首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
There is considerable interest in the development of vaccination strategies that would elicit strong tumor-specific CTL responses in cancer patients. One strategy consists of using recombinant viruses encoding amino acid sequences corresponding to natural CTL-defined peptide from tumor Ags as immunogens. However, studies with synthetic tumor antigenic peptides have demonstrated that introduction of single amino acid substitutions may dramatically increase their immunogenicity. In this study we have used a well-defined human melanoma tumor Ag system to test the possibility of translating the immunological potency of synthetic tumor antigenic peptide analogues into recombinant vaccinia viruses carrying constructs with the appropriate nucleotide substitutions. Our results indicate that the use of a mutated minigene construct directing the expression of a modified melanoma tumor Ag leads to improved Ag recognition and, more importantly, to enhanced immunogenicity. Thus, recombinant vaccinia viruses containing mutated minigene sequences may lead to new strategies for the induction of strong tumor-specific CTL responses in cancer patients.  相似文献   

2.
Linear peptides (SynB vectors) with specific sequence motifs have been identified that are capable of enhancing the transport of a wide range of molecules into cells. These peptide vectors have been used to deliver exogenous peptides and protein Ags across the cell membrane and into the cytoplasm of cells. Specifically, in vitro analysis indicated that these SynB peptides enhanced the uptake of two 9-mer peptide Ags, NP(147-155) and Mtb(250-258) (T cell epitopes of influenza nucleoprotein and Mycobacterium tuberculosis, respectively) and the M. tuberculosis Ag Mtb8.4 protein, into K562 cells when covalently linked to the respective Ags. Furthermore, selected SynB vectors, when conjugated to these same Ags and used as immunogens, resulted in considerably enhanced Ag-specific CTL responses. Several SynB vectors were tested and resulted in varying levels of cellular uptake. The efficiency of uptake correlated with the ability of the SynB construct to deliver each epitope in vivo and induce specific CTL responses in mice. These data suggest that peptide vectors, such as SynB that transport target Ags across the cell membrane in a highly efficient manner, have significant potential for vaccine delivery.  相似文献   

3.
4.
PurposeThe clinical efficacy of cancer peptide vaccine therapy is insufficient. To enhance the anti-tumor effect of peptide vaccine therapy, we combined this therapy with an anti-CD4 mAb (GK1.5), which is known to deplete CD4+ cells, including regulatory T cells (Tregs).MethodsTo determine the treatment schedule, the number of lymphocyte subsets in the peripheral blood of mice was traced by flow cytometry after administration of anti-CD4 mAb. The ovalbumin (OVA)257–264 peptide vaccine was injected intradermally and anti-CD4 mAb was administered intraperitoneally into C57BL/6 mice at different schedules. We evaluated the enhancement of OVA peptide-specific cytotoxic T lymphocyte (CTL) induction in the combination therapy using the ELISPOT assay, CD107a assay, and cytokine assay. We then examined the in vivo metastasis inhibitory effect by OVA peptide vaccine therapy in combination with anti-CD4 mAb against OVA-expressing thymoma (EG7) in a murine liver metastatic model.ResultsWe showed that peptide-specific CTL induction was enhanced by the peptide vaccine in combination with anti-CD4 mAb and that the optimized treatment schedule had the strongest induction effect of peptide-specific CTLs using an IFN-γ ELISPOT assay. We also confirmed that the CD107a+ cells secreted perforin and granzyme B and the amount of IL-2 and TNF produced by these CTLs increased when the peptide vaccine was combined with anti-CD4 mAb. Furthermore, metastasis was inhibited by peptide vaccines in combination with anti-CD4 mAb compared to peptide vaccine alone in a murine liver metastatic model.ConclusionThe use of anti-CD4 mAb in combination with the OVA peptide vaccine therapy increased the number of peptide-specific CTLs and showed a higher therapeutic effect against OVA-expressing tumors. The combination with anti-CD4 mAb may provide a new cancer vaccine strategy.  相似文献   

5.
Induction of CTL responses to alloantigens by a Db-specific T helper clone   总被引:1,自引:0,他引:1  
A T cell helper clone was derived 2 yr ago from a mixed lymphocyte culture. This clone, referred to as clone 9, was propagated in interleukin 2 (IL 2)-containing medium in the presence of irradiated stimulator and irradiated syngeneic spleen cells. Clone 9 was of H-2d origin and was found to be Thy-1+ and Lyt-1-2-. Clone 9, as well as supernatant factor(s) derived from it, were able to enhance the primary cytotoxic responses of Db responder cells to alloantigens. Furthermore, clone 9 cells or its factor(s) were only active when added during the first 24 hr of a 5-day culture period. When a low stimulator cell dose (10(4) cells per 0.2 ml culture) was used, it was possible to demonstrate that clone 9 also required a source of irradiated allogeneic splenic accessory cells to exert its helper action. Under these conditions, clone 9 or its factor(s) could also synergize with IL 2-containing medium in mounting cytotoxic responses to alloantigens. Synergy between IL 2-containing medium and clone 9 or its factor(s) was observed only when Db responder cells were used. The helper activity in clone 9 supernatant was also specifically absorbed out by Con A-stimulated Db spleen cell blasts. Preincubation with clone 9 supernatant for 1 hr at room temperature also led to enhanced cytotoxic responses of Db responder cells to alloantigens. Clone 9 supernatant was also found to be devoid of detectable IL 2 activity. Thus, clone 9 or its helper factor(s) appear to exert its helper activity by an early interaction with Db cytotoxic T lymphocyte precursors (CTL-P).  相似文献   

6.
The development of therapeutic anti-cancer vaccines designed to elicit CTL responses with anti-tumor activity has become a reality thanks to the identification of several tumor-associated Ags and their corresponding peptide T cell epitopes. However, peptide-based vaccines, in general, fail to elicit sufficiently strong CTL responses capable of producing therapeutic anti-tumor effects (i.e., prolongation of survival, tumor reduction). Here we report that repeated administration of synthetic oligonucleotides containing foreign cytosine-phosphorothiolated guanine (CpG) motifs increased 10- to 100-fold the CTL response to immunization with various synthetic peptides corresponding to well-known T cell epitopes. Moreover, repeated CpG administration allowed the induction of CTL to soluble protein even in the absence of additional adjuvant. Our results indicate that the potentiating effect of CpG in CTL responses required the participation of Th lymphocytes. Repeated CpG administration resulted in overt splenomegaly and lymphadenopathy with a significant increase in the numbers of CTL precursors and dendritic cells. Protein vaccination in combination with repeated CpG therapy was effective in delaying tumor cell growth and extending survival in mice bearing melanoma tumors. These findings support the contention that repeated administration of CpG-oligonucleotides enhances the effect of peptide and protein vaccines leading to potent anti-tumor responses, presumably through the induction of Th1 and dendritic cells, which are essential for optimal CTL responses. The immunostimulatory properties of CpG motifs may be key in inducing a consistent long term immunity to tumor-associated Ags when using peptides or proteins as T cell-inducing vaccines.  相似文献   

7.
 T cell triggering can be achieved by monoclonal antibodies (mAbs) specific for the CD3/TcR complex. In the presence of appropriate costimulation and/or progression factors, such triggering permits the generation of effector cells for immunotherapy protocols involving the redirection of T cell lysis against tumor cells by mAbs bispecific for anti-CD3/anti-tumor cells (bs-mAbs). Focusing our analysis on the clinically relevant bs-mAb OC/TR, we found that bs-mAbs generated with the same anti tumor specificity, but two other anti-CD3 mAbs, TR66 and OKT3, have the same and a significantly lower lytic potential, respectively, compared with that of OC/TR. To evaluate the relevance of the anti-CD3 component, we examined several anti-CD3 mAbs with respect to binding parameters and the ability to trigger T lymphocytes. Competitive binding assays suggested that all anti-CD3 mAbs recognized the same or overlapping epitopes, although mAbs BMA030 and OC/TR bound with lower avidity than did αCD3 (the bivalent anti-CD3 mAb produced by the hybrid hybridoma OC/TR), TR66 and OKT3, as determined by measurement of the affinity constants. In all lymphocyte populations examined, which included resting peripheral blood mononuclear cells (PBMC), activated PBMC and T cell clones, OKT3, BMA033 and OC/TR failed to mobilize Ca2+ without cross-linking, whereas αCD3, in both murine and murine-human chimeric versions, TR66 and BMA030, did not require cross-linking. The ability to induce CD3 modulation was associated in part with the induction of Ca2+ fluxes. Despite the differences in the behavior of these mAbs in triggering the events that precede proliferation, all of them ultimately led to expression of the IL-2 receptor and to proliferation in T cells in the presence of accessory cells. Our data suggest that anti-CD3 mAbs that bind more rapidly (strong Ca2+ mobilizers) and more tightly under physiological conditions are good candidates for retargeting T cells in the bs-mAb clinical application. Received: 2 January 1997 / Accepted: 6 February 1997  相似文献   

8.
9.
We have defined a peptide K2 (ADKDVVVLTSSRTGGV) that corresponds to residues 201-216 of bovine interphotoreceptor retinoid-binding protein and induces experimental autoimmune uveoretinitis (EAU)4 in H-2Ak-carrying mice (H-2Ak mice). In this study, we attempted to ameliorate EAU in the H-2Ak mice without nonspecific suppression of T cell responses. Preceding s.c. administration of liposomes including K2 (liposomal K2) specifically inhibited subsequent generation of T cell response to K2. The same result was obtained with a combination of OVA323-339 peptide and the OVA-specific TCR-transgenic T cells. It was suggested that the inhibition was mainly attributed to peripheral anergy induction of T cells specific for the peptide Ag, although specific cell death might also be involved in the inhibition. Pretreatment with liposomal K2 also considerably abolished IFN-gamma production but not IL-4 production. The specific inhibitory effect of the pretreatment with liposomal peptide was augmented by a simultaneous administration of anti-CD40 ligand (anti-CD40L) mAb. Moreover, it was shown that the pretreatment with liposomal K2 reduced both the incidence and severity of the subsequent K2-induced EAU, and the simultaneous administration of anti-CD40L mAb augmented this preventive effect by liposomal K2. Our findings demonstrate that the s.c. administration of liposomal pathogenic peptide and anti-CD40L mAb can be applied to preventing autoimmune diseases without detrimental nonspecific suppression of T cell responses.  相似文献   

10.
The development of rational methods to design 'continuous' sequence mimetics of discontinuous regions of protein sequence has, to now, been only marginally successful. This has been largely due to the difficulty of constraining the recognition elements of a mimetic structure to the relative conformational and spatial orientations present in the parent molecule. Using peptide mapping to determine 'active' antigen recognition residues, molecular modeling, and a molecular dynamics trajectory analysis, we have developed a peptide mimic of an anti-CD4 antibody, containing antigen contact residues from multiple CDRs. The design described is a 27-residue peptide formed by juxtaposition of residues from 5 CDR regions. It displays an affinity for the antigen (CD4) of 0.9nM, compared to 2nM for the parent antibody ST40. Nevertheless, the mimetic shows low biological activity in an anti-retroviral assay.  相似文献   

11.
One of the major obstacles in the design of an effective vaccine against HIV-1 is its antigenic variation, which results in viral escape from the immune system. Through a bioinformatics approach, we developed an innovative multivalent HIV-1 vaccine comprised of a pool of 176 lipidated and nonlipidated peptides representing variable regions of Env and Gag proteins. The potency and breadth of the candidate vaccine against a panel of HIV-1 subtypes was evaluated in nonhuman primate (cynomolgus macaques) and humanized mouse (HLA-A2.1) models. The results demonstrate strong immunogenicity with both breadth (humoral and cellular immunity) and depth (immune recognition of widely divergent viral sequences) against heterologous HIV-1 subtypes A-F.  相似文献   

12.
13.
Human formyl peptide receptor (FPR)-like 1 (FPRL1) and its mouse homologue mFPR2 are functional receptors for a variety of exogenous and host-derived chemotactic peptides, including amyloid beta 1-42 (Abeta(42)), a pathogenic factor in Alzheimer's disease. Because mFPR2 in microglial cells is regulated by proinflammatory stimulants including TLR agonists, in this study we investigated the capacity of IFN-gamma and the CD40 ligand (CD40L) to affect the expression and function of mFPR2. We found that IFN-gamma, when used alone, induced mFPR2 mRNA expression in a mouse microglial cell line and primary microglial cells in association with increased cell migration in response to mFPR2 agonists, including Abeta(42). IFN-gamma also increased the endocytosis of Abeta(42) by microglial cells via mFPR2. The effect of IFN-gamma on mFPR2 expression in microglial cells was dependent on activation of MAPK and IkappaB-alpha. IFN-gamma additionally increased the expression of CD40 by microglial cells and soluble CD40L significantly promoted cell responses to IFN-gamma during a 6-h incubation period by enhancing the activation of MAPK and IkappaB-alpha signaling pathways. We additionally found that the effect of IFN-gamma and its synergy with CD40L on mFPR2 expression in microglia was mediated in part by TNF-alpha. Our results suggest that IFN-gamma and CD40L, two host-derived factors with increased concentrations in inflammatory central nervous system diseases, may profoundly affect microglial cell responses in the pathogenic process in which mFPR2 agonist peptides are elevated.  相似文献   

14.
15.
CTL are important in combating cancer and viruses. Therefore, triggering the complete potential of CTL effector functions by new vaccination strategies will not only improve prophylaxis of tumor or virus-related diseases, but also open opportunities for effective therapeutic immunizations. Using transcutaneous immunization, we show that epicutaneous (e.c.)(4) application of an ointment containing a CTL epitope and the TLR7 ligand imiquimod is highly effective in activating T cells in mice using TCR-transgenic CTL or in wild-type mice. Transcutaneous immunization-activated CTL mount a full-blown immune response against the target epitope characterized by proliferation, cytolytic activity, and the production of IFN-gamma that is completely restricted to the epitope used for vaccination. Our results obtained by simple e.c. application of an ointment, without further skin irritating procedures, provide the basis for the development of new, easy to use vaccines against cancer or virus-associated diseases.  相似文献   

16.
In this study, we describe the expression and function of CD40, a TNF receptor family member, in cervical carcinomas. CD40 was present at very low levels in normal cervical epithelium but was overexpressed in human papillomavirus-infected lesions and advanced squamous carcinomas of the cervix. The stimulation of CD40-positive cervical carcinoma cell lines with soluble CD40L (CD154) resulted in activation of the NF-kappaB and MAPK signaling pathways and up-regulation of cell surface markers and intracellular molecules associated with Ag processing and presentation. Concomitantly, the CD154-induced activation of CD40 in carcinoma cells was found to directly influence susceptibility to CTL-mediated killing. Thus, CD40 stimulation in cervical carcinoma cell lines expressing a TAP-dependent human papillomavirus 16 E6 Ag epitope resulted in their enhanced killing by specific CTLs. However, CD154 treatment of carcinoma cells expressing proteasome-dependent but TAP-independent Ags from the EBV-encoded BRLF1 and BMLF1 failed to increase tumor cell lysis by specific CTLs. Moreover, we demonstrate that chemotherapeutic agents that suppress protein synthesis and reverse the CD40-mediated dissociation of the translational repressor eukaryotic initiation factor 4E-binding protein from the initiation factor eukaryotic initiation factor 4E, such as 5-fluorouracil, etoposide, and quercetin, dramatically increase the susceptibility of cervical carcinoma cells to CD40L-induced apoptosis. Taken together, these observations demonstrate the functional expression of CD40 in epithelial tumors of the cervix and support the clinical exploitation of the CD40 pathway for the treatment of cervical cancer through its multiple effects on tumor cell growth, apoptosis, and immune recognition.  相似文献   

17.
Developing a peptide-based vaccine for the highly variable hepatitis C virus (HCV) remains a challenging task. Variant viruses not only escape antigen presentation but also persist in a patient as quasi-species. Such variants are often antagonistic to the responding T cell repertoire. To overcome these problems, we herein propose a cocktail vaccine consisting of a few epitope peptides, which make it possible to outpace the emergence of variant viruses. To design such a vaccine, we developed a way to identify HLA-A*2402-binding peptides efficiently by means of the computational scanning of the whole genome of the pathogen. Most of the predicted peptides exhibited strong binding to the HLA-A*2402 molecule, while also inducing CD8 T cell responses from the patients’ peripheral blood mononuclear cells (PBMCs). Peptide-induced T cells were capable of lysing HCV-expressing HepG2 cells which process antigens endogenously. The amount of HCV core antigen in the patients’ livers suggested that the lytic activity of the peptide-induced T cells was clearly in a range suitable for therapeutic use. If T cells were activated under optimal conditions by high density peptides, then they tended to be relatively tolerant of single amino acid variations for cytolysis. Finally, an analysis of the viral population isolated in Japan suggested no obvious changes due to immune evasion in the viral genome even in a host population highly biased toward HLA-A*2402. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

18.
We describe in this study a strategy to produce synthetic vaccines based on a single polypeptide capable of eliciting strong immune responses to a combination CTL and Th epitopes with the purpose of treating malignancies or preventing infectious diseases. This strategy is based on the capacity of Trojan Ags to deliver exogenous Ags into the intracellular compartments, where processing into MHC-binding peptides takes place. Our previous work demonstrated that Trojan Ags containing a CTL epitope localized to intracellular compartments, where MHC class I-binding peptides were generated in a TAP-independent fashion by the action of various exopeptidases and the endopeptidase furin. In this study, we report that Trojan Ags containing several CTL epitopes joined via furin-sensitive linkers generated all of the corresponding MHC class I-binding peptides, which were recognized by CTL. However, Trojan Ags prepared with furin-resistant linkers failed to produce the MHC class I-binding peptides. We also present data indicating that Trojan Ags bearing both CTL and Th epitopes can generate the corresponding MHC class I- and II-binding peptides, which are capable of stimulating T cell responses. Most significantly, in vivo vaccination of mice with a single injection of multiepitope Trojan Ags resulted in strong CTL and Th responses that translated into significant antitumor responses in a model of malignant melanoma. The overall results indicate that Trojan Ags prepared with furin-sensitive linkers are ideal candidates for producing synthetic multiepitope vaccines for the induction of CTL and Th responses that could be used against a variety of diseases, including cancer.  相似文献   

19.
20.
Survivin is a tumor-associated antigen (TAA) that has significant potential for use as a cancer vaccine target. To identify survivin epitopes that might serve as targets for CTL-mediated, anti-tumor responses, we evaluated a series of survivin peptides with predicted binding to mouse H2-Kb and human HLA-A*0201 antigens in peptide-loaded dendritic cell (DC) vaccines. H2-Kb-positive, C57BL/6 mice were vaccinated using syngeneic, peptide-loaded DC2.4 cells. Splenocytes from vaccinated mice were screened by flow cytometry for binding of dimeric H2-Kb:Ig to peptide-specific CD8+ T cells. Two survivin peptides (SVN57–64 and SVN82–89) generated specific CD8+ T cells. We chose to focus on the SVN57–64 peptide because that region of the molecule is 100% homologous to human survivin. A larger peptide (SVN53–67), containing multiple class I epitopes, and a potential class II ligand, was able to elicit both CD8+ CTL and CD4+ T cell help. We tested the SVN53–67 15-mer peptide in a therapeutic model using a peptide-loaded DC vaccine in C57BL/6 mice with survivin-expressing GL261 cerebral gliomas. This vaccine produced significant CTL responses and helper T cell-associated cytokine production, resulting in a significant prolongation of survival. The SVN53–67 vaccine was significantly more effective than the SVN57–64 core epitope as a cancer vaccine, emphasizing the potential benefit of incorporating multiple class I epitopes and associated cytokine support within a single peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号