首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In order to improve the efficiency of cassava (Manihot esculenta Crantz) transformation, two different selection systems were assessed, a positive one based on the use of mannose as the selective agent, and a negative one based on hygromycin resistance encoded by an intron-containing hph gene. Transgenic plants selected on mannose or hygromycin were regenerated for the first time from embryogenic suspensions cocultivated with Agrobacterium. After the initial selection using mannose and hygromycin, 82.6% and 100% of the respective developing embryogenic callus lines were transgenic. A system allowing plant regeneration from only transgenic lines was designed by combining chemical selection with histochemical GUS assays. In total, 12 morphologically normal transgenic plant lines were produced, five using mannose and seven using hygromycin. The stable integration of the transgenes into the nuclear genome was verified using PCR and Southern analysis. RT-PCR and northern analyses confirmed the transgene expression in the regenerated plants. A rooting test on mannose containing medium was developed as an alternative to GUS assays in order to eliminate escapes from the positive selection system. Our results show that transgenic cassava plants can be obtained by using either antibiotic resistance genes that are not expressed in the micro-organisms or an antibiotic-free positive selection system.  相似文献   

2.
In order to increase the nutritional quality of cassava storage roots, which contain up to 85% starch of their dry weight, but are deficient in protein, a synthetic ASP1 gene encoding a storage protein rich in essential amino acids (80%) was introduced into embryogenic suspensions of cassava via Agrobacterium-mediated gene transfer. Transgenic plants were regenerated from suspension lines derived from hygromycin-resistant friable embryogenic callus lines. Molecular analysis showed the stable integration of asp1 in cassava genome and its expression at RNA level in transformed suspension lines. PCR and Southern analyses proved the transgenic nature of the regenerated plant lines. The expression of asp1 at RNA level was demonstrated by RT-PCR. The ASP1 tetramer could be detected in leaves as well as in primary roots of cultured transgenic plants by western blots. These results indicate that the nutritional improvement of cassava storage roots may be achieved by constitutive expression of asp1 in transgenic plants.  相似文献   

3.
4.
A protocol for consistent production of fertile transgenic rice plants was established utilizing microparticle bombardment of embryogenic tissues (Oryza sativa L. japonica cv. Taipei 309). This system has been employed to produce several thousand independently transformed plant lines carrying the hygromycin phosphotransferase (hph) gene and various genes of interest. The most efficient target tissue was highly embryogenic callus or suspension cell aggregates, when they were given an osmotic pre- and post-transformation treatment of 0.6 m carbohydrate. By optimizing the age of the tissue at the time of gene transfer and applying an improved selection procedure, transgenic plants were recovered in 8 weeks from the time of gene transfer, at an average of 22.3±9.7 per 100 calli and 22.4±8.0 plant lines per dish of suspension cell aggregates. This system has facilitated a number of studies using rice as a model for genetic transformation and will enable the large-scale production of transgenic rice plants for genomic studies. Received: 12 March 1998 / Revision received: 5 May 1998 / Accepted: 15 May 1998  相似文献   

5.
For the first time, the phosphomannose isomerase (PMI, EC 5.3.1.8)/mannose-based “positive” selection system has been used to obtain genetically engineered sugarcane (Saccharum spp. hybrid var. CP72-2086) plants. Transgenic lines of sugarcane were obtained following biolistic transformation of embryogenic callus with an untranslatable sugarcane mosaic virus (SCMV) strain E coat protein (CP) gene and the Escherichia coli PMI gene manA, as the selectable marker gene. Postbombardment, transgenic callus was selectively proliferated on modified MS medium containing 13.6 μM 2,4-D, 20 g l−1 sucrose and 3 g l−1 mannose. Plant regeneration was obtained on MS basal medium with 2.5 μM TDZ under similar selection conditions, and the regenerants rooted on MS basal medium with 19.7 μM IBA, 20 g l−1 sucrose, and 1.5 g l−1 mannose. An increase in mannose concentration from permissive (1.5 g l−1) to selective (3 g l−1) conditions after 3 weeks improved the overall transformation efficiency by reducing the number of selection escapes. Thirty-four vigorously growing putative transgenic plants were successfully transplanted into the greenhouse. PCR and Southern blot analyses showed that 19 plants were manA-positive and 15 plants were CP-positive, while 13 independent transgenics contained both transgenes. Expression of manA in the transgenic plants was evaluated using a chlorophenol red assay and enzymatic analysis.  相似文献   

6.
The selectable marker gene phospho-mannose isomerase (pmi), which encodes the enzyme phospho-mannose isomerase (PMI) to enable selection of transformed cell lines on media containing mannose (Man), was evaluated for genetic transformation of papaya (Carica papaya L.). We found that papaya embryogenic calli have little or no PMI activity and cannot utilize Man as a carbon source; however, when calli were transformed with a pmi gene, the PMI activity was greatly increased and they could utilize Man as efficiently as sucrose. Plants regenerated from selected callus lines also exhibited PMI activity but at a lower specific activity level. Our transformation efficiency with Man selection was higher than that reported using antibiotic selection or with a visual marker. For papaya, the PMI/Man selection system for producing transgenic plants is a highly efficient addition to previously published methods for selection and may facilitate the stacking of multiple transgenes of interest. Additionally, since the PMI/Man selection system does not involve antibiotic or herbicide resistance genes, its use might reduce environmental concerns about the potential flow of those genes into related plant populations.  相似文献   

7.
 A protocol was developed for establishing embryogenic suspension cultures from in vitro-grown, thin shoot-tip sections of the banana cultivar Rasthali. The best medium for callus induction was an MS-based medium supplemented with 2 mg/l 2,4-D and 0.2 mg/l zeatin. The callus was transferred to liquid medium to establish embryogenic cell suspensions. These cultures were subsequently used for Agrobacterium-mediated transformation. The Agrobacterium tumefaciens strain EHA105 containing the binary vector pVGSUN with the als gene as a selectable marker and an intron-containing the gusA gene as a reporter gene was used for transformations. The herbicide Glean was used as a selection agent. Two hundred putative transformants were recovered, of which a set of 16 was tested by histochemical analysis for GUS expression and by Southern blot analysis with a probe for the gusA gene. The plants were positive for GUS expression and integration of the gusA gene. Two of the transformants were grown to maturity under greenhouse conditions. Bananas were harvested to test GUS expression by histochemical analysis. The fruit from both transgenics tested positive for GUS expression. Received: 22 February 2000 / Revision received: 2 October 2000 / Accepted: 5 October 2000  相似文献   

8.
A new selection system for onion transformation that does not require the use of antibiotics or herbicides was developed. The selection system used the Escherichia coli gene that encodes phosphomannose isomerase (pmi). Transgenic plants carrying the manA gene that codes for pmi can detoxify mannose-6-phosphate by conversion to fructose-6-phosphate, an intermediate of glycolysis, via the pmi activity. Six-week-old embryogenic callus initiated from seedling radicle was used for transformation. Transgenic plants were produced efficiently with transformation rates of 27 and 23% using Agrobacterium and biolistic system, respectively. Untransformed shoots were eliminated by a stepwise increase from 10 g l−1 sucrose with 10 g l−1 mannose in the first selection to only10 g l−1 mannose in the second selection. Integrative transformation was confirmed by PCR, RT-PCR and Southern hybridization. An erratum to this article can be found at  相似文献   

9.
A transformation method using the phosphomannose-isomerase (pmi) gene as a selectable marker was developed for orchid Oncidium Gower Ramsey. The pmi-gene, which converts mannose-6-phosphate to fructose-6-phosphate allowing for selection of transgenic plants on mannose selective medium. Genetically transformed plants of Oncidium were regenerated after cocultivating protocorm-like bodies with Agrobacterium tumefaciens strain GV3101 containing the vectors pEPYON-42P and pEPYON-42H with 35S::PMI and 35S::HPTII genes respectively. We observed that 35S::PMI (pEPYON-42P) produced high rate (27 plants) of mannose resistant transgenic plants compared to 35S::HPTII (pEPYON-42H) in which only fourteen hygromycin resistant transgenic plants were obtained. Mannose resistant transgenic plants were confirmed by PCR and Southern blot. The pmi gene expression in 35S::PMI (pEPYON-42P) transgenic plants was confirmed by RT-PCR. Furthermore, the duration of regeneration time of transgenic plants was significantly shorter in mannose selected system (4 months) than in hygromycin selected system (8 months). The pmi/mannose selection system is shown to be highly efficient for producing transgenic O. Gower Ramsey without using antibiotics or herbicides. For the first time, the pmi/mannose-based “positive” selection system has been used to obtain genetically engineered O. Gower Ramsey.  相似文献   

10.
 Calli and cell suspensions were obtained from tobacco plants transformed with an endochitinase-encoding cDNA from the biocontrol fungus Trichoderma harzianum. Calli from four primary transformants had high levels of endochitinase activity, like the plants from which they were derived. Endochitinase activity was also detected in the medium surrounding the calli and in the medium from transgenic cell suspensions. Western blots demonstrated the presence of the expected 40-kDa T. harzianum protein in transgenic samples but not in controls. These results indicate that the fungal enzyme is secreted and that the fungal signal peptide in the cDNA construct functions in plant cells. A cell suspension medium in which the protein concentration was increased up to 34-fold by ammonium sulfate precipitation inhibited germination of Penicillium digitatum spores. Some inhibition of spore germination was also observed in concentrated medium from control suspensions, probably due to the secretion and concentration of endogenous enzymes. Received: 6 May 2000 / Revision received: 6 September 2000 · Accepted: 14 September 2000  相似文献   

11.
A dual-marker plasmid containing the selectable marker gene, manA, and the reporter gene, sgfp, was used to transform immature sorghum embryos by employing an Agrobacterium-mediated system. Both genes were under the control of the ubi1 promoter in a binary vector pPZP201. The Escherichia coli phosphomannose isomerase (PMI) gene, pmi, was used as the selectable marker gene and mannose was used as the selective agent. The sgfp gene encoding green fluorescence protein (GFP) was the reporter gene and served as a visual screening marker. A total of 167 transgenic plants were obtained from nine different embryogenic callus lines grown on a selection medium containing 1%-2% mannose. Embryoids and shoots regenerated via embryogenesis, that showed strong GFP fluorescence, were selected from two sorghum genotypes: C401, an inbred line, and Pioneer 8505, a commercial hybrid. The GFP accumulation in transgenic plants was observed with a dissecting stereomicroscope. The integration and expression of the manA gene was confirmed by Southern blot and Western blot analyses, and the feasibility of manA selection was demonstrated by the chlorophenol red (CPR) assay. Our results indicated that transgenes segregated in the Mendelian fashion in the T1 generation. The conversion of mannose to a metabolizable fructose carbon source is beneficial to plants. In addition, except in soybean and a few legumes, no endogenous PMI activity has been detected in plant species, indicating that PMI is useful in the transformation of sorghum. In addition, PMI has no sequence homology to known allergens. Optimization of this selection system for sorghum transformation provides an efficient way to produce transgenic plants without using antibiotic or herbicidal agents as selectable markers, and our results showed that the transformation efficiency reached 2.88% for Pioneer 8505 and 3.30% for C401, both values higher than in previously published reports.  相似文献   

12.
Summary A translational fusion between the enhanced green fluorescent protein (EGFP) and neomycin phosphotransferase (NPTH) genes was used to optimize parameters influencing Agrobacterium-mediated transformation of Vitis vinifera L. cv. Thompson Seedless. The corresponding bifunctional protein produced from this EGFP/NPTH fusion gene allowed for a single promoter to drive expression of both green fluorescence and kanamycin resistance, thus conserving promoter resources and climinating potential promoter-promoter interactions. The fusion gene, driven by either a double cauliflower mosaic virus 35S (CaMV 35S) promoter or a double cassava vein mosaic virus (CsVMV) promoter, was immobilized into Agrobacterium strain EHA 105. Somatic embryos capable of direct secondary embryogenesis were used as target tissues to recover transgenic plants. Simultaneous visualization of GFP fluorescence and kanamycin selection of transgenic cells, tissues, somatic embryos, and plants were achieved. GFP expression and recovery of embryogenic culture lines were used as indicators to optimize transformation parameters. Preculturing of somatic embryos for 7 d on fresh medium prior to transformation minimized Agrobacterium-induced tissue browning/necrosis. Alternatively, browning/necrosis was reduced by adding 1 gl−1 of the antioxidant dithiothreitol (DTT) to post co-cultivation wash media. While combining preculture with antioxidant treatments did not result in a synergistic improvement in response, either treatment resulted in recovery of more stable embryogenic lines than did the control. A 48h co-cultivation period combined with 75 mgl−1 kanamycin in selection medium was optimal. DNA analysis confirmed stable integration of transgenes into the grape genome: 63% had single gene insertions, 27% had two inserts, and 7 and 3% had three and four inserts, respectively. Utilizing optimized procedures, over 1400 stable independent transgenic embryogenic culture lines were obtained, of which 795 developed into whole plants. Transgenic grapevines have exhibited normal vegetative morphology and stable transgene expression for over 5 yr.  相似文献   

13.
A protocol for Agrobacterium-mediated transformation with mannose selection was developed for cotyledon petiole, hypocotyl and leaf explants of tomato (Lycopersicon esculentum L. Mill). More than 400 transgenic plants from three tomato varieties were selected with 1% mannose in combination with 0.1–0.5% glucose. Average transformation frequencies ranged from 2.0 to 15.5% depending on the construct, genotype and type of tissue used for transformation. The highest transformation rate was obtained for hypocotyl explants from tomato variety SG048. The ploidy levels of 264 independent transgenic events and 233 non-transgenic plants regenerated from tissue culture were assessed by flow cytometry. The incidence of polyploids within the total population of transgenic plants varied from 10 to 78% and was not significantly different from the non-transgenic population. The greatest variation in the proportion of polyploids was observed in plants derived from different explant types, both in transgenic and non-transgenic regenerants, across three studied genotypes. Transgenic and non-transgenic plants regenerated from leaves included the highest number of normal diploid plants (82–100%), followed by cotyledon petiole-derived plants (63–78%). Transgenic plants produced from hypocotyls contained 22–58% diploids depending on the genotype used in transformation. Results described in this study demonstrate that, although transformation frequencies for leaf tissue are still lower under current protocols, the high percentage of diploids obtained make leaf tissue an attractive transformation target.Abbreviations BAP Benzylaminopurine - MS Murashige-Skoog - MsCHI Medicago sativa chalcone isomerase - PMI Phosphomannose isomerase  相似文献   

14.
 A dual marker plasmid comprising the reporter gene sgfp (green fluorescent protein) and the selectable bar gene (Basta tolerance) was constructed by replacing the uidA (β-glucuronidase, GUS) gene in a uidA-bar construct with sgfp. A particle inflow gun was used to propel tungsten particles coated with this plasmid into immature inflorescence-derived embryogenic callus of switchgrass (Panicum virgatum L.). GFP was observed in leaf tissue and pollen of transgenic plants. Nearly 100 plants tolerant to Basta were obtained from the experiments, and Southern blot hybridization confirmed the presence of both the bar and sgfp genes. Plants regenerated from in vitro cultures of transgenic plants grew on medium with 10 mg l–1 bialaphos. When the pH indicator chlorophenol red was in the medium, the transgenic plantlets changed the medium from red to yellow. Basta tolerance was observed in T1 plants resulting from crosses between transgenic and nontransgenic control plants, indicating inheritance of the bar transgene. Received: 11 May 2000 / Revision received: 21 August 2000 / Accepted: 22 August 2000  相似文献   

15.
We developed an efficient system for agrobacterial transformation of plum (Prunus domestica L.) leaf explants using the PMI/mannose and GFP selection system. The cultivar ‘Startovaya’ was transformed using Agrobacterium tumefaciens strain CBE21 carrying the vector pNOV35SGFP. Leaf explants were placed onto a nutrient medium containing various concentrations and combinations of mannose and sucrose to develop an efficient selection system. Nine independent transgenic lines of plum plants were obtained on a regeneration medium containing 20 g/L sucrose and 15 g/L mannose. The highest transformation frequency (1.40?%) was produced using a delayed selection strategy. Starting from the 1st days after transformation and ending by regeneration of shoots from the transgenic callus, selection of transgenic cells was monitored by GFP fluorescence that allowed avoiding formation of escapes. Integration of the manA and gfp transgenes was confirmed by PCR and Southern blotting. The described transformation protocol using a positive PMI/mannose system is an alternative selection system for production of transgenic plum plants without genes of antibiotic and herbicide resistance, and the use of leaf explants enables retention of cultivar traits of plum plants.  相似文献   

16.
To develop an alternative genetic transformation system that is not dependent on an antibiotic selection strategy, the phosphomannose isomerase gene (pmi) system was evaluated for producing transgenic plants of chickpea (Cicer arietinum L.). A shoot morphogenesis protocol based on the thidiazuron (TDZ)-induced shoot morphogenesis system was combined with Agrobacterium-mediated transformation of the pmi gene and selection of transgenic plants on mannose. Embryo axis explants of chickpea cv. C-235 were grown on a TDZ-supplemented medium for shoot proliferation. Embryo axis explants from which the first and second flush of shoots were removed were transformed using Agrobacterium carrying the pmi gene, and emerging shoots were allowed to regenerate on a zeatin-supplemented medium with an initial selection pressure of 20 g l−1 mannose. Rooting was induced in the selected shoots on an indole-3-butyric acid (IBA)-supplemented medium with a selection pressure of 15 g l−1 mannose. PCR with marker gene-specific primers and chlorophenol red (CPR) assay of the shoots indicated that shoots had been transformed. RT-PCR and Southern analysis of selected regenerated plants further confirmed integration of the transgene into the chickpea genome. These positive results suggest that the pmi/mannose selection system can be used to produce transgenic plants of chickpea that are free from antibiotic resistance marker genes.  相似文献   

17.
A new method for the selection of transgenic rice plants without the use of antibiotics or herbicides has been developed. The phosphomannose isomerase (PMI) gene from Escherichia coli has been cloned and consitutively expressed in japonica rice variety TP 309. The PMI gene was transferred to immature rice embryos by Agrobacterium-mediated transformation, which allowed the selection of transgenic plants with mannose as selective agent. The integration and expression of the transgene was confirmed by Southern and northern blot analysis and the activity of PMI indirectly proved with the chlorophenol red assay. The results of genetic analysis showed that the transgenes were segregated in a Mendelian fashion in the T1 generation. The establishment of this selection system in rice provides an efficient way for producing transgenic plants without using antibiotics or herbicides with a transformation frequency of up to 41%.  相似文献   

18.
Analysis of mannose selection used for transformation of sugar beet   总被引:39,自引:0,他引:39  
Various factors affecting mannose selection for the production of transgenic plants were studied using Agrobacterium tumefaciens-mediated transformation of sugar beet (Beta vulgaris L.) cotyledonary explants. The selection system is based on the Escherichia coli phosphomannose isomerase (PMI) gene as selectable gene and mannose as selective agent. Transformation frequencies were about 10-fold higher than for kanamycin selection but were only obtained at low selection pressures (1.0–1.5 g/l mannose) where 20–30% of the explants produced shoots. The non-transgenic shoots were eliminated during the selection procedure by a stepwise increase in the mannose concentration up to 10 g/l. Analysis of the transformed shoots showed that the PMI activity varied from 2.4 mU/mg to 350 mU/mg but the expression level was independent of the selection pressure. Complete resistance to mannose of transformed shoots was observed already at low PMI activities (7.5 mU/mg). Genomic DNA blot analysis confirmed the presence of the PMI gene in all transformants analysed. The possible mode of action of mannose selection compared to other selection methods is discussed.  相似文献   

19.
A selection system based on the phosphomannose-isomerase gene (pmi) as a selectable marker and mannose as the selective agent was evaluated for the transformation of apple (Malus domestica Borkh.). Mannose is an unusable carbon source for many plant species. After uptake, mannose is phosphorylated by endogenous hexokinases to mannose-6-phosphate. The accumulation of mannose-6-phosphate leads to a block in glycolysis by inhibition of phosphoglucose-isomerase, resulting in severe growth inhibition. The phosphomannose-isomerase is encoded by the manA gene from Escherichia coli and catalyzes the conversion of mannose-6-phosphate to fructose-6-phosphate, an intermediate of glycolysis. Transformed cells expressing the manA gene can therefore utilize mannose as a carbon and survive on media containing mannose. The manA gene along with a β-glucuronidase (GUS) gene was transferred into apple cv. ‘Holsteiner Cox’ via Agrobacterium tumefaciens-mediated transformation. Leaf explants were selected on medium supplemented with different concentrations and combinations of mannose and sorbitol to establish an optimized mannose selection protocol. Transgenic lines were regenerated after an initial selection pressure of 1–2 g l−1 mannose in combination with 30 g l−1 sorbitol followed by a stepwise increase in the mannose concentration up to 10 g l−1 and simultaneous decrease in the sorbitol concentration. Integration of transgenes in the apple genome of selected plants was confirmed by PCR and southern blot analysis. GUS histochemical and chlorophenol red (CPR) assays confirmed activity of both transgenes in regenerated plants. The pmi/mannose selection system is shown to be highly efficient for producing transgenic apple plants without using antibiotics or herbicides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号