首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epibolic extension of the presumptive ectodermal layer (PEL) was investigated in embryos of the newt Cynops pyrrhogaster before and during gastrulation. The PEL was composed of only one layer of columnar cells at all stages examined. The cells of the PEL became elongated from the blastula to the early gastrula stage. They were most elongated at the early gastrula stage and then shortened during gastrulation. Present observations suggest that changes in cell shape of the PEL play an important role in the control of the epibolic extension of the newt embryos. The morphology and movement of the isolated cells from the PEL were examined in an attempt to elucidate the role of cell movement in epibolic extension of the PEL. Blebbing and vermiform cells which showed active cell movement appeared at the early blastula stage. The blebbing cells, which formed large hyaline blebs that moved around the circumference of each cell, appeared in large numbers at the early blastula stage. The frequency of the blebbing cells decreased from the early blastula to the early gastrula stage and increased again during gastrulation. The vermiform cells, which had an elongated cell body and moved in a worm-like manner, increased in frequency from the early blastula to the early gastrula stage. The relative number of such vermiform cells was maximal at the early gastrula stage and decreased abruptly during gastrulation. These results suggest that the elongation of the cells of the PEL is controlled by the active cell movement which resembles that of a worm.  相似文献   

2.
The mitogen activated protein (MAP) kinase signaling cascade has been implicated in a wide variety of events during early embryonic development. We investigated the profile of MAP kinase activity during early development in the sea urchin, Strongylocentrotus purpuratus, and tested if disruption of the MAP kinase signaling cascade has any effect on developmental events. MAP kinase undergoes a rapid, transient activation at the early blastula stage. After returning to basal levels, the activity again peaks at early gastrula stage and remains high through the pluteus stage. Immunostaining of early blastula stage embryos using antibodies revealed that a small subset of cells forming a ring at the vegetal plate exhibited active MAP kinase. In gastrula stage embryos, no specific subset of cells expressed enhanced levels of active enzyme. If the signaling cascade was inhibited at any time between the one cell and early blastula stage, gastrulation was delayed, and a significant percentage of embryos underwent exogastrulation. In embryos treated with MAP kinase signaling inhibitors after the blastula stage, gastrulation was normal but spiculogenesis was affected. The data suggest that MAP kinase signaling plays a role in gastrulation and spiculogenesis in sea urchin embryos.  相似文献   

3.
Normally developing embryos of Xenopus were fixed at various stages between the blastula and early tail bud stage, and their serial sections were examined. The marginal belt of the blastula was characterized by abundance of cells with RNA-rich peripheral cytoplasm called mesoplasm. At the early gastrula stage, the marginal belt was folded into two layers giving rise to mesodermal material and marginal ectoderm. During gastrulation, the mesodermal material, which consisted of RNA-rich cells, spread to enclose the blastocoel and the endoderm, and a large part of it was shifted to the dorsal side of the embryo. It gradually established the mesodermal layer. The notochord was formed on the dorsal lip of the blastopore by involution, separately from preformed mesodermal material. The RNA-rich cells in the marginal ectoderm became columnar, forming a broad belt in the marginal zone. This belt was deformed and shifted to the dorsal side during gastrulation, eventually establishing the neural plate showing quantitative differentiation along the head-tail axis. Possible mechanisms involved in the formation of the neural plate and mesoderm were discussed with reference to the organizer and the mesoplasm.  相似文献   

4.
An organizer population has been identified in the anterior end of the primitive streak of the mid-streak stage embryo, by the expression of Hnf3beta, Gsc(lacZ) and Chrd, and the ability of these cells to induce a second neural axis in the host embryo. This cell population can therefore be regarded as the mid-gastrula organizer and, together with the early-gastrula organizer and the node, constitute the organizer of the mouse embryo at successive stages of development. The profile of genetic activity and the tissue contribution by cells in the organizer change during gastrulation, suggesting that the organizer may be populated by a succession of cell populations with different fates. Fine mapping of the epiblast in the posterior region of the early-streak stage embryo reveals that although the early-gastrula organizer contains cells that give rise to the axial mesoderm, the bulk of the progenitors of the head process and the notochord are localized outside the early gastrula organizer. In the mid-gastrula organizer, early gastrula organizer derived cells that are fated for the prechordal mesoderm are joined by the progenitors of the head process that are recruited from the epiblast previously anterior to the early gastrula organizer. Cells that are fated for the head process move anteriorly from the mid-gastrula organizer in a tight column along the midline of the embryo. Other mid-gastrula organizer cells join the expanding mesodermal layer and colonize the cranial and heart mesoderm. Progenitors of the trunk notochord that are localized in the anterior primitive streak of the mid-streak stage embryo are later incorporated into the node. The gastrula organizer is therefore composed of a constantly changing population of cells that are allocated to different parts of the axial mesoderm.  相似文献   

5.
Gastrulation in the mouse: the role of the homeobox gene goosecoid.   总被引:17,自引:0,他引:17  
Mouse goosecoid is a homeobox gene expressed briefly during early gastrulation. Its mRNA accumulates as a patch on the side of the epiblast at the site where the primitive streak is first formed. goosecoid-expressing cells are then found at the anterior end of the developing primitive streak, and finally in the anteriormost mesoderm at the tip of the early mouse gastrula, a region that gives rise to the head process. Treatment of early mouse embryos with activin results in goosecoid mRNA accumulation in the entire epiblast, suggesting that a localized signal induces goosecoid expression during development. Transplantation experiments indicate that the tip of the murine early gastrula is the equivalent of the organizer of the amphibian gastrula.  相似文献   

6.
The cell morphology, cell-to-cell contact behavior and extracellular matrix (ECM) of inner cells (prospective endodermal cells) of newt ( Cynops pyrrhogaster ) embryos were examined from the morula to gastrula stage by light and electron microscopy. The inner cells showed increased cell-to-cell contact from the early blastula to early gastrula stage. The cells formed blebs (5–15 μm in diameter) during the blastula stage, and started to form filopodia and lamellipodia before gastrulation. Alcian blue and lanthanum nitrate treatment revealed ECM components on the cell surface in the early blastula stage and these components increased in amount from the late blastula to early gastrula stage. It is suggested that the increase in ECM components on the cell surface may have some relation with changes in cell-to-cell contact and formation of processes on the cell surface. Besides the cell surface ECM components, glycogen-like granules were observed in intercellular spaces. From the distribution of granules in gastrulae, it is suggested that these may be important in maintaining intercellular spaces for migration of invaginating cells.  相似文献   

7.
The influence of an alternating electromagnetic field (EMF) on early development of amphibian embryos was examined. When the embryos developed under the influence of a low-frequency EMF (50 Hz, 5-30 mT), the rate of early development was accelerated. The effect of EMF was exerted preferentially at the gastrula stage, and the period of gastrulation was shortened. Histological observations showed that EMF promoted morphogenetic cell movements during the gastrulation. The concentration of intracellular free Ca2+ ([Ca2+]i) in the embryonic cells under the influence of EMF was analyzed using Fura-2, an indicator of the intracellular concentration of calcium ions. The influence of EMF on [Ca2+]i was analyzed in embryonic cells isolated from blastula, gastrula, and neurula, EMF increased a [Ca2+]i particularly in the cells isolated from gastrula. Our results suggest that EMF specifically increased the [Ca2+]i of gastrula cells, thereby, accelerating the rate of morphogenetic cell movements during gastrulation.  相似文献   

8.
The development of the vertebrate nervous system is initiated in amphibia by inductive interactions between ectoderm and a region of the embryo called the organizer. The organizer tissue in the dorsal lip of the blastopore of Xenopus and Hensen's node in chick embryos have similar neural inducing properties when transplanted into ectopic sites in their respective embryos. To begin to determine the nature of the inducing signals of the organizer and whether they are conserved across species we have examined the ability of Hensen's node to induce neural tissue in Xenopus ectoderm. We show that Hensen's node induces large amounts of neural tissue in Xenopus ectoderm. Neural induction proceeds in the absence of mesodermal differentiation and is accompanied by tissue movements which may reflect notoplate induction. The competence of the ectoderm to respond to Hensen's node extends much later in development than that to activin-A or to induction by vegetal cells, and parallels the extended competence to neural induction by axial mesoderm. The actions of activin-A and Hensen's node are further distinguished by their effects on lithium-treated ectoderm. These results suggest that neural induction can occur efficiently in response to inducing signals from organizer tissue arrested at a stage prior to gastrulation, and that such early interactions in the blastula may be an important component of neural induction in vertebrate embryos.  相似文献   

9.
10.
The dynamics of protein synthesis in the loach embryos has been studied by means of autoradiography at the stages of cleavage, blastula and gastrula. During the synchronous cleavage divisions, nuclear proteins are mainly synthesized. From the early blastula stage until the early gastrula stage, the intensity of nuclear protein synthesis increases 2.5 times whereas the intensity of cytoplasmic and total protein synthesis is low and relatively constant. After the onset of gastrulation the intensity of nuclear and cytoplasmic protein synthesis increases 3-4 times and at the late gastrula stage it decreases twice as compared with that at the midgastrula stage. During blastulation, no regional differences in the intensity of nuclear and cytoplasmic protein synthesis were found. With the onset of gastrulation, a vegeto-animal gradient of labeled aminoacid incorporation into nuclear and cytoplasmic proteins appears. During gastrulation, reliable differences were found between the intensity of labeled aminoacid incorporation into proteins of the cells of intact and dissociated blastoderms. During this period, the intensity of protein synthesis in embryonic shield is higher than that in the extraembryonic part of blastoderm.  相似文献   

11.
Embryos from a female of Xenopus laevis (designated as no. 65) arrest development at gastrulation and are assumed to be ova-deficient mutant. We dissociated these embryos and studied RNA synthesis at different stages. The cells from the ova-deficient embryos reaggregated quite actively as wild-type embryo cells until the late gastrula stage. RNA synthesis was normal at the early blastula stage but greatly inhibited by the late blastula (stage 9.5) stage, when the synthesis of DNA and protein was still not inhibited appreciably. Thus, inhibition in RNA synthesis appears to be the first manifestation of the maternal defect that occurs before the gastrulation arrest.  相似文献   

12.
13.
Fetal Alcohol Spectrum Disorder (FASD) is a set of developmental malformations caused by alcohol consumption during pregnancy. Fetal Alcohol Syndrome (FAS), the strongest manifestation of FASD, results in short stature, microcephally and facial dysmorphogenesis including microphthalmia. Using Xenopus embryos as a model developmental system, we show that ethanol exposure recapitulates many aspects of FAS, including a shortened rostro-caudal axis, microcephally and microphthalmia. Temporal analysis revealed that Xenopus embryos are most sensitive to ethanol exposure between late blastula and early/mid gastrula stages. This window of sensitivity overlaps with the formation and early function of the embryonic organizer, Spemann's organizer. Molecular analysis revealed that ethanol exposure of embryos induces changes in the domains and levels of organizer-specific gene expression, identifying Spemann's organizer as an early target of ethanol. Ethanol also induces a defect in convergent extension movements that delays gastrulation movements and may affect the overall length. We show that mechanistically, ethanol is antagonistic to retinol (Vitamin A) and retinal conversion to retinoic acid, and that the organizer is active in retinoic acid signaling during early gastrulation. The model suggests that FASD is induced in part by an ethanol-dependent reduction in retinoic acid levels that are necessary for the normal function of Spemann's organizer.  相似文献   

14.
This study was undertaken to localize epidermal growth factor receptor (EGFR) during early development of Japanese medaka embryos using immunocytochemistry. Specific staining was observed in all stages studied. All of the cells of the embryonic disc from the germinal disc (1 cell) through the late high blastula stages stained moderately for EGFR. Beginning with the flat blastula stage, the surface and lateral cells of the embryonic disc and the cells migrating around the yolk stained intensely for EGFR, and this continued throughout the study period. The presence of the keel at the late gastrula stage did not affect the moderate staining of the majority of the embryonic disc cells. When somites first appeared, the keel region stained less intensely than before, but scattered individual cells stained intensely for EGFR. Embryos with 12 somites had a neural tube that was lightly stained except for a few intensely stained individual cells. The neural tube, notochord and somites in 24-somite embryos lacked immunostaining. However, the surface epithelium, aorta, intestinal epithelium and pronephric duct demonstrated EGFR immunostaining. This study demonstrates that EGFR is present during medaka development and supports the hypothesis that EGFR ligands are important during cleavage, gastrulation and early organogenesis.  相似文献   

15.
The activity of ouabain-sensitive Na+, K+-ATPase in sea urchin embryos at the morula and the swimming blastula stage was practically the same to that in unfertilized eggs. The activity increased during the period between the mesenchyme blastula and the late gastrula stages. In embryo-wall cell fraction, which contained presumptive ectodermal cells as well as those of other cell lineages at the pre-gastrula stage and ectodermal cells at the late gastrula stage, the Na+, K+-ATPase activity increased in this developmental period more largely than in another cell fraction, containing mesenchyme cells and archenteron cells. Cycloheximide did not only block the activity increase in this period but also caused evident decrease in the activity in embryos at all examined stages. The activity increase in this period was strongly blocked by the treatment with actinomycin D, starting before the mesenchyme blastula stage, and was not seriously inhibited by the treatment starting at the mesenchyme blastula stage. The treatment starting at the initiation of gastrulation only slightly blocked further increase in the activity. Probably, an accumulation of mRNA encoding Na+, K+-ATPase occurs mainly in ectodermal cells and is completed up to the early gastrula stage.  相似文献   

16.
The dorsal blastopore lip (known as the Spemann organizer) is important for making the body plan in amphibian gastrulation. The organizer is believed to involute inward and migrate animally to make physical contact with the prospective head neuroectoderm at the blastocoel roof of mid‐ to late‐gastrula. However, we found that this physical contact was already established at the equatorial region of very early gastrula in a wide variety of amphibian species. Here we propose a unified model of amphibian gastrulation movement. In the model, the organizer is present at the blastocoel roof of blastulae, moves vegetally to locate at the region that lies from the blastocoel floor to the dorsal lip at the onset of gastrulation. The organizer located at the blastocoel floor contributes to the anterior axial mesoderm including the prechordal plate, and the organizer at the dorsal lip ends up as the posterior axial mesoderm. During the early step of gastrulation, the anterior organizer moves to establish the physical contact with the prospective neuroectoderm through the “subduction and zippering” movements. Subduction makes a trench between the anterior organizer and the prospective neuroectoderm, and the tissues face each other via the trench. Zippering movement, with forming Brachet's cleft, gradually closes the gap to establish the contact between them. The contact is completed at the equator of early gastrulae and it continues throughout the gastrulation. After the contact is established, the dorsal axis is formed posteriorly, but not anteriorly. The model also implies the possibility of constructing a common model of gastrulation among chordate species.  相似文献   

17.
The pattern of DNAse activity in sea urchin Paracentrotus lividus during early embryonic development is altered by actinomycin.When the drug is added to the embryos soon after fertilization, the decrease of DNAse activity that normally occurs before the onset of gastrulation is prevented. If actinomycin is added when DNAse activity starts to decrease, the enzyme pattern remains the same as in the control. Addition of the drug at late gastrula stage, on the other hand, brings about a transient increase of activity with respect to that of untreated embryos.Puromycin has no effect on DNAse activity during the period from fertilization to the blastula stage, whereas it inhibits the increase of activity which occurs after gastrulation. The type of regulatory mechanism involved is discussed.  相似文献   

18.
19.
Origin and organization of the zebrafish fate map   总被引:15,自引:0,他引:15  
We have analyzed lineages of cells labeled by intracellular injection of tracer dye during early zebrafish development to learn when cells become allocated to particular fates during development, and how the fate map is organized. The earliest lineage restriction was described previously, and segregates the yolk cell from the blastoderm in the midblastula. After one or two more cell divisions, the lineages of epithelial enveloping layer (EVL) cells become restricted to generate exclusively periderm. Following an additional division in the late blastula, deep layer (DEL) cells generate clones that are restricted to single deep embryonic tissues. The appearance of both the EVL and DEL restrictions could be causally linked to blastoderm morphogenesis during epiboly. A fate map emerges as the DEL cell lineages become restricted in the late blastula. It is similar in organization to that of an amphibian embryo. DEL cells located near the animal pole of the early gastrula give rise to ectodermal fates (including the definitive epidermis). Cells located near the blastoderm margin give rise to mesodermal and endodermal fates. Dorsal cells in the gastrula form dorsal and anterior structures in the embryo, and ventral cells in the gastrula form dorsal, ventral and posterior structures. The exact locations of progenitors of single cell types and of local regions of the embryo cannot be mapped at the stages we examined, because of variable cell rearrangements during gastrulation.  相似文献   

20.
Results of a number of pharmacological studies suggest that catecholamines play a regulatory role in cleavage, morphogenesis and cell differentiation during early animal embryonic development. Few studies, however, have actually assayed for levels of catecholamines in these early embryos by methods that are both sensitive and specific. In this investigation the catecholamines dopamine, norepinephrine and epinephrine and their precursor, dopa and metabolites were determined in eight different embryonic stages of the sea urchin, Lytechinus pictus from hatched blastula to late pluteus larva, using high performance liquid chromatography with electrochemical detection. Levels of each of the catecholamines exhibited unique developmental profiles and are consistent with a role for epinephrine in blastula and early gastrula embryos and for norepinephrine in gastrulation. Changes in levels of catecholamine precursor and metabolites suggest a changing pattern of synthetic and metabolic enzyme activity, which can, for the most part, explain the fluctuations in catecholamine levels during development from blastula to the pluteus larva stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号