共查询到20条相似文献,搜索用时 0 毫秒
1.
High resolution footprinting of a type I methyltransferase reveals a large structural distortion within the DNA recognition site.
下载免费PDF全文

The type I DNA methyltransferase M.EcoR124I is a multi-subunit enzyme that binds to the sequence GAAN6RTCG, transferring a methyl group from S-adenosyl methionine to a specific adenine on each DNA strand. We have investigated the protein-DNA interactions in the complex by DNase I and hydroxyl radical footprinting. The DNase I footprint is unusually large: the protein protects the DNA on both strands for at least two complete turns of the helix, indicating that the enzyme completely encloses the DNA in the complex. The higher resolution hydroxyl radical probe shows a smaller, but still extensive, 18 bp footprint encompassing the recognition site. Within this region, however, there is a remarkably hyper-reactive site on each strand. The two sites of enhanced cleavage are co-incident with the two adenines that are the target bases for methylation, showing that the DNA is both accessible and highly distorted at these sites. The hydroxyl radical footprint is unaffected by the presence of the cofactor S-adenosyl methionine, showing that the distorted DNA structure induced by M.EcoR124I is formed during the initial DNA binding reaction and not as a transient intermediate in the reaction pathway. 相似文献
2.
DNA-binding properties of the major structural protein of simian virus 40. 总被引:3,自引:7,他引:3
下载免费PDF全文

T Soussi 《Journal of virology》1986,59(3):740-742
We investigated whether the VP1 protein of simian virus 40 binds to DNA. In vitro DNA-binding experiments clearly indicate that VP1 bound strongly to double-stranded and single-stranded DNA, with a higher affinity for the latter; additional experiments show that VP1 did not bind to a specific sequence of simian virus 40 DNA. 相似文献
3.
Niacin supplementation induces type II to type I muscle fiber transition in skeletal muscle of sheep
Muckta?Khan Aline?Couturier Johanna?F?Kubens Erika?Most Frank-Christoph?Mooren Karsten?Krüger Robert?Ringseis Klaus?Eder
Background
It was recently shown that niacin supplementation counteracts the obesity-induced muscle fiber transition from oxidative type I to glycolytic type II and increases the number of type I fibers in skeletal muscle of obese Zucker rats. These effects were likely mediated by the induction of key regulators of fiber transition, PPARδ (encoded by PPARD), PGC-1α (encoded by PPARGC1A) and PGC-1β (encoded by PPARGC1B), leading to type II to type I fiber transition and upregulation of genes involved in oxidative metabolism. The aim of the present study was to investigate whether niacin administration also influences fiber distribution and the metabolic phenotype of different muscles [M. longissimus dorsi (LD), M. semimembranosus (SM), M. semitendinosus (ST)] in sheep as a model for ruminants. For this purpose, 16 male, 11 wk old Rhoen sheep were randomly allocated to two groups of 8 sheep each administered either no (control group) or 1 g niacin per day (niacin group) for 4 wk.Results
After 4 wk, the percentage number of type I fibers in LD, SM and ST muscles was greater in the niacin group, whereas the percentage number of type II fibers was less in niacin group than in the control group (P?<?0.05). The mRNA levels of PPARGC1A, PPARGC1B, and PPARD and the relative mRNA levels of genes involved in mitochondrial fatty acid uptake (CPT1B, SLC25A20), tricarboxylic acid cycle (SDHA), mitochondrial respiratory chain (COX5A, COX6A1), and angiogenesis (VEGFA) in LD, SM and ST muscles were greater (P?<?0.05) or tended to be greater (P?<?0.15) in the niacin group than in the control group.Conclusions
The study shows that niacin supplementation induces muscle fiber transition from type II to type I, and thereby an oxidative metabolic phenotype of skeletal muscle in sheep as a model for ruminants. The enhanced capacity of skeletal muscle to utilize fatty acids in ruminants might be particularly useful during metabolic states in which fatty acids are excessively mobilized from adipose tissue, such as during the early lactating period in high producing cows.4.
N-ethylmaleimide inhibition of the DNA-binding activity of the herpes simplex virus type 1 major DNA-binding protein.
下载免费PDF全文

W T Ruyechan 《Journal of virology》1988,62(3):810-817
The major herpes simplex virus DNA-binding protein, designated ICP8, binds tightly to single-stranded DNA and is required for replication of viral DNA. The sensitivity of the DNA-binding activity of ICP8 to the action of the sulfhydryl reagent N-ethylmaleimide has been examined by using nitrocellulose filter-binding and agarose gel electrophoresis assays. Incubation of ICP8 with N-ethylmaleimide results in a rapid loss of DNA-binding activity. Preincubation of ICP8 with single-stranded DNA markedly inhibits this loss of binding activity. These results imply that a free sulfhydryl group is involved in the interaction of ICP8 with single-stranded DNA and that this sulfhydryl group becomes less accessible to the environment upon binding. Agarose gel electrophoretic analysis of the binding interaction in the presence and absence of N-ethylmaleimide indicates that the cooperative binding exhibited by ICP8 is lost upon treatment with this reagent but that some residual noncooperative binding may remain. This last result was confirmed by equilibrium dialysis experiments with the 32P-labeled oligonucleotide dT10 and native and N-ethylmaleimide-treated ICP8. 相似文献
5.
The type I DNA methyltransferase M.EcoR124I consists of two methylation subunits (HsdM) and one DNA recognition subunit (HsdS). When expressed independently, HsdS is insoluble, but this subunit can be obtained in soluble form as a GST fusion protein. We show that the HsdS subunit, even as a fusion protein, is unable to form a discrete complex with its DNA recognition sequence. When HsdM is added to the HsdS fusion protein, discrete complexes are formed but these are unable to methylate DNA. The two complexes formed correspond to species with one or two copies of the HsdM subunit, indicating that blocking the N-terminus of HsdS affects one of the HsdM binding sites. However, removal of the GST moiety from such complexes results in tight and specific DNA binding and restores full methylation activity. The results clearly demonstrate the importance of the HsdM subunit for DNA binding, in addition to its catalytic role in the methyltransferase reaction. 相似文献
6.
Characterization of a major DNA-binding domain in the herpes simplex virus type 1 DNA-binding protein (ICP8). 总被引:5,自引:10,他引:5
下载免费PDF全文

We have studied the major DNA-binding protein (ICP8) from herpes simplex virus type 1 to identify its DNA-binding site. Since we obtained our protein from a cell line carrying multiple chromosomally located copies of the ICP8 gene, we first analyzed this protein to assess its similarity to the corresponding viral protein. Our protein resembled the viral protein by molecular weight, response to antibody, preference for binding single-stranded DNA, and ability to lower the melting temperature of poly(dA-dT). To define the DNA-binding domain, we subjected the protein to limited trypsin digestion and separated the peptide products on a sodium dodecyl sulfate-polyacrylamide gel. These fragments were then transferred to a nitrocellulose membrane, renatured in situ, and tested for their ability to bind DNA. From this assay, we identified four fragments which both bound DNA and exhibited the expected binding preference for single-stranded DNA. The sequence of the smallest of these fragments was determined and corresponds to a polypeptide spanning residues 300 to 849 in the intact protein. This peptide contains several regions which may be important for DNA binding based on sequence similarities in single-stranded DNA-binding proteins from other herpesviruses and, in one case, on a conserved sequence found in more distant procaryotic and eucaryotic proteins. 相似文献
7.
Reissner KJ Paranandi MV Luc TM Doyle HA Mamula MJ Lowenson JD Aswad DW 《The Journal of biological chemistry》2006,281(13):8389-8398
The accumulation of potentially deleterious L-isoaspartyl linkages in proteins is prevented by the action of protein L-isoaspartyl O-methyltransferase, a widely distributed enzyme that is particularly active in mammalian brain. Methyltransferase-deficient (knock-out) mice exhibit greatly increased levels of isoaspartate and typically succumb to fatal epileptic seizures at 4-10 weeks of age. The link between isoaspartate accumulation and the neurological abnormalities of these mice is poorly understood. Here, we demonstrate that synapsin I from knock-out mice contains 0.9 +/- 0.3 mol of isoaspartate/mol of synapsin, whereas the levels in wild-type and heterozygous mice are undetectable. Transgenic mice that selectively express methyltransferase only in neurons show reduced levels of synapsin damage, and the degree of reduction correlates with the phenotype of these mice. Isoaspartate levels in synapsin from the knock-out mice are five to seven times greater than those in the average protein from brain cytosol or from a synaptic vesicle-enriched fraction. The isoaspartyl sites in synapsin from knock-out mice are efficiently repaired in vitro by incubation with purified methyltransferase and S-adenosyl-L-methionine. These findings demonstrate that synapsin I is a major substrate for the isoaspartyl methyltransferase in neurons and suggest that isoaspartate-related alterations in the function of presynaptic proteins may contribute to the neurological abnormalities of mice deficient in this enzyme. 相似文献
8.
S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase.
下载免费PDF全文

F Bourgis S Roje M L Nuccio D B Fisher M C Tarczynski C Li C Herschbach H Rennenberg M J Pimenta T L Shen D A Gage A D Hanson 《The Plant cell》1999,11(8):1485-1498
All flowering plants produce S-methylmethionine (SMM) from Met and have a separate mechanism to convert SMM back to Met. The functions of SMM and the reasons for its interconversion with Met are not known. In this study, by using the aphid stylet collection method together with mass spectral and radiolabeling analyses, we established that l-SMM is a major constituent of the phloem sap moving to wheat ears. The SMM level in the phloem ( approximately 2% of free amino acids) was 1.5-fold that of glutathione, indicating that SMM could contribute approximately half the sulfur needed for grain protein synthesis. Similarly, l-SMM was a prominently labeled product in phloem exudates obtained by EDTA treatment of detached leaves from plants of the Poaceae, Fabaceae, Asteraceae, Brassicaceae, and Cucurbitaceae that were given l-(35)S-Met. cDNA clones for the enzyme that catalyzes SMM synthesis (S-adenosylMet:Met S-methyltransferase; EC 2.1.1.12) were isolated from Wollastonia biflora, maize, and Arabidopsis. The deduced amino acid sequences revealed the expected methyltransferase domain ( approximately 300 residues at the N terminus), plus an 800-residue C-terminal region sharing significant similarity with aminotransferases and other pyridoxal 5'-phosphate-dependent enzymes. These results indicate that SMM has a previously unrecognized but often major role in sulfur transport in flowering plants and that evolution of SMM synthesis in this group involved a gene fusion event. The resulting bipartite enzyme is unlike any other known methyltransferase. 相似文献
9.
The type IC DNA methyltransferase M.EcoR124I is a trimeric enzyme of 162 kDa consisting of two modification subunits, HsdM, and a single specificity subunit, HsdS. Studies have been largely restricted to the HsdM subunit or to the intact methyltransferase since the HsdS subunit is insoluble when over-expressed independently of HsdM. Two soluble fragments of the HsdS subunit have been cloned, expressed and purified; a 25 kDa N-terminal fragment (S3) comprising the N-terminal target recognition domain together with the central conserved domain, and a 8.6 kDa fragment (S11) comprising the central conserved domain alone. Analytical ultracentrifugation shows that the S3 subunit exists principally as a dimer of 50 kDa. Gel retardation and competition assays show that both S3 and S11 are able to bind to HsdM, each with a subunit stoichiometry of 1:1. The tetrameric complex (S3/HsdM)(2) is required for effective DNA binding. Cooperative binding is observed and at low enzyme concentration, the multisubunit complex dissociates, leading to a loss of DNA binding activity. The (S3/HsdM)(2) complex is able to bind to both the EcoR124I DNA recognition sequence GAAN(6)RTCG and a symmetrical DNA sequence GAAN(7)TTC, but has a 30-fold higher affinity binding for the latter DNA sequence. Exonuclease III footprinting of the (S3/HsdM)(2) -DNA complex indicates that 29 nucleotides are protected on each strand, corresponding to a region 8 bp on both the 3' and 5' sides of the recognition sequence bound by the (S3/HsdM)(2) complex. 相似文献
10.
Human T-cell leukemia virus type I trans activator induces class I major histocompatibility complex antigen expression in glial cells 总被引:5,自引:4,他引:5
下载免费PDF全文

Transfection of the tax gene encoding the trans activator of human T-cell leukemia virus type I into glial line cells induced class I major histocompatibility complex (MHC) antigens on these cells. This occurred through the interaction of tax protein with the gene encoding class I MHC antigens but not through any soluble factors, such as interferons, or factors from glial cells. Since neural cells do not usually express MHC antigens, this novel mechanism may be an intermediate event between viral infection and subsequent immune-mediated pathology in the central nervous system. 相似文献
11.
The crystal structure of netropsin, an oligopeptide which binds to DNA, has been determined. The molecule is bowed with the amide groups on the concave side, and the carbonyl and methyl groups on the convex side. The amide groups participate in extensive hydrogen bonding with water molecules; the charged amino end groups interact with the sulfate anions. Binding of netropsin to poly(dA) . poly(dT) under conditions of different ionic strength was also studied. Utilizing the crystallographic as well as the binding data, it is possible to build a model which explains the specificity of this antibiotic. 相似文献
12.
The adenovirus type 2 DNA-binding protein interacts with the major late promoter attenuated RNA.
下载免费PDF全文

The adenovirus 72-kilodalton DNA-binding protein (DBP) binds to the attenuated RNA derived from the viral major late promoter. Protection from T1 RNase digestion can be observed when DBP is incubated with attenuated RNA. By using attenuated RNA labeled at one end, the T1 RNase digestion pattern can be mapped to residues located at specific sites in this RNA. Heterologous competitor RNAs do not alter the pattern of DBP protection of a labeled attenuated RNA, as does the identical attenuated RNA. These data indicate some specificity of the interaction between DBP and attenuated RNA. Adenovirus infection of monkey cells results in a more efficient attenuation of RNA initiated at the major late promoter and a reduced level of infectious virus. Adenovirus mutations in DBP relieve this restriction. These DBP mutant proteins do not change their binding properties to the attenuated RNA but suggest a mechanism by which DBP plays a role in the adenovirus host range restriction in monkey cells. 相似文献
13.
4-Hydroxynonenal induces a DNA-binding protein similar to the heat-shock factor. 总被引:1,自引:0,他引:1
下载免费PDF全文

By using a gel mobility assay, we have shown that treatment of HeLa cells with 4-hydroxynonenal, a major product of the peroxidation of membrane lipids and an inducer of heat-shock proteins, has the same effect as heat shock in causing the appearance of a protein which binds to the sequence of DNA specific for the induction of heat-shock genes. Lipoperoxidation and heat exposure seem to share a common mechanism of specific gene activation. 相似文献
14.
Cao J Chiarelli C Richman O Zarrabi K Kozarekar P Zucker S 《The Journal of biological chemistry》2008,283(10):6232-6240
By mining DNA microarray data bases at GenBank, we identified up-regulation of membrane type 1 matrix metalloproteinase (MT1-MMP) in human primary and metastatic prostate cancer specimens as compared with nonmalignant prostate tissues. To explore the role of up-regulated MT1-MMP in early stage cancer progression, we have employed a three-dimensional cell culture model. Minimally invasive human prostate cancer cells (LNCaP) were transfected with MT1-green fluorescent protein (GFP) chimeric cDNA as compared with GFP cDNA, and morphologic and phenotypic changes were characterized. GFP-expressing LNCaP cells formed multicellular spheroids with cuboidal-like epithelial morphology, whereas MT1-GFP-expressing cells displayed a fibroblast-like morphology and a scattered growth pattern in type I collagen gels. Cell morphologic changes were accompanied by decreased epithelial markers and enhanced mesenchymal markers, consistent with epithelial-to-mesenchymal transition. MT1-MMP-induced morphologic change and cell scattering were abrogated by target inhibition of either the catalytic domain or the hemopexin domain. We further demonstrated that MT1-MMP-induced phenotypic changes were dependent upon up-regulation of Wnt5a, which has been implicated in epithelial-to-mesenchymal transition. We conclude that MT1-MMP plays an important role in early cancer dissemination by converting epithelial cells to migratory mesenchymal-like cells. 相似文献
15.
DNA-binding domain of bovine papillomavirus type 1 E1 helicase: structural and functional aspects. 总被引:5,自引:13,他引:5
下载免费PDF全文

The E1 protein of bovine papillomavirus type 1 is a multifunctional enzyme required for papillomaviral DNA replication. It assists in the initiation of replication both as a site-specific DNA-binding protein and as a DNA helicase. Previous work has indicated that at limiting E1 concentrations, the E2 protein is required for efficient E1 binding to the replication origin. In this study, we have defined the domain of the E1 protein required for site-specific DNA binding. Experiments with a series of truncated proteins have shown that the first amino-terminal 299 amino acids contain the DNA-binding domain; however, the coterminal M protein, which is homologous to E1 for the first 129 amino acids, does not bind origin DNA. A series of small internal deletions and substitution mutations in the DNA-binding domain of E1 show that specific basic residues in this region of the protein, which are conserved in all E1 proteins of the papillomavirus family, likely play a direct role in binding DNA and that a flanking conserved hydrophobic subdomain is also important for DNA binding. A region of E1 that interacts with E2 for cooperative DNA binding is also retained in carboxy-terminal truncated proteins, and we show that the ability of full-length E1 to complex with E2 is sensitive to cold. The E1 substitution mutant proteins were expressed from mammalian expression vectors to ascertain whether site-specific DNA binding by E1 is required for transient DNA replication in the cell. These E1 proteins display a range of mutant phenotypes, consistent with the suggestion that site-specific binding by E1 is important. Interestingly, one E1 mutant which is defective for origin binding but can be rescued for such activity by E2 supports significant replication in the cell. 相似文献
16.
PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells 总被引:12,自引:0,他引:12
Tang J Frankel A Cook RJ Kim S Paik WK Williams KR Clarke S Herschman HR 《The Journal of biological chemistry》2000,275(11):7723-7730
Type I protein arginine methyltransferases catalyze the formation of asymmetric omega-N(G),N(G)-dimethylarginine residues by transferring methyl groups from S-adenosyl-L-methionine to guanidino groups of arginine residues in a variety of eucaryotic proteins. The predominant type I enzyme activity is found in mammalian cells as a high molecular weight complex (300-400 kDa). In a previous study, this protein arginine methyltransferase activity was identified as an additional activity of 10-formyltetrahydrofolate dehydrogenase (FDH) protein. However, immunodepletion of FDH activity in RAT1 cells and in murine tissue extracts with antibody to FDH does not diminish type I methyltransferase activity toward the methyl-accepting substrates glutathione S-transferase fibrillarin glycine arginine domain fusion protein or heterogeneous nuclear ribonucleoprotein A1. Similarly, immunodepletion with anti-FDH antibody does not remove the endogenous methylating activity for hypomethylated proteins present in extracts from adenosine dialdehyde-treated RAT1 cells. In contrast, anti-PRMT1 antibody can remove PRMT1 activity from RAT1 extracts, murine tissue extracts, and purified rat liver FDH preparations. Tissue extracts from FDH(+/+), FDH(+/-), and FDH(-/-) mice have similar protein arginine methyltransferase activities but high, intermediate, and undetectable FDH activities, respectively. Recombinant glutathione S-transferase-PRMT1, but not purified FDH, can be cross-linked to the methyl-donor substrate S-adenosyl-L-methionine. We conclude that PRMT1 contributes the major type I protein arginine methyltransferase enzyme activity present in mammalian cells and tissues. 相似文献
17.
Oleinikov V Sukhanova A Mochalov K Ustinova O Kudelina I Bronstein I Nabiev I 《Biopolymers》2002,67(6):369-375
We employed Raman and circular dichroism (CD) spectroscopy to probe the molecular structure of 68-kDa recombinant human DNA topoisomerase I (TopoI) in solution, in a complex with a 16-bp DNA fragment containing a camptothecin-enhanced TopoI cleavage site, and in a ternary complex with this oligonucleotide and topotecan. Raman spectroscopy reveals a TopoI secondary structure transition and significant changes in the hydrogen bonding of the tyrosine residues induced by the DNA binding. CD spectroscopy confirms the Raman data and identifies a DNA-induced (>7%) decrease of the TopoI alpha helix accompanied by at least a 6% increase of the beta structure. The Raman DNA molecular signatures demonstrated a bandshift that is expected for a net change in the environment of guanine C6 [double bond] O groups from pairing to solvent exposure. The formation of a ternary cleavage complex with TopoI, DNA, and topotecan as probed by CD spectroscopy reveals neither additional modifications of the TopoI secondary structure nor of the oligonucleotide structure, compared to the TopoI-oligonucleotide complex. 相似文献
18.
The three-dimensional structure of human alpha-lactalbumin for two crystal forms has been determined by x-ray analysis. One crystal (the form LT) was obtained at pH 4.2 and room temperature, while the other crystal (the form HT) was grown at pH 6.5 and 37 degrees C. The backbone structure for Lys1-Ile95 residues is almost conserved between the two structures as indicated by the root mean square difference of 0.30 A for the superposition of equivalent C alpha atoms. The calcium ion is surrounded by seven oxygen atoms of three carboxyl groups, two carbonyl groups, and two water molecules, which form a distorted pentagonal bipyramid in both structures. A large difference in polypeptide folding is found in the region of Leu96-Leu123 residues. Especially in the region of Trp104-Cys111 residues, a distorted alpha-helix is observed in the form HT while a loop structure is formed in the other crystal. The fact that the crystals of both forms appeared in the same batch at pH 6.5 and room temperature indicates that the human alpha-lactalbumin structure is highly fluctuated in solution and the folding and unfolding of the alpha-helix of Trp104-Cys111 residues are in equilibrium. Since the crystal of the form HT exclusively appeared around the physiological temperature, the structure of this form can be considered as the native structure. The partially unfolded structure in the form LT indicates that the local denaturation occurs even at room temperature. 相似文献
19.
Suetake I Mishima Y Kimura H Lee YH Goto Y Takeshima H Ikegami T Tajima S 《The Biochemical journal》2011,437(1):141-148
The Dnmt3a gene, which encodes de novo-type DNA methyltransferase, encodes two isoforms, full-length Dnmt3a and Dnmt3a2, which lacks the N-terminal 219 amino acid residues. We found that Dnmt3a showed higher DNA-binding and DNA-methylation activities than Dnmt3a2. The N-terminal sequence from residues 1 to 211 was able to bind to DNA, but could not distinguish methylated and unmethylated CpG. Its binding to DNA was inhibited by a major groove binder. Four basic amino acid residues, Lys51, Lys53, Arg177 and Arg179, in the N-terminal region were crucial for the DNA-binding activity. The ectopically expressed N-terminal sequence (residues 1-211) was localized in nuclei, whereas that harbouring mutations at the four basic amino acid residues was also detected in the cytoplasm. The DNA-methylation activity of Dnmt3a with the mutations was suppressed under physiological salt conditions, which is similar that of Dnmt3a2. In addition, ectopically expressed Dnmt3a with mutations, as well as Dnmt3a2, could not be retained efficiently in nuclei on salt extraction. We conclude that the DNA-binding activity of the N-terminal domain contributes to the DNA-methyltransferase activity via anchoring of the whole molecule to DNA under physiological salt conditions. 相似文献
20.
Interleukin 1 induces NF-kappa B through its type I but not its type II receptor in lymphocytes. 总被引:1,自引:0,他引:1
E Stylianou L A O'Neill L Rawlinson M R Edbrooke P Woo J Saklatvala 《The Journal of biological chemistry》1992,267(22):15836-15841
It is not known whether one or both of the interleukin 1 (IL1) receptors mediates the induction of the DNA-binding protein NF-kappa B. Nuclear extracts of the murine lines EL4.NOB.1 and 70Z/3, which bear the type I (80 kDa) and type II (67 kDa) IL1 receptor, respectively, were analyzed by an electrophoretic mobility shift assay. A 265-base pair sequence of the human serum amyloid A gene or a synthetic oligonucleotide each containing the NF-kappa B site were used as the DNA probes. IL1 induction of NF-kappa B was rapid (optimal at 15-30 min) and transient in both cell types. The IL1 receptor antagonist (IL1ra), which binds strongly to the type I receptor, inhibited the NF-kappa B response in both cell lines. IL1ra did not bind to the type II receptor on 70Z/3 cells as judged by competition for binding with 125I-IL1 alpha. When 125I-IL1ra binding to 70Z/3 cells was measured, a small number (10/cell) of high affinity sites (Kd = 5 x 10(-12) M) were detected. These were likely to have been type I receptor because an antibody to this inhibited the NF-kappa B induction in 70Z/3 cells (as well as EL4). Potential signal transduction mechanisms involving protein kinase C or oxygen radicals were studied. Phorbol 12-myristate 13-acetate induced NF-kappa B with a similar time course to IL1 in 70Z/3 but only after 4 h in EL4.IL1 was unaffected by a protein kinase C inhibitor (staurosporine). H2O2 did not mimic IL1, and IL1 was not inhibited by an antioxidant. The type I receptor mediates the induction of NF-kappa B in response to IL1 via a signaling mechanism that still remains to be identified. 相似文献