamic acid residue of transmembrane helix III in subunit I, E107, was suggested to be part of a transmembrane pathway delivering protons from the cytoplasm to the oxygen-reducing site. When E107 is replaced with leucine, the hemes are retained but the ubiquinol-1-oxidase activity is lost. We compared wild-type and E107L mutant enzymes during single turnover using absorption and electrometric techniques with a microsecond time resolution. Both wild-type and E107L mutant cytochromes bd in the fully reduced state bind O 2 rapidly, but the formation of the oxoferryl species in the mutant is dramatically retarded as compared to the wild type. Intraprotein electron redistribution induced by the photolysis of CO bound to ferrous heme d in the one-electron-reduced wild-type enzyme is coupled to the membrane potential generation, whereas the mutant cytochrome bd shows no such potential generation. The E107L mutation also causes decrease of midpoint redox potentials of hemes b 595 and d by 25-30 mV and heme b 558 by approximately 70 mV. There are two protonatable groups redox-linked to hemes b 595 and d in the active site, one of which has been recently identified as E445, whereas the second group remains unknown. Here we propose that E107 is either the second group or a key residue of a proposed proton delivery pathway leading from the cytoplasm toward this second group.  相似文献   

16.
Properties of the two terminal oxidases of Escherichia coli.   总被引:13,自引:0,他引:13  
Proton translocation coupled to oxidation of ubiquinol by O2 was studied in spheroplasts of two mutant strains of Escherichia coli, one of which expresses cytochrome d, but not cytochrome bo, and the other expressing only the latter. O2 pulse experiments revealed that cytochrome d catalyzes separation of the protons and electrons of ubiquinol oxidation but is not a proton pump. In contrast, cytochrome bo functions as a proton pump in addition to separating the charges of quinol oxidation. E. coli membranes and isolated cytochrome bo lack the CuA center typical of cytochrome c oxidase, and the isolated enzyme contains only 1Cu/2Fe. Optical spectra indicate that high-spin heme o contributes less than 10% to the reduced minus oxidized 560-nm band of the enzyme. Pyridine hemochrome spectra suggest that the hemes of cytochrome bo are not protohemes. Proteoliposomes with cytochrome bo exhibited good respiratory control, but H+/e- during quinol oxidation was only 0.3-0.7. This was attributed to an "inside out" orientation of a significant fraction of the enzyme. Possible metabolic benefits of expressing both cytochromes bo and d in E. coli are discussed.  相似文献   

17.
The Bacillus stearothermophilus ctaA gene, which is required for heme A synthesis, was found upstream of the ctaBCDEF/caaEABCD gene cluster as in B. subtilis and B. firmus. The deduced protein sequence indicate that CtaA is a 35-kDa intrinsic membrane protein with seven hydrophobic segments. Alignment of CtaA sequences showed conserved residues including histidines that may be involved in heme B binding and substrate binding. Expression of ctaA in E. coli resulted in increased formation of a membrane-bound b-type cytochrome, heme A production, and severe growth inhibition. Furthermore, B. stearothermophilus CtaA produced in E. coli was found to catalyze the conversion of heme O to heme A in vitro.  相似文献   

18.
A protein containing a heme-binding PAS (PAS is from the protein names in which imperfect repeat sequences were first recognized: PER, ARNT, and SIM) domain from Escherichia coli has been implied a direct oxygen sensor (Ec DOS) enzyme. In the present study, we isolated cDNA for the Ec DOS full-length protein, expressed it in E. coli, and examined its structure-function relationships for the first time. Ec DOS was found to be tetrameric and was obtained as a 6-coordinate low spin ferric heme complex. Its alpha-helix content was calculated as 53% by CD spectroscopy. The redox potential of the heme was found to be +67 mV versus SHE. Mutation of His-77 of the isolated PAS domain abolished heme binding, whereas mutation of His-83 did not, suggesting that His-77 is one of the heme axial ligands. Ferrous, but not ferric, Ec DOS had phosphodiesterase (PDE) activity of nearly 0.15 min(-1) with cAMP, which was optimal at pH 8.5 in the presence of Mg(2+) and was strongly inhibited by CO, NO, and etazolate, a selective cAMP PDE inhibitor. Absorption spectral changes indicated tight CO and NO bindings to the ferrous heme. Therefore, the present study unequivocally indicates for the first time that Ec DOS exhibits PDE activity with cAMP and that this is regulated by the heme redox state.  相似文献   

19.
M?ssbauer and EPR spectroscopy were used to characterize the heme prosthetic groups of the nitrite reductase isolated from Desulfovibrio desulfuricans (ATCC 27774), which is a membrane-bound multiheme cytochrome capable of catalyzing the 6-electron reduction of nitrite to ammonia. At pH 7.6, the as-isolated enzyme exhibited a complex EPR spectrum consisting of a low-spin ferric heme signal at g = 2.96, 2.28, and 1.50 plus several broad resonances indicative of spin-spin interactions among the heme groups. EPR redox titration studies revealed yet another low-spin ferric heme signal at g = 3.2 and 2.14 (the third g value was undetected) and the presence of a high-spin ferric heme. M?ssbauer measurements demonstrated further that this enzyme contained six distinct heme groups: one high-spin (S = 5/2) and five low-spin (S = 1/2) ferric hemes. Characteristic hyperfine parameters for all six hemes were obtained through a detailed analysis of the M?ssbauer spectra. D. desulfuricans nitrite reductase can be reduced by chemical reductants, such as dithionite or reduced methyl viologen, or by hydrogenase under hydrogen atmosphere. Addition of nitrite to the fully reduced enzyme reoxidized all five low-spin hemes to their ferric states. The high-spin heme, however, was found to complex NO, suggesting that the high-spin heme could be the substrate binding site and that NO could be an intermediate present in an enzyme-bound form.  相似文献   

20.
The heme in lactoperoxidase is attached to the protein by ester bonds between the heme 1- and 5-methyl groups and Glu-375 and Asp-275, respectively. To investigate the cross-linking process, we have examined the D225E, E375D, and D225E/E375D mutants of bovine lactoperoxidase. The heme in the E375D mutant is only partially covalently bound, but exposure to H(2)O(2) results in complete covalent binding and a fully active protein. Digestion of this mutant shows that the heme is primarily bound through its 5-methyl group. Excess H(2)O(2) increases the proportion of the doubly linked species without augmenting enzyme activity. The D225E mutant has little covalently bound heme and a much lower activity, neither of which are significantly increased by the addition of heme and H(2)O(2). The heme is linked to this protein through a single bond to the 1-methyl group. The D225E/E375D mutant has no covalently bound heme and no activity. A small amount of iron 1-hydroxymethylprotoporphyrin IX is obtained from the wild-type enzyme along with the predominant dihydroxylated derivative. The results establish that a single covalent link suffices to achieve maximum catalytic activity and suggest that the 5-hydroxymethyl bond may form before the 1-hydroxymethyl bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号