首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degradation of diatoms is mainly catalyzed by Bacteroidetes and this process is of global relevance for the carbon cycle. In this study, a combination of catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) and fluorescent lectin binding analysis (FLBA) was used to identify and map glycoconjugates involved in the specific interactions of Bacteroidetes and diatoms, as well as detritus, at the coastal marine site Helgoland Roads (German Bight, North Sea). The study probed both the presence of lectin-specific extracellular polymeric substances (EPS) of Bacteroidetes for cell attachment and that of glycoconjugates on diatoms with respect to binding sites for Bacteroidetes. Members of the clades Polaribacter and Ulvibacter were shown to form microcolonies within aggregates for which FLBA indicated the presence of galactose containing slime. Polaribacter spp. was shown to bind specifically to the setae of the abundant diatom Chaetoceros spp., and the setae were stained with fucose-specific lectins. In contrast, Ulvibacter spp. attached to diatoms of the genus Asterionella which bound, among others, the mannose-specific lectin PSA. The newly developed CARD-FISH/FLBA protocol was limited to the glycoconjugates that persisted after the initial CARD-FISH procedure. The differential attachment of bacteroidetal clades to diatoms and their discrete staining by FLBA provided evidence for the essential role that formation and recognition of glycoconjugates play in the interaction of bacteria with phytoplankton.  相似文献   

2.
Biofilm formation and the production of extracellular polymeric substances (EPS) by meso‐ and thermoacidophilic metal‐oxidizing archaea on relevant substrates have been studied to a limited extent. In order to investigate glycoconjugates, a major part of the EPS, during biofilm formation/bioleaching by archaea on pyrite, a screening with 75 commercially available lectins by fluorescence lectin‐binding analysis (FLBA) has been performed. Three representative archaeal species, Ferroplasma acidiphilum DSM 28986, Sulfolobus metallicus DSM 6482T and a novel isolate Acidianus sp. DSM 29099 were used. In addition, Acidianus sp. DSM 29099 biofilms on elemental sulfur were studied. The results of FLBA indicate (i) 22 lectins bound to archaeal biofilms on pyrite and 21 lectins were binding to Acidianus sp. DSM 29099 biofilms on elemental sulfur; (ii) major binding patterns, e.g. tightly bound EPS and loosely bound EPS, were detected on both substrates; (iii) the three archaeal species produced various EPS glycoconjugates on pyrite surfaces. Additionally, the substratum induced different EPS glycoconjugates and biofilm structures of cells of Acidianus sp. DSM 29099. Our data provide new insights into interactions between acidophilic archaea on relevant surfaces and also indicate that FLBA is a valuable tool for in situ investigations on archaeal biofilms.  相似文献   

3.
Freshwater tufa deposits are the result of calcification associated with biofilms dominated by cyanobacteria. Recent investigations highlighted the fact that the formation of microbial calcium carbonates is mainly dependent on the saturation index, which is determined by pH, the ion activity of Ca(2+) and CO(3)(2-), and the occurrence of extracellular polymeric substances (EPS) produced by microorganisms. EPS, which contain carboxyl and/or hydroxyl groups, can strongly bind cations. This may result in inhibition of CaCO(3) precipitation. In contrast, the formation of templates for crystal nucleation was reported by many previous investigations. The purposes of this study were (i) to characterize the in situ distribution of EPS glycoconjugates in tufa-associated biofilms of two German hard-water creeks by employing fluorescence lectin-binding analysis (FLBA), (ii) to verify the specific lectin-binding pattern by competitive-inhibition assays, and (iii) to assess whether carbonates are associated with structural EPS domains. Three major in situ EPS domains (cyanobacterial, network-like, and cloud-like structures) were detected by FLBA in combination with laser scanning microscopy (LSM). Based on lectin specificity, the EPS glycoconjugates produced by cyanobacteria contained mainly fucose, amino sugars (N-acetyl-glucosamine and N-acetyl-galactosamine), and sialic acid. Tufa deposits were irregularly covered by network-like EPS structures, which may originate from cyanobacterial EPS secretions. Cloud-like EPS glycoconjugates were dominated by sialic acid, amino sugars, and galactose. In some cases calcium carbonate crystals were associated with cyanobacterial EPS glycoconjugates. The detection of amino sugars and calcium carbonate in close association with decaying sheath material indicated that microbially mediated processes might be important for calcium carbonate precipitation in freshwater tufa systems.  相似文献   

4.
Scanning electron microscopy revealed that collapsed extracellular polymeric substances (EPS) surrounded bacteria present in granular sludge. Treatment of granular sludge with whole-cell antiserum and staining with polycationic ferritin demonstrated that bacteria were enveloped by extensive EPS. Antibody stabilization permitted a visualization of the EPS which more closely resembled its natural hydrated state. The EPS was seen to completely fill the intercellular spaces in the microcolonies. Both pure and mixed microcolonies were observed to be enclosed by EPS. The presence of these large amounts of EPS indicates that this extracellular layer is important in maintaining the structural integrity of granular sludge.  相似文献   

5.
Aims: To investigate the structural organization and dynamics of exopolysaccharides (EPS) matrix and microcolonies formation by Streptococcus mutans during the biofilm development process. Methods and Results: Biofilms of Strep. mutans were formed on saliva‐coated hydroxyapatite (sHA) discs in the presence of glucose or sucrose (alone or mixed with starch). At specific time points, biofilms were subjected to confocal fluorescence imaging and computational analysis. EPS matrix was steadily formed on sHA surface in the presence of sucrose during the first 8 h followed by a threefold biomass increase between 8 and 30 h of biofilm development. The initial formation and further development of three‐dimensional microcolony structure occurred concomitantly with EPS matrix synthesis. Tridimensional renderings showed EPS closely associated with microcolonies throughout the biofilm development process forming four distinct domains (i) between sHA surface and microcolonies, (ii) within, (iii) covering and (iv) filling the spaces between microcolonies. The combination of starch and sucrose resulted in rapid formation of elevated amounts of EPS matrix and faster assembly of microcolonies by Strep. mutans, which altered their structural organization and susceptibility of the biofilm to acid killing (vs sucrose‐grown biofilms; P < 0·05). Conclusions: Our data indicate that EPS modulate the development, sequence of assembly and spatial distribution of microcolonies by Strep. mutans. Significance and Impact of the Study: Simultaneous visualization and analysis of EPS matrix and microcolonies provide a more precise examination of the structural organization of biofilms than labelling bacteria alone, which could be a useful approach to elucidate the exact mechanisms by which Strep. mutans influences oral biofilm formation and possibly identify novel targets for effective antibiofilm therapies.  相似文献   

6.
The architecture of a Sphingomonas biofilm was studied during early phases of its formation, using strain L138, a gfp-tagged derivative of Sphingomonas sp. strain LB126, as a model organism and flow cells and confocal laser scanning microscopy as experimental tools. Spatial and temporal distribution of cells and exopolymer secretions (EPS) within the biofilm, development of microcolonies under flow conditions representing varied Reynolds numbers, and changes in diffusion length with reference to EPS production were studied by sequential sacrificing of biofilms grown in multichannel flow cells and by time-lapse confocal imaging. The area of biofilm in terms of microscopic images required to ensure representative sampling varied by an order of magnitude when area of cell coverage (2 x 10(5) microm(2)) or microcolony size (1 x 10(6) microm(2)) was the biofilm parameter under investigation. Hence, it is necessary to establish the inherent variability of any biofilm metric one is attempting to quantify. Sphingomonas sp. strain L138 biofilm architecture consisted of microcolonies and extensive water channels. Biomass and EPS distribution were maximal at 8 to 9 mum above the substratum, with a high void fraction near the substratum. Time-lapse confocal imaging and digital image analysis showed that growth of the microcolonies was not uniform: adjacently located colonies registered significant growth or no growth at all. Microcolonies in the biofilm had the ability to move across the attachment surface as a unit, irrespective of fluid flow direction, indicating that movement of microcolonies is an inherent property of the biofilm. Width of water channels decreased as EPS production increased, resulting in increased diffusion distances in the biofilm. Changing hydrodynamic conditions (Reynolds numbers of 0.07, 52, and 87) had no discernible influence on the characteristics of microcolonies (size, shape, or orientation with respect to flow) during the first 24 h of biofilm development. Inherent factors appear to have overriding influence, vis-a-vis environmental factors, on early stages of microcolony development under these laminar flow conditions.  相似文献   

7.
Pseudomonas sp. strain B13 and Pseudomonas putida OUS82 were genetically tagged with the green fluorescent protein and the Discosoma sp. red fluorescent protein, and the development and dynamics occurring in flow chamber-grown two-colored monospecies or mixed-species biofilms were investigated by the use of confocal scanning laser microscopy. Separate red or green fluorescent microcolonies were formed initially, suggesting that the initial small microcolonies were formed simply by growth of substratum attached cells and not by cell aggregation. Red fluorescent microcolonies containing a few green fluorescent cells and green fluorescent microcolonies containing a few red fluorescent cells were frequently observed in both monospecies and two-species biofilms, suggesting that the bacteria moved between the microcolonies. Rapid movement of P. putida OUS82 bacteria inside microcolonies was observed before a transition from compact microcolonies to loose irregularly shaped protruding structures occurred. Experiments involving a nonflagellated P. putida OUS82 mutant suggested that the movements between and inside microcolonies were flagellum driven. The results are discussed in relation to the prevailing hypothesis that biofilm bacteria are in a physiological state different from planktonic bacteria.  相似文献   

8.
Information on metal binding with fluorescent substances has been widely studied. By contrast, information on metal binding with non-fluorescent substances remains lacking despite the dominance of these substances in aquatic systems. In this study, the metal binding properties of both fluorescent and non-fluorescent substances were investigated by using metal titration combined with two-dimensional correlation spectroscopy (2D–COS) analysis. The organic matters in the eutrophic algae-rich lake, including natural organic matters (NOM) and algae-induced extracellular polymeric substances (EPS), both contained fluorescent and non-fluorescent substances. The peaks in the one-dimensional spectra strongly overlapped, while 2D–COS can decompose the overlapped peaks and thus enhanced the spectral resolution. Moreover, 2D FTIR COS demonstrated that the binding susceptibility of organic ligands in both NOM and algal EPS matrices followed the order: 3400>1380>1650 cm−1, indicative the significant contribution of non-fluorescent ligands in metal binding. The modified Stern-Volmer equation also revealed a substantial metal binding potential for the non-fluorescent substances (logKM: 3.57∼4.92). As for the effects of organic ligands on metal binding, EPS was characterized with higher binding ability than NOM for both fluorescent and non-fluorescent ligands. Algae-induced EPS and the non-fluorescent substances in eutrophic algae-rich lakes should not be overlooked because of their high metal binding potential.  相似文献   

9.
A plasmid encoding the green fluorescent protein (GFP) of Aequorea victoria was transformed into a biofilm-forming strain of Enterobacter agglomerans originally isolated from an industrial environment. The transformed strain, EntGFP, could then be identified in dual species biofilms by direct visualization, plate counts and quantitiative fluorescence measurements. A variety of cell constituents and products may be involved in the adhesion and accumulation process and exopolysaccharides (EPS) represent one of these factors. The involvement of EPS in the initial adhesion events and the role in dual species biofilm development was investigated. Cells of EntGFP and Klebsiella pneumoniae Gl interact forming biofilms more successfully in a mixture than in isolation. The co-resistance results in enhanced biofilm formation and increased resistance to disinfection. Microscopic examination showed that the two species were often closely juxtaposed in microcolonies, suggesting the interactions involve surface-associated macromolecules. Fluorescence was used to measure the adhesion of EntGFP cells to Kleb, pneumoniae Gl (Gl) EPS. The results showed EntGFP adhered better to Gl EPS that Ent EPS. Polysaccharde depolymerases isolated from a bacteriophage for Ent. agglomerans were used to degrade Ent EPS specifically. Following polysaccharase treatment, the adhaesion of EntGFP to Gl cells was reduced. This suggests both types of EPS mediate adhesion. The two types of EPS were dissolved in dimethylsulphoxide and when mixed, their viscosity increased, reaching a maximum after ~+40 min. This may partially explain the increased protection of dual species biofilms from disinfectants. The depolymerases were used to treat dual species biofilms and this resulted in the effective removal of both species from the surface. This may suggest Ent contributes more EPS to the biofilm matrix. The EPS play an important role in EntGFP and Gl dual species biofilm formation both as adhesins and as the EPS interact, changing their physical properties.  相似文献   

10.
The architecture of a Sphingomonas biofilm was studied during early phases of its formation, using strain L138, a gfp-tagged derivative of Sphingomonas sp. strain LB126, as a model organism and flow cells and confocal laser scanning microscopy as experimental tools. Spatial and temporal distribution of cells and exopolymer secretions (EPS) within the biofilm, development of microcolonies under flow conditions representing varied Reynolds numbers, and changes in diffusion length with reference to EPS production were studied by sequential sacrificing of biofilms grown in multichannel flow cells and by time-lapse confocal imaging. The area of biofilm in terms of microscopic images required to ensure representative sampling varied by an order of magnitude when area of cell coverage (2 × 105 μm2) or microcolony size (1 × 106 μm2) was the biofilm parameter under investigation. Hence, it is necessary to establish the inherent variability of any biofilm metric one is attempting to quantify. Sphingomonas sp. strain L138 biofilm architecture consisted of microcolonies and extensive water channels. Biomass and EPS distribution were maximal at 8 to 9 μm above the substratum, with a high void fraction near the substratum. Time-lapse confocal imaging and digital image analysis showed that growth of the microcolonies was not uniform: adjacently located colonies registered significant growth or no growth at all. Microcolonies in the biofilm had the ability to move across the attachment surface as a unit, irrespective of fluid flow direction, indicating that movement of microcolonies is an inherent property of the biofilm. Width of water channels decreased as EPS production increased, resulting in increased diffusion distances in the biofilm. Changing hydrodynamic conditions (Reynolds numbers of 0.07, 52, and 87) had no discernible influence on the characteristics of microcolonies (size, shape, or orientation with respect to flow) during the first 24 h of biofilm development. Inherent factors appear to have overriding influence, vis-à-vis environmental factors, on early stages of microcolony development under these laminar flow conditions.  相似文献   

11.
The formation of biofilms is an important survival strategy allowing rhizobia to live on soil particles and plant roots. Within the microcolonies of the biofilm developed by Rhizobium leguminosarum, rhizobial cells interact tightly through lateral and polar connections, forming organized and compact cell aggregates. These microcolonies are embedded in a biofilm matrix, whose main component is the acidic exopolysaccharide (EPS). Our work shows that the O-chain core region of the R. leguminosarum lipopolysaccharide (LPS) (which stretches out of the cell surface) strongly influences bacterial adhesive properties and cell-cell cohesion. Mutants defective in the O chain or O-chain core moiety developed premature microcolonies in which lateral bacterial contacts were greatly reduced. Furthermore, cell-cell interactions within the microcolonies of the LPS mutants were mediated mostly through their poles, resulting in a biofilm with an altered three-dimensional structure and increased thickness. In addition, on the root epidermis and on root hairs, O-antigen core-defective strains showed altered biofilm patterns with the typical microcolony compaction impaired. Taken together, these results indicate that the surface-exposed moiety of the LPS is crucial for proper cell-to-cell interactions and for the formation of robust biofilms on different surfaces.  相似文献   

12.
Type IV pili (TFP) and exopolysaccharides (EPS) are important components for social behaviors in Myxococcus xanthus, including gliding motility and fruiting body formation. Although specific interactions between TFP and EPS have been proposed, there have as yet been no direct observations of these interactions under native conditions. In this study, we found that a truncated PilA protein (PilACt) containing only the C-terminal domain (amino acids 32-208) is sufficient for EPS binding in vitro. Furthermore, an enhanced green fluorescent protein (eGFP) and PilACt fusion protein were constructed and used to label the native EPS in M. xanthus. Under confocal laser scanning microscope, the eGFP-PilACt-bound fruiting bodies, trail structures and biofilms exhibited similar patterns as the wheat germ agglutinin lectin-labeled EPS structures. This study showed that eGFP-PilACt fusion protein was able efficiently to label the EPS of M. xanthus, providing evidence for the first time of the direct interaction between the PilA protein and EPS under native conditions.  相似文献   

13.
The use of hexamethyldisilazane (HMDS) as a drying agent was investigated in the specimen preparation for scanning electron microscopy (SEM) imaging of bacterial surface colonization on sub-bituminous coal. The ability of microbes to biofragment, ferment and generate methane from coal has sparked interest in the initial attachment and colonization of coal surfaces. HMDS represents an attractive alternative to critical point drying (CPD) in the imaging of cells on coal, negating the need for expensive equipment. Coal is easily fragmented into sub-micron particles, which can be problematic in critical point drying procedures. In this study, both individual and aggregated cells appeared well shaped with minimal occurrence of flattened cells, signifying the suitability of HMDS in cell attachment studies on sub-bituminous coal. In the absence of glucose, microcolonies of short and long cells showed similar positive results using this method. EPS shrinkage found in microcolonies was inevitable, though this enabled observation of points of attachment between cells and with coal, which would be less effective if the EPS was intact. Overall the use of HMDS drying is preferred over the more commonly used CPD method as it is safer, cheaper and more practical.  相似文献   

14.
Virulent biofilms are responsible for a range of infections, including oral diseases. All biofilms harbor a microbial-derived extracellular-matrix. The exopolysaccharides (EPS) formed on tooth-pellicle and bacterial surfaces provide binding sites for microorganisms; eventually the accumulated EPS enmeshes microbial cells. The metabolic activity of the bacteria within this matrix leads to acidification of the milieu. We explored the mechanisms through which the Streptococcus mutans-produced EPS-matrix modulates the three-dimensional (3D) architecture and the population shifts during morphogenesis of biofilms on a saliva-coated-apatitic surface using a mixed-bacterial species system. Concomitantly, we examined whether the matrix influences the development of pH-microenvironments within intact-biofilms using a novel 3D in situ pH-mapping technique. Data reveal that the production of the EPS-matrix helps to create spatial heterogeneities by forming an intricate network of exopolysaccharide-enmeshed bacterial-islets (microcolonies) through localized cell-to-matrix interactions. This complex 3D architecture creates compartmentalized acidic and EPS-rich microenvironments throughout the biofilm, which triggers the dominance of pathogenic S. mutans within a mixed-species system. The establishment of a 3D-matrix and EPS-enmeshed microcolonies were largely mediated by the S. mutans gtfB/gtfC genes, expression of which was enhanced in the presence of Actinomyces naeslundii and Streptococcus oralis. Acidic pockets were found only in the interiors of bacterial-islets that are protected by EPS, which impedes rapid neutralization by buffer (pH 7.0). As a result, regions of low pH (<5.5) were detected at specific locations along the surface of attachment. Resistance to chlorhexidine was enhanced in cells within EPS-microcolony complexes compared to those outside such structures within the biofilm. Our results illustrate the critical interaction between matrix architecture and pH heterogeneity in the 3D environment. The formation of structured acidic-microenvironments in close proximity to the apatite-surface is an essential factor associated with virulence in cariogenic-biofilms. These observations may have relevance beyond the mouth, as matrix is inherent to all biofilms.  相似文献   

15.
Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important driver in material accumulation within the DWDS.  相似文献   

16.
The present study deals with the sorption of Cd(II) and Pb(II) by exopolymeric substances (EPS) extracted from activated sludges or pure bacterial strains. The percentage of sorbed metal increases with the concentration of the EPS–water solution. Pb(II) always presents a higher affinity than Cd(II) for EPS. For the EPS extracted from pure bacterial strains, only one global binding constant from a simple equilibrium sorption model, may be used to assess the effect of microbial products such as EPS on Cd(II) and Pb(II) speciation or mobility in the environment. However, for EPS extracted from activated sludges, the wide variation of the global binding constants determined for Cd(II) and Pb(II) do not permit such a simple approach. The differences in sorption to metals between the two types of EPS (bacterial, activated sludges) could be explained by the differences in EPS composition: organic macromolecules, as well as the nature of the mineral fraction.  相似文献   

17.
18.
Human immunodeficiency virus Rev-binding protein (HRB), also called human Rev-interacting protein (hRIP) or Rev/Rex activation domain binding (RAB) is a partner of the tyrosine kinase substrate EPS15, and it has been recovered in the AP-2 interactome. EPS15 and AP-2 are involved in endocytosis, but the function of HRB in this process is still unknown. Here we identified HRB as a partner of the vesicular SNARE tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP, also called VAMP7) in yeast two-hybrid screens and using biochemical assays. In HeLa cells, HRB localized both in the nucleus and in the cytoplasm. In the cytoplasm, HRB colocalized with clathrin-, AP-2-, EPS15-, and transferrin receptor-containing vesicles. We did not see significant colocalization between HRB and TI-VAMP in HeLa cells, and we saw partial colocalization with green fluorescent protein-TI-VAMP in stably expressing Madin-Darby canine kidney cells. Nevertheless using a pHLuorin-tagged TI-VAMP construct, we found that HRB and TI-VAMP colocalize close to the plasma membrane after 5 min of anti-green fluorescent protein antibody uptake. These results suggest that TI-VAMP and HRB may interact only during the early stages of endocytosis. Furthermore uptake experiments followed by fluorescence-activated cell sorting showed that the endocytosis of fluorescent transferrin and pHLuorin-TI-VAMP is strongly reduced in HRB knockdown cells. Altogether these results suggest that HRB is involved in clathrin-dependent endocytosis and recruits TI-VAMP in this process.  相似文献   

19.
Karr DB  Liang RT  Reuhs BL  Emerich DW 《Planta》2000,211(2):218-226
 The exact mechanism(s) of infection and symbiotic development between rhizobia and legumes is not yet known, but changes in rhizobial exopolysaccharides (EPSs) affect both infection and nodule development of the legume host. Early events in the symbiotic process between Bradyrhizobium japonicum and soybean (Glycinemax [L.] Merr.) were studied using two mutants, defective in soybean lectin (SBL) binding, which had been generated from B. japonicum 2143 (USDA 3I-1b-143 derivative) by Tn5 mutagenesis. In addition to their SBL-binding deficiency, these mutants produced less EPS than the parental strain. The composition of EPS varied with the genotype and with the carbon source used for growth. When grown on arabinose, gluconate, or mannitol, the wild-type parental strain, B. japonicum 2143, produced EPS typical of DNA homology group I Bradyrhizobium, designated EPS I. When grown on malate, strain 2143 produced a different EPS composed only of galactose and its acetylated derivative and designated EPS II. Mutant 1252 produced EPS II when grown on arabinose or malate, but when grown on gluconate or mannitol, mutant 1252 produced a different EPS comprised of glucose, galactose, xylose and glucuronic acid (1:5:1:1) and designated EPS III. Mutant 1251, grown on any of these carbon sources, produced EPS III. The EPS of strain 2143 and mutant 1252 contained SBL-binding polysaccharide. The amount of the SBL-binding polysaccharide produced by mutant 1252 varied with the carbon source used for growth. The capsular polysaccharide (CPS) produced by strain 2143 during growth on arabinose, gluconate or mannitol, showed a high level of SBL binding, whereas CPS produced during growth of strain 2143 on malate showed a low level of SBL binding. However, the change in EPS composition and SBL binding of strain 2143 grown on malate did not affect the wild-type nodulation and nitrogen fixation phenotype of 2143. Mutant 1251, which produced EPS III, nodulated 2 d later than parental strain 2143, but formed effective, nitrogen-fixing tap root nodules. Mutant 1252, which produced either EPS II or III, however nodulated 5–6 d later and formed few and ineffective tap root nodules. Restoration of EPS I production in mutant 1252 correlated with restored SBL binding, but not with wild-type nodulation and nitrogen fixation. Received: 6 October 1999 / Accepted: 18 November 1999  相似文献   

20.
By means of differential centrifugation, microsomal fractions enriched in the plasma membrane were isolated from suspension cell cultures of two cultivars of potato (Solanum tuberosum L.) contrasting in their resistance to the causal agent of ring rot (Clavibacter michiganensis subsp. sepedonicus) (Cms). Electrophoresis of the fractions showed that they comprised a wide range of proteins from 15 to 75 kD. The protein bands were more brightly expressed in the microsomal membranes of the cells of susceptible cultivar. The proteins of 70 and 42 kD were present only in the cellular membranes of the resistant cultivar. In order to visualize the binding of exopolysaccharides (EPS) produced by Cms to the receptors of membrane fractions, a conjugate of EPS with a fluorescent marker was used. The membrane fraction isolated from the cells of the susceptible cultivar was found to be richer in receptors for EPS Cms than the membrane fraction from the resistant cultivar. It is supposed that numerous receptors for EPS present on the plasma membrane may partially account for potato susceptibility to Cms. These receptors may facilitate the binding of bacteria to the plant cells, the formation of colonies, and the development of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号