首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Lisacek F 《Proteomics》2006,6(Z2):22-32
This tutorial focuses on three MS/MS data analysis programs currently available via a web interface: Mascot, Phenyx and X!Tandem. Although these programs process the same input and often produce comparable outputs, subtle differences remain. The use of parameters that are requested in the on-line forms and the subsequent interpretation of results are illustrated and explained via a single example.  相似文献   

2.
The subject of this tutorial is protein identification and characterisation by database searching of MS/MS Data. Peptide Mass Fingerprinting is excluded because it is covered in a separate tutorial. Practical aspects of database searching are emphasised, such as choice of sequence database, effect of mass tolerance, and how to identify post-translational modifications. The relationship between sensitivity and specificity is discussed, as is the challenge of using peptide match information to infer which proteins were present in the sample. Since these tutorials are introductory in nature, most references are to reviews, rather than primary research papers. Some familiarity with mass spectrometry and protein chemistry is assumed. There is an accompanying slide presentation, including speaker notes, and a collection of web-based, practical exercises, designed to reinforce key points. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 6).  相似文献   

3.
Characterization of betaines using electrospray MS/MS   总被引:3,自引:0,他引:3  
Betaines are an important class of naturally occurring compounds that function as compatible solutes or osmoprotectants. Because of the permanent positive charge on the quaternary ammonium moiety, mass spectrometric analysis has been approached by desorption methods, including fast atom bombardment and plasma desorption mass spectrometry. Here we show that electrospray ionization MS gives comparable results to plasma desorption MS for a range of authentic betaine standards and betaines purified from plant extracts by ion exchange chromatography. A distinct advantage of electrospray ionization MS over plasma desorption MS is the capability of obtaining product ion spectra via MS/MS of selected parent ions, and hence structural information to discriminate between ions of identical mass.  相似文献   

4.
IMAC in combination with mass spectrometry is a promising approach for global analysis of protein phosphorylation. Nevertheless this approach suffers from two shortcomings: inadequate efficiency of IMAC and poor fragmentation of phosphopeptides in the mass spectrometer. Here we report optimization of the IMAC procedure using (32)P-labeled tryptic peptides and development of MS/MS/MS (MS3) for identifying phosphopeptide sequences and phosphorylation sites. The improved IMAC method allowed recovery of phosphorylated tryptic peptides up to approximately 77% with only minor retention of unphosphorylated peptides. MS3 led to efficient fragmentation of the peptide backbone in phosphopeptides for sequence assignment. Proteomics of mitochondrial phosphoproteins using the resulting IMAC protocol and MS3 revealed 84 phosphorylation sites in 62 proteins, most of which have not been reported before. These results revealed diverse phosphorylation pathways involved in the regulation of mitochondrial functions. Integration of the optimized batchwise IMAC protocol with MS3 offers a relatively simple and more efficient approach for proteomics of protein phosphorylation.  相似文献   

5.
Enrichment is essential for phosphoproteome analysis because phosphorylated proteins are usually present in cells in low abundance. Recently, titanium dioxide (TiO2) has been demonstrated to enrich phosphopeptides from simple peptide mixtures with high specificity; however, the technology has not been optimized. In the present study, significant non-specific bindings were observed when proteome samples were applied to TiO2 columns. Column wash with an NH4Glu solution after loading peptide mixtures significantly increased the efficiency of TiO2 phosphopeptide enrichment with a recovery of up to 84%. Also, for proteome samples, more than a 2-fold increase in unique phosphopeptide identifications has been achieved. The use of NH4Glu for a TiO2 column wash does not significantly reduce the phosphopeptide recovery. A total of 858 phosphopeptides corresponding to 1034 distinct phosphosites has been identified from HeLa cells using the improved TiO2 enrichment procedure in combination with data-dependent neutral loss nano-RPLC-MS2-MS3 analysis. While 41 and 35% of the phosphopeptides were identified only by MS2 and MS3, respectively, 24% was identified by both MS2 and MS3. Cross-validation of the phosphopeptide assignment by MS2 and MS3 scans resulted in the highest confidence in identification (99.5%). Many phosphosites identified in this study appear to be novel, including sites from antigen Ki-67, nucleolar phosphoprotein p130, and Treacle protein. The study also indicates that evaluation of confidence levels for phosphopeptide identification via the reversed sequence database searching strategy might underestimate the false positive rate.  相似文献   

6.
Recent technological advances have made available reverse phase chromatographic media with a 1.7 microm particle size along with a liquid handling system that can operate such columns at much higher pressures. This technology, termed ultra performance liquid chromatography (UPLC), offers significant theoretical advantages in resolution, speed, and sensitivity for analytical determinations, particularly when coupled with mass spectrometers capable of high-speed acquisitions. This paper explores the differences in LC-MS performance by conducting a side-by-side comparison of UPLC for several methods previously optimized for HPLC-based separation and quantification of multiple analytes with maximum throughput. In general, UPLC produced significant improvements in method sensitivity, speed, and resolution. Sensitivity increases with UPLC, which were found to be analyte-dependent, were as large as 10-fold and improvements in method speed were as large as 5-fold under conditions of comparable peak separations. Improvements in chromatographic resolution with UPLC were apparent from generally narrower peak widths and from a separation of diastereomers not possible using HPLC. Overall, the improvements in LC-MS method sensitivity, speed, and resolution provided by UPLC show that further advances can be made in analytical methodology to add significant value to hypothesis-driven research.  相似文献   

7.
We demonstrate an approach for global quantitative analysis of protein mixtures using differential stable isotopic labeling of the enzyme-digested peptides combined with microbore liquid chromatography (LC) matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). Microbore LC provides higher sample loading, compared to capillary LC, which facilitates the quantification of low abundance proteins in protein mixtures. In this work, microbore LC is combined with MALDI MS via a heated droplet interface. The compatibilities of two global peptide labeling methods (i.e., esterification to carboxylic groups and dimethylation to amine groups of peptides) with this LC-MALDI technique are evaluated. Using a quadrupole-time-of-flight mass spectrometer, MALDI spectra of the peptides in individual sample spots are obtained to determine the abundance ratio among pairs of differential isotopically labeled peptides. MS/MS spectra are subsequently obtained from the peptide pairs showing significant abundance differences to determine the sequences of selected peptides for protein identification. The peptide sequences determined from MS/MS database search are confirmed by using the overlaid fragment ion spectra generated from a pair of differentially labeled peptides. The effectiveness of this microbore LC-MALDI approach is demonstrated in the quantification and identification of peptides from a mixture of standard proteins as well as E. coli whole cell extract of known relative concentrations. It is shown that this approach provides a facile and economical means of comparing relative protein abundances from two proteome samples.  相似文献   

8.
9.
10.
An important step in mass spectrometry (MS)-based proteomics is the identification of peptides by their fragment spectra. Regardless of the identification score achieved, almost all tandem-MS (MS/MS) spectra contain remaining peaks that are not assigned by the search engine. These peaks may be explainable by human experts but the scale of modern proteomics experiments makes this impractical. In computer science, Expert Systems are a mature technology to implement a list of rules generated by interviews with practitioners. We here develop such an Expert System, making use of literature knowledge as well as a large body of high mass accuracy and pure fragmentation spectra. Interestingly, we find that even with high mass accuracy data, rule sets can quickly become too complex, leading to over-annotation. Therefore we establish a rigorous false discovery rate, calculated by random insertion of peaks from a large collection of other MS/MS spectra, and use it to develop an optimized knowledge base. This rule set correctly annotates almost all peaks of medium or high abundance. For high resolution HCD data, median intensity coverage of fragment peaks in MS/MS spectra increases from 58% by search engine annotation alone to 86%. The resulting annotation performance surpasses a human expert, especially on complex spectra such as those of larger phosphorylated peptides. Our system is also applicable to high resolution collision-induced dissociation data. It is available both as a part of MaxQuant and via a webserver that only requires an MS/MS spectrum and the corresponding peptides sequence, and which outputs publication quality, annotated MS/MS spectra (www.biochem.mpg.de/mann/tools/). It provides expert knowledge to beginners in the field of MS-based proteomics and helps advanced users to focus on unusual and possibly novel types of fragment ions.In MS-based proteomics, peptides are matched to peptide sequences in databases using search engines (13). Statistical criteria are established for accepted versus rejected peptide spectra matches based on the search engine score, and usually a 99% certainty is required for reported peptides. The search engines typically only take sequence specific backbone fragmentation into account (i.e. a, b, and y ions) and some of their neutral losses. However, tandem mass spectra—especially of larger peptides—can be quite complex and contain a number of medium or even high abundance peptide fragments that are not annotated by the search engine result. This can result in uncertainty for the user—especially if only relatively few peaks are annotated—because it may reflect an incorrect identification. However, the most common cause of unlabeled peaks is that another peptide was present in the precursor selection window and was cofragmented. This has variously been termed “chimeric spectra” (46), or the problem of low precursor ion fraction (PIF)1 (7). Such spectra may still be identifiable with high confidence. The Andromeda search engine in MaxQuant, for instance, attempts to identify a second peptide in such cases (8, 9). However, even “pure” spectra (those with a high PIF) often still contain many unassigned peaks. These can be caused by different fragment types, such as internal ions, single or combined neutral losses as well as immonium and other ion types in the low mass region. A mass spectrometric expert can assign many or all of these peaks, based on expert knowledge of fragmentation and manual calculation of fragment masses, resulting in a higher degree of confidence for the identification. However, there are more and more practitioners of proteomics without in depth training or experience in annotating MS/MS spectra and such annotation would in any case be prohibitive for hundreds of thousands of spectra. Furthermore, even human experts may wrongly annotate a given peak—especially with low mass accuracy tandem mass spectra—or fail to consider every possibility that could have resulted in this fragment mass.Given the desirability of annotating fragment peaks to the highest degree possible, we turned to “Expert Systems,” a well-established technology in computer science. Expert Systems achieved prominence in the 1970s and 1980s and were meant to solve complex problems by reasoning about knowledge (10, 11). Interestingly, one of the first examples was developed by Nobel Prize winner Joshua Lederberg more than 40 years ago, and dealt with the interpretation of mass spectrometric data. The program''s name was Heuristic DENTRAL (12), and it was capable of interpreting the mass spectra of aliphatic ethers and their fragments. The hypotheses produced by the program described molecular structures that are plausible explanations of the data. To infer these explanations from the data, the program incorporated a theory of chemical stability that provided limiting constraints as well as heuristic rules.In general, the aim of an Expert System is to encode knowledge extracted from professionals in the field in question. This then powers a rule-based system that can be applied broadly and in an automated manner. A rule-based Expert System represents the information obtained from human specialists in the form of IF-THEN rules. These are used to perform operations on input data to reach appropriate conclusion. A generic Expert System is essentially a computer program that provides a framework for performing a large number of inferences in a predictable way, using forward or backward chains, backtracking, and other mechanisms (13). Therefore, in contrast to statistics based learning, the “expert program” does not know what it knows through the raw volume of facts in the computer''s memory. Instead, like a human expert, it relies on a reasoning-like process of applying an empirically derived set of rules to the data.Here we implemented an Expert System for the interpretation for high mass accuracy tandem mass spectrometry data of peptides. It was developed in an iterative manner together with human experts on peptide fragmentation, using the published literature on fragmentation pathways as well as large data sets of higher-energy collisional dissociation (HCD) (14) and collision-induced dissociation (CID) based peptide identifications. Our goal was to achieve an annotation performance similar or better than experienced mass spectrometrists (15), thus making comprehensively annotated peptide spectra available in large scale proteomics.  相似文献   

11.
In proteomics, tandem mass spectrometry is the key technology for peptide sequencing. However, partially due to the deficiency of peptide identification software, a large portion of the tandem mass spectra are discarded in almost all proteomics centers because they are not interpretable. The problem is more acute with the lower quality data from low end but more popular devices such as the ion trap instruments. In order to deal with the noisy and low quality data, this paper develops a systematic machine learning approach to construct a robust linear scoring function, whose coefficients are determined by a linear programming. A prototype, PRIMA, was implemented. When tested with large benchmarks of varying qualities, PRIMA consistently has higher accuracy than commonly used software MASCOT, SEQUEST and X! Tandem.  相似文献   

12.
The identification of proteins separated on two-dimensional gels is most commonly performed by trypsin digestion and subsequent matrix-assisted laser desorption ionization (MALDI) with time-of-flight (TOF). Recently, atmospheric pressure (AP) MALDI coupled to an ion trap (IT) has emerged as a convenient method to obtain tandem mass spectra (MS/MS) from samples on MALDI target plates. In the present work, we investigated the feasibility of using the two methodologies in line as a standard method for protein identification. In this setup, the high mass accuracy MALDI-TOF spectra are used to calibrate the peptide precursor masses in the lower mass accuracy AP-MALDI-IT MS/MS spectra. Several software tools were developed to automate the analysis process. Two sets of MALDI samples, consisting of 142 and 421 gel spots, respectively, were analyzed in a highly automated manner. In the first set, the protein identification rate increased from 61% for MALDI-TOF only to 85% for MALDI-TOF combined with AP-MALDI-IT. In the second data set the increase in protein identification rate was from 44% to 58%. AP-MALDI-IT MS/MS spectra were in general less effective than the MALDI-TOF spectra for protein identification, but the combination of the two methods clearly enhanced the confidence in protein identification.  相似文献   

13.
We present MassSieve, a Java‐based platform for visualization and parsimony analysis of single and comparative LC‐MS/MS database search engine results. The success of mass spectrometric peptide sequence assignment algorithms has led to the need for a tool to merge and evaluate the increasing data set sizes that result from LC‐MS/MS‐based shotgun proteomic experiments. MassSieve supports reports from multiple search engines with differing search characteristics, which can increase peptide sequence coverage and/or identify conflicting or ambiguous spectral assignments.  相似文献   

14.
Liquid chromatography MALDI MS/MS for membrane proteome analysis   总被引:3,自引:0,他引:3  
Membrane proteins play critical roles in many biological functions and are often the molecular targets for drug discovery. However, their analysis presents a special challenge largely due to their highly hydrophobic nature. We present a surfactant-aided shotgun proteomics approach for membrane proteome analysis. In this approach, membrane proteins were solubilized and digested in the presence of SDS followed by newly developed auto-offline liquid chromatography/matrix-assisted laser desorption ionization (LC/MALDI) tandem MS analysis. Because of high tolerance of MALDI to SDS, one-dimensional (1D) LC separation can be combined with MALDI for direct analysis of protein digests containing SDS, without the need for extensive sample cleanup. In addition, the heated droplet interface used in LC/MALDI can work with high flow LC separations, allowing a relatively large amount of protein digest to be used for 1D LC/MALDI which facilitates the detection of low abundance proteins. The proteome identification results obtained by LC/MALDI are compared to the gel electrophoresis/MS method as well as the shotgun proteomics method using 2D LC/electrospray ionization MS. It is demonstrated that, while LC/MALDI provides more extensive proteome coverage compared to the other two methods, these three methods are complementary to each other and a combination of these methods should provide a more comprehensive membrane proteome analysis.  相似文献   

15.
16.
Metabolic flux analysis (MFA) is a widely used method for quantifying intracellular metabolic fluxes. It works by feeding cells with isotopic labeled nutrients, measuring metabolite isotopic labeling, and computationally interpreting the measured labeling data to estimate flux. Tandem mass-spectrometry (MS/MS) has been shown to be useful for MFA, providing positional isotopic labeling data. Specifically, MS/MS enables the measurement of a metabolite tandem mass-isotopomer distribution, representing the abundance in which certain parent and product fragments of a metabolite have different number of labeled atoms. However, a major limitation in using MFA with MS/MS data is the lack of a computationally efficient method for simulating such isotopic labeling data. Here, we describe the tandemer approach for efficiently computing metabolite tandem mass-isotopomer distributions in a metabolic network, given an estimation of metabolic fluxes. This approach can be used by MFA to find optimal metabolic fluxes, whose induced metabolite labeling patterns match tandem mass-isotopomer distributions measured by MS/MS. The tandemer approach is applied to simulate MS/MS data in a small-scale metabolic network model of mammalian methionine metabolism and in a large-scale metabolic network model of E. coli. It is shown to significantly improve the running time by between two to three orders of magnitude compared to the state-of-the-art, cumomers approach. We expect the tandemer approach to promote broader usage of MS/MS technology in metabolic flux analysis. Implementation is freely available at www.cs.technion.ac.il/~tomersh/methods.html  相似文献   

17.
Typically, detection of protein sequences in collision-induced dissociation (CID) tandem MS (MS2) dataset is performed by mapping identified peptide ions back to protein sequence by using the protein database search (PDS) engine. Finding a particular peptide sequence of interest in CID MS2 records very often requires manual evaluation of the spectrum, regardless of whether the peptide-associated MS2 scan is identified by PDS algorithm or not. We have developed a compact cross-platform database-free command-line utility, pepgrep, which helps to find an MS2 fingerprint for a selected peptide sequence by pattern-matching of modelled MS2 data using Peptide-to-MS2 scoring algorithm. pepgrep can incorporate dozens of mass offsets corresponding to a variety of post-translational modifications (PTMs) into the algorithm. Decoy peptide sequences are used with the tested peptide sequence to reduce false-positive results. The engine is capable of screening an MS2 data file at a high rate when using a cluster computing environment. The matched MS2 spectrum can be displayed by using built-in graphical application programming interface (API) or optionally recorded to file. Using this algorithm, we were able to find extra peptide sequences in studied CID spectra that were missed by PDS identification. Also we found pepgrep especially useful for examining a CID of small fractions of peptides resulting from, for example, affinity purification techniques. The peptide sequences in such samples are less likely to be positively identified by using routine protein-centric algorithm implemented in PDS. The software is freely available at http://bsproteomics.essex.ac.uk:8080/data/download/pepgrep-1.4.tgz.  相似文献   

18.
We derive the optimal number of peaks (defined as the minimum number that provides the required efficiency of spectra identification) in the theoretical spectra as a function of (i) the experimental accuracy, sigma, of the measured ratio m/z; (ii) experimental spectrum density; (iii) size of the database; (iv) number of peaks in the theoretical spectra; and (v) types of ions that the peaks represent. We show that if theoretical spectra are constructed including b and y ions alone, then for sigma = 0.5, which is typical for high-throughput data, peptide chains of eight amino acids or longer can be identified based on the positions of peaks alone, at a rate of false identification below 1%. To discriminate between shorter peptides, additional (e.g., intensity-inferred) information is necessary. We derive the dependence of the probability of false identification on the number of peaks in the theoretical spectra and on the types of ions that the peaks represent. Our results suggest that the class of mass spectrum identification problems, for which more elaborate development of fragmentation rules (such as intensity model) is required, can be reduced to the problems that involve homologous peptides.  相似文献   

19.
The promise of mass spectrometry as a tool for probing signal-transduction is predicated on reliable identification of post-translational modifications. Phosphorylations are key mediators of cellular signaling, yet are hard to detect, partly because of unusual fragmentation patterns of phosphopeptides. In addition to being accurate, MS/MS identification software must be robust and efficient to deal with increasingly large spectral data sets. Here, we present a new scoring function for the Inspect software for phosphorylated peptide tandem mass spectra for ion-trap instruments, without the need for manual validation. The scoring function was modeled by learning fragmentation patterns from 7677 validated phosphopeptide spectra. We compare our algorithm against SEQUEST and X!Tandem on testing and training data sets. At a 1% false positive rate, Inspect identified the greatest total number of phosphorylated spectra, 13% more than SEQUEST and 39% more than X!Tandem. Spectra identified by Inspect tended to score better in several spectral quality measures. Furthermore, Inspect runs much faster than either SEQUEST or X!Tandem, making desktop phosphoproteomics feasible. Finally, we used our new models to reanalyze a corpus of 423,000 LTQ spectra acquired for a phosphoproteome analysis of Saccharomyces cerevisiae DNA damage and repair pathways and discovered 43% more phosphopeptides than the previous study.  相似文献   

20.
An overview is presented of gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS), the two major hyphenated techniques employed in metabolic profiling that complement direct 'fingerprinting' methods such as atmospheric pressure ionization (API) quadrupole time-of-flight MS, API Fourier transform MS, and NMR. In GC/MS, the analytes are normally derivatized prior to analysis in order to reduce their polarity and facilitate chromatographic separation. The electron ionization mass spectra obtained are reproducible and suitable for library matching, mass spectral collections being readily available. In LC/MS, derivatization and library matching are at an early stage of development and mini-reviews are provided. Chemical derivatization can dramatically increase the sensitivity and specificity of LC/MS methods for less polar compounds and provides additional structural information. The potential of derivatization for metabolic profiling in LC/MS is demonstrated by the enhanced analysis of plant extracts, including the potential to measure volatile acids such as formic acid, difficult to achieve by GC/MS. The important role of mass spectral library creation and usage in these techniques is discussed and illustrated by examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号