首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Organization and evolution of alpha satellite DNA from human chromosome 11   总被引:9,自引:0,他引:9  
The human alpha satellite repetitive DNA family is organized as distinct chromosomal subsets located at the centromeric regions of each human chromosome. Here, we describe a subset of the alpha satellite which is localized to human chromosome 11. The principal unit of repetition of this alpha satellite subset is an 850 bp XbaI fragment composed of five tandem diverged alphoid monomers, each 171 bp in length. The pentamer repeat units are themselves tandemly reiterated, present in 500 copies per chromosome 11. In filter hybridization experiments, the Alpha 11 probes are specific for the centromeric alpha satellite sequences of human chromosome 11. The complete nucleotide sequences of two independent copies of the XbaI pentamer reveal a pentameric configuration shared with the alphoid repeats of chromosomes 17 and X, consistent with the existence of an ancestral pentameric repeat common to the centromeric arrays of at least these three human chromosomes.  相似文献   

3.
The absence of centromeric bands in the karyotype of Felis catus is confirmed. It is also confirmed that no satellite band is visible in CsCl density gradients. However, a satellite is observed both by recentrifuging the fraction of the DNA that bands at high density in CsCl and by using netropsin to enhance the resolution of a CsCl gradient containing total F. catus DNA. The satellite, about 0.5% of total DNA, was isolated by repeated centrifugation in CsCl alone and in CsCl with netropsin. Netropsin was removed and a pure satellite DNA obtained. The reassociation kinetics (C0t1/2 less than 10(-3) M . s) show that the satellite is of the simple sequence type and hence a candidate for centromeric heterochromatin. Its cytological localisation awaits in situ hybridisation experiments.  相似文献   

4.
Biotinylated rat satellite DNA I probe p93-50 was used to visualize the chromatin of surface-spread rat pachytene chromosomes. Fluorescein isothiocyanate (FITC)-conjugated avidin produces a beaded fluorescence pattern along the chromatin loops that insert in the centromeric region of the synaptonemal complex (SC), the paired cores of homologous chromosomes. The number of fluorescent beads ranges from zero for centromeres without satellite DNA I homologous to probe p 93-50, to several hundred for satellite-rich centromeric regions. For the chromosomes that can be identified, the relative amount of satellite DNA is chromosome specific. No satellite DNA I was detected at the non-centromeric ends of the chromosomes or interstitially. DNase-digested nuclei or isolated SCs did not have detectable amounts of satellite DNA in the centromeric regions of the chromosomes or in the residual SCs. The fate of the satellite DNA was followed during spermiogenesis. In the round spermatid the centromeric regions, which appear to be attached to the nuclear envelope, are still distinct and have converging loops of fluorescent chromatin. At later stages there are fewer but still bright fluorescent patches. Satellite DNA I is still detectable in the mature sperm head. These results demonstrate the organization of satellite DNA I in the chromatin loops at the centromeric regions, and they forecast the analysis of chromosome organization in unprecedented detail with a variety of probes in surface spreads of meiotic prophase chromosomes.  相似文献   

5.
A (G + C)-rich satellite DNA component (p = 1.716 g/ml) has been fractionated from the total DNA of the Iranian subspecies of the Asiatic wild ass, Equus hemionus onager, by successive dactinomycin-CsCl and netropsin sulfate-CsCl isopycnic gradients. Complementary 3H-RNA (cRNA) transcribed from the satellite DNA hybridized predominantly to the centromeric and telomeric constitutive heterochromatic regions of onager chromosomes. These studies have suggested that satellite DNA's with similar sequences are present in the centromeric, as well as telomeric, heterochromatic regions of some onager chromosomes. The centromeric region of the fusion metacentric t(23;24) of the onager is deficient in sequences homologous to the onager 1.716 g/ml satellite DNA, indicating a loss of satellite DNA during fusion or an amplification of the satellite DNA in the centromeric regions of the acrocentric chromosomes 23 and 24 subsequent to fission. Sequences complementary to onager 1.716 g/ml satellite DNA show extensive hybridization to the constitutive heterochromatin of the feral donkey (E. asinus) karyotype, consistent with a view of conservation and amplification of similar or identical sequences in the two species.  相似文献   

6.
The species-specific profile and centromeric heterochromatin localization of satellite DNA in mammalian genomes imply that satellite DNA may play an important role in mammalian karyotype evolution and speciation. A satellite III DNA family, CCsatIII was thought to be specific to roe deer (Capreolus capreolus). In this study, however, this satellite DNA family was found also to exist in Chinese water deer (Hydropotes inermis) by PCR-Southern screening. A satellite III DNA element of this species was then generated from PCR-cloning by amplifying this satellite element using primer sequences from the roe deer satellite III clone (CCsatIII). The newly generated satellite III DNA along with previously obtained satellite I and II DNA clones were used as probes for FISH studies to investigate the genomic distribution and organization of these three satellite DNA families in centromeric heterochromatin regions of Chinese water deer chromosomes. Satellite I and II DNA were observed in the pericentric/centric regions of all chromosomes, whereas satellite III was distributed on 38 out of 70 chromosomes. The distribution and orientation of satellite DNAs I, II and III in the centromeric heterochromatin regions of the genome were further classified into four different types. The existence of a Capreolus-like satellite III in Chinese water deer implies that satellite III is not specific to the genus Capreolus (Buntjer et al., 1998) and supports the molecular phylogeny classification of Randi et al. (1998) which suggests that Chinese water deer and roe deer are closely related.  相似文献   

7.
8.
9.
A highly abundant satellite DNA comprising 17% of the Tribolium castaneum (Insecta, Coleoptera) genome was cloned and sequenced. The satellite monomer is 360 bp long, has a high A+T content of 73%, and lacks significant internal substructures. The sequence variability is 3.6%, essentially due to random distribution of single-point mutations. The satellite is evenly distributed in the regions of centromeric heterochromatin of all 20 chromosomes, as shown by fluorescent in situ hybridization. Comparison of T. castaneum satellite with those from three different but congeneric species reveals the highest sequence similarity of 47.1% with the satellite from the sibling species Tribolium freemani. The phylogenetic relationships among Tribolium species deduced from satellite sequence agree with those based on karyological, chemotaxonomic, and hybridization data. This indicates a parallel in the divergence of satellites and some genetic and cytogenetic characters. Despite low mutual sequence similarity, which makes them species-specific, Tribolium satellites have a common structural characteristic: a block of about 95% A+T content, 20 to 42 bp long, flanked at one side by an inverted repeat which can potentially form a thermodynamically stable dyad structure. Since similar structural features are found in centromeric DNA of Saccharomyces cerevisiae and Chironomus pallidivittatus, their possible importance in centromere function may be inferred.   相似文献   

10.
A complete understanding of chromosomal disjunction during mitosis and meiosis in complex genomes such as the human genome awaits detailed characterization of both the molecular structure and genetic behavior of the centromeric regions of chromosomes. Such analyses in turn require knowledge of the organization and nature of DNA sequences associated with centromeres. The most prominent class of centromeric DNA sequences in the human genome is the alpha satellite family of tandemly repeated DNA, which is organized as distinct chromosomal subsets. Each subset is characterized by a particular multimeric higher-order repeat unit consisting of tandemly reiterated, diverged alpha satellite monomers of approximately 171 base pairs. The higher-order repeat units are themselves tandemly reiterated and represent the most recently amplified or fixed alphoid sequences. We present evidence that there are at least two independent domains of alpha satellite DNA on chromosome 7, each characterized by their own distinct higher-order repeat structure. We determined the complete nucleotide sequences of a 6-monomer higher-order repeat unit, which is present in approximately 500 copies per chromosome 7, as well as those of a less-abundant (approximately 10 copies) 16-monomer higher-order repeat unit. Sequence analysis indicated that these repeats are evolutionarily distinct. Genomic hybridization experiments established that each is maintained in relatively homogeneous tandem arrays with no detectable interspersion. We propose mechanisms by which multiple unrelated higher-order repeat domains may be formed and maintained within a single chromosomal subset.  相似文献   

11.
Several repetitive DNA fragments were generated from PCR amplifications of caribou DNA using primer sequences derived from the white-tailed deer satellite II DNA clone OvDII. Two fragments, designated Rt-0.5 and Rt-0.7, were sequenced and found to have 96% sequence similarity. These caribou clones also had 85% sequence similarity with OvDII. Multiple-colored fluorescence in situ hybridization (FISH) studies with satellite I and satellite II DNA probes to caribou metaphase chromosomes and extended chromatin fibers provided direct visualization of the genomic organization of these two satellite DNA families, with the following findings: (1) Cervid satellite I DNA is confined to the centromeric regions of the acrocentric autosomes, whereas satellite II DNA is found at the centromeric regions of all chromosomes except for the Y. (2) For most acrocentric chromosomes, the satellite I signal appeared to be medially located at the primary constriction, in contrast to that of satellite II, which appeared to be oriented toward the lateral sides as two separate fluorescent dots. (3) The satellite II clone Rt-0.7 appeared to be enriched in the centromeric region of the caribou X chromosome, a pair of biarmed autosomes, and a number of other acrocentric autosomes. (4) Fiber-FISH demonstrated that the satellite I and satellite II arrays were juxtaposed. On highly extended chromatin fibers, the total length of the hybridization signals for the two satellite DNA arrays often reached 300-400 microm. The length of a given satellite II array usually reached 200 microm, corresponding to 2 x 10(3) kb of DNA in a given centromere.  相似文献   

12.
A taxonomic division of the family Bovidae (Artiodactyla) is difficult and the evolutionary relationships among most bovid subfamilies remain uncertain. In this study, we isolated the cattle satellite I clone BTREP15 (1.715 satellite DNA family) and autosomal centromeric DNAs of members of ten bovid tribes. We wished to determine whether the analysis of fluorescence in situ hybridization patterns of the cattle satellite I clone (BTREP15) and tribe-specific centromeric repeats isolated by laser microdissection would help to reveal some of the ambiguities occurring in the systematic classification of the family Bovidae. The FISH study of the presence and distribution of the cattle satellite I clone BTREP15 (1.715 satellite DNA family) within members of ten bovid tribes was not informative. FISH analysis of autosomal centromeric DNA probes in several species within one tribe revealed similar hybridization patterns in autosomes confirming tribal homogeneity of these probes. Sex chromosomes showed considerable variation in sequence composition and arrangement not only between tribes but also between species of one tribe. According to our findings it seems that Oreotragus oreotragus developed its own specific satellite DNA which does not hybridize to any other bovid species analysed. Our results suggest O. oreotragus as well as Aepyceros melampus may be unique species not particularly closely related to any of the recognized bovid tribes. This study indicates the isolation of tribe-specific centromeric DNAs by laser microdissection and cloning the sequence representing the main motif of these repetitive DNAs could offer the perspectives for comparative phylogenetic studies.  相似文献   

13.
Pamela Dunsmuir 《Chromosoma》1976,56(2):111-125
Two distinct satellite DNAs, amounting to 25% of the total DNA, were isolated from the nuclei of the red-necked wallaby, Macropus rufogriseus. The physical properties of native, single-stranded and reassociated molecules were studied in buoyant-density gradient centrifugation. The homogeneity of each satellite fraction was examined using melting characteristics of native and reassociated DNA, and renaturation kinetics. These data suggest that sequence heterogeneity exists in both fractions. Each satellite fraction was found by in situ hybridization to be localized in heterochromatin of interphase nuclei and in the centromeric regions of metaphase chromosomes. The chromosomal distributions of the two satellite DNAs differentiate the sex chromosomes, which have sequences of only one satellite, from the autosomes which have sequences of both satellites in the centromeric heterochromatin. Giemsa C-banding techniques also showed a differentiation of the centromeric regions of sex chromosomes from those of the autosomes.  相似文献   

14.
Knowledge about the composition and structure of centromeres is critical for understanding how centromeres perform their functional roles. Here, we report the sequences of one centromere-associated bacterial artificial chromosome clone from a Coix lacryma-jobi library. Two Ty3/gypsy-class retrotransposons, centromeric retrotransposon of C. lacryma-jobi (CRC) and peri-centromeric retrotransposon of C. lacryma-jobi, and a (peri)centromere-specific tandem repeat with a unit length of 153 bp were identified. The CRC is highly homologous to centromere-specific retrotransposons reported in grass species. An 80-bp DNA region in the 153-bp satellite repeat was found to be conserved to centromeric satellite repeats from maize, rice, and pearl millet. Fluorescence in situ hybridization showed that the three repetitive sequences were located in (peri-)centromeric regions of both C. lacryma-jobi and Coix aquatica. However, the 153-bp satellite repeat was only detected on 20 out of the 30 chromosomes in C. aquatica. Immunostaining with an antibody against rice CENH3 indicates that the 153-bp satellite repeat and CRC might be both the major components for functional centromeres, but not all the 153-bp satellite repeats or CRC sequences are associated with CENH3. The evolution of centromeric repeats of C. lacryma-jobi during the polyploidization was discussed.  相似文献   

15.
Despite the conserved roles and conserved protein machineries of centromeres, their nucleotide sequences can be highly diverse even among related species. The diversity reflects rapid evolution, but the underlying mechanism is largely unknown. One approach to monitor rapid evolution is examination of intra-specific variation. Here we report variant centromeric satellites of Arabidopsis thaliana found through survey of 103 natural accessions (ecotypes). Among them, a cluster of variant centromeric satellites was detected in one ecotype, Cape Verde Islands (Cvi). Recombinant inbred mapping revealed that the variant satellites are distributed in centromeric region of the chromosome 5 (CEN5) of this ecotype. This apparently recent variant accumulation is associated with large deletion of a pericentromeric region and the expansion of satellite region. The variant satellite was bound to HTR12 (centromeric variant histone H3), although expansion of the satellite was not associated with comparable increase in the HTR12 binding. The results suggest that variant satellites with centromere function can rapidly accumulate in one centromere, supporting the model that the satellite repeats in the array are homogenized by occasional unequal crossing-over, which has a potential to generate an expansion of local sequence variants within a centromere cluster. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

16.
The centromeric regions of human chromosomes contain long tracts of tandemly repeated DNA, of which the most extensively characterized is alpha satellite. In a screen for additional centromeric DNA sequences, four phage clones were obtained which contain alpha satellite as well as other sequences not usually found associated with tandemly repeated alpha satellite DNA, including L1 repetitive elements, an Alu element, and a novel AT-rich repeated sequence. The alpha satellite DNA contained within these clones does not demonstrate the higher-order repeat structure typical of tandemly repeated alpha satellite. Two of the clones contain inversions; instead of the usual head-to-tail arrangement of alpha satellite monomers, the direction of the monomers changes partway through each clone. The presence of both inversions was confirmed in human genomic DNA by polymerase chain reaction amplification of the inverted regions. One phage clone contains a junction between alpha satellite DNA and a novel low-copy repeated sequence. The junction between the two types of DNA is abrupt and the junction sequence is characterized by the presence of runs of A's and T's, yielding an overall base composition of 65% AT with local areas > 80% AT. The AT-rich sequence is found in multiple copies on chromosome 7 and homologous sequences are found in (peri)centromeric locations on other human chromosomes, including chromosomes 1, 2, and 16. As such, the AT-rich sequence adjacent to alpha satellite DNA provides a tool for the further study of the DNA from this region of the chromosome. The phage clones examined are located within the same 3.3-Mb SstII restriction fragment on chromosome 7 as the two previously described alpha satellite arrays, D7Z1 and D7Z2. These new clones demonstrate that centromeric repetitive DNA, at least on chromosome 7, may be more heterogeneous in composition and organization than had previously been thought.  相似文献   

17.
Two novel repetitive sequence families were isolated from Turritis glabra (2n = 2x = 12). These two repeat families are similar to those of centromeric repeats in Arabidopsis thaliana, are co-localized on one chromosome pair, and differ by about 20% from each other. Phylogenetic analysis revealed that the two repeat families of T. glabra are more similar to each other than to the centromeric repeat families of other Arabidopsis and related species. The relationships of satellite sequences reflected the species phylogeny, indicating that the replacement of satellite sequences has occurred in each species lineage independently, and shared variants could not have existed for a long time between species.  相似文献   

18.
Canapa A  Barucca M  Cerioni PN  Olmo E 《Gene》2000,247(1-2):175-180
The DNA of the Antarctic scallop Adamussium colbecki was found to contain a highly repeated sequence identifiable upon restriction with endonuclease BglII. The monomeric unit - denominated pACS (about 170bp long) - was cloned. Southern blot hybridization yielded a ladder-like banding pattern, indicating that the repeated elements are tandemly arranged in the genome and therefore represent a sequence of satellite DNA.Sequence analysis of five different clones revealed the presence of various subfamilies, some of which showed a high degree of divergence. In each clone, regions homologous to the mammalian CENP-B box were observed. A region homologous to the CDEIII centromeric sequence of yeast was also found in one of the clones. These observations suggest a relationship of the pACS family to the centromeric area in A. colbecki.  相似文献   

19.
Li YC  Lee C  Chang WS  Li SY  Lin CC 《Chromosoma》2002,111(3):176-183
In an attempt to amplify cervid satellite II DNA from the genomes of Indian muntjac and Chinese muntjac, a pair of primers derived from the white tailed deer satellite II DNA clone (OvDII) yielded a prominent approximately 1 kb polymerase chain reaction (PCR) product (in addition to the expected 0.7 kb satellite II DNA fragments) in both species. The approximately 1 kb products were cloned, sequenced, and analyzed by Southern blotting and fluorescence in situ hybridization (FISH). This revealed that the approximately 1 kb cloned sequences indeed represent a previously unknown cervid satellite DNA family, which is now designated as cervid satellite IV DNA. Approximately 1 kb PCR clones were also obtained from the genomes of the black tailed deer and Canadian woodland caribou with similar primer pairs. Extremely high sequence conservation (over 90% homology) was observed among the clones generated from all four deer species and PCR-Southern hybridization experiments further verified the co-amplification of two kinds of satellite DNA sequences with the same pair of primers. This satellite DNA was found to co-localize with centromeric proteins at the kinetochore by a simultaneous FISH and immunofluorescence study. Due to its high sequence conservation and close association with kinetochores, the newly identified satellite DNA may have a functional centromeric role.  相似文献   

20.
DNA from Plethodon cinereus cinereus separates into two fractions on centrifugation to equilibrium in neutral CsCl. The smaller of these fractions has been described as a high-density satellite. It represents about 2% of nuclear DNA from this species, and it has a density of 1.728 g/cm3. It is cytologically localized near the centromeres of all 14 chromosomes of the haploid set. In P. c. cinereus the heavy satellite DNA constitutes about 1/4 of the DNA in centromeric heterochromatin. The nature of the rest of the DNA in centromeric heterochromatin is unknown. The number of heavy satellite sequences clustered around the centromeres in a chromosome from P. c. cinereus is roughly proportional to the size of the chromosome, as determined by in situ hybridization with satellite-complementary RNA, and autoradiography. Likewise the amount of contromeric heterochromatin, as identified by its differential stainability with Giemsa, shows a clear relationship to chromosome size. — The heavy satellite sequences identified in DNA from P. c. cinereus are also present in smaller amounts in other closely related forms of Plethodon. Plethodon cinereus polycentratus and P. richmondi have approximately half as many of these sequences per haploid genome as P. c. cinereus. P. hoffmani and P. nettingi shenandoah have about 1/3 as many of these sequences as P. c. cinereus. P. c. cinereus, P. c. polycentratus, and P. richmondii all have detectable heavy satellites with densities of 1.728 g/cm3. Among these forms, satellite size as determined by optical density measurements, and number of satellite sequences as determined from hybridization studies, vary co-ordinately. P. c. cinereus heavy satellite sequences are not detectable in P. nettingi, P. n. hubrichti, or P. dorsalis. The latter species has a heavy satellite with a density of 1.718 g/cm3, representing about 8% of the genomic DNA, and two light satellites whose properties have not been investigated. The heavy satellite of P. dorsalis is cytologically localized in the centromeric heterochromatin of this species. — These observations are discussed in relation to the function and evolution of highly repetitive DNA sequences in the centromeric heterochromatin of salamanders and other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号