首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

It is well known that the sodium smectite class of clays swells macroscopically in contact with water, whereas under normal conditions the potassium form does not. In recent work using molecular simulation methods, we have provided a quantitative explanation both for the swelling behaviour of sodium smectite clays and the lack of swelling of potassium smectites [1]. In the present paper, we apply similar modelling methods to study the mechanism of inhibition of clay-swelling by a range of organic molecules.

Experimentally, it is known that polyalkylene glycols (polyethers) of intermediate to high relative molecular mass are effective inhibitors of smectite clay swelling. We use a range of atomistic simulation techniques, including Monte Carlo and molecular dynamics, to investigate the interactions between a selection of these compounds, water, and a model smectite clay mineral. These interactions occur by means of organised intercalation of water and organic molecules within the galleries between individual clay layers.

The atomic interaction potentials deployed in this work are not as highly optimised as those used in our clay-cation-water work [1]. Nevertheless, our simulations yield trends and results that are in qualitative and sometimes semi-quantitative agreement with experimental findings on similiar (but not identical) systems. The internal energy of adsorption of simple polyethers per unit mass on the model clay is not significantly different from that for water adsorption; our Monte Carlo studies indicate that entropy is the driving force for the sorption of the simpler organic molecules inside the clay layers: a single long chain polyethylene glycol can displace a large number of water molecules, each of whose translational entropy is greatly enhanced when outside the clay. Hydrophobically modified polyalkylene glycols also enjoy significant van der Waals interactions within the layers which they form within the clay galleries.

In conjunction with experimental studies, our work furnishes valuable insights into the relative effectiveness of the compounds considered and reveals the generic features that high performance clay-swelling inhibitors should possess. For optimal inhibitory activity, these compounds should be reasonably long chain linear organic molecules with localised hydrophobic and hydrophilic regions along the chain. On intercalation of these molecules within the clay layers, the hydrophobic regions provide an effective seal against ingress of water, while the hydrophilic ones enhance the binding of the sodium cations to the clay surface, preventing their hydration and the ensuing clay swelling.  相似文献   

2.
In this review, we summarize the rational design and versatile application of organic/inorganic hybrid gene carriers as multifunctional delivery systems. Organic/inorganic nanohybrids with both organic and inorganic components in one nanoparticle have attracted intense attention because of their favorable properties. Particularly, nanohybrids comprising cationic polymers and inorganic nanoparticles are considered to be promising candidates as multifunctional gene delivery systems. In this review, we begin with an introduction of gene delivery and gene carriers to demonstrate the incentive for fabricating nanohybrids as multifunctional carriers. Next, the construction strategies and morphology effects of organic/inorganic hybrid gene carriers are summarized and discussed. Both sections provide valuable information for the design and synthesis of hybrid gene carriers with superior properties. Finally, an overview is provided of the application of nanohybrids as multifunctional gene carriers. Diverse therapies and versatile imaging‐guided therapies have been achieved via the rational design of nanohybrids. In addition to a simple combination of the functions of organic and inorganic components, the performances arising from the synergistic effects of both components are considered to be more intriguing. In summary, this review might offer guidance for the understanding of organic/inorganic nanohybrids as multifunctional gene delivery systems.  相似文献   

3.
In recent years, nanotechnology in merging with biotechnology has been employed in the area of cancer management to overcome the challenges of chemopreventive strategies in order to gain promising results. Since most biological processes occur in nano scale, nanoparticles can act as carriers of certain drugs or agents to deliver it to specific cells or targets. In this study, we intercalated Epigallocatechin-3-Gallate (EGCG), the most abundant polyphenol in green tea, into Ca/Al-NO3 Layered double hydroxide (LDH) nanoparticles, and evaluated its efficacy compared to EGCG alone on PC3 cell line. The EGCG loaded LDH nanohybrids were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM) and nanosizer analyses. The anticancer activity of the EGCG-loaded LDH was investigated in prostate cancer cell line (PC3) while the release behavior of EGCG from LDH was observed at pH 7.45 and 4.25. Besides enhancing of apoptotic activity of EGCG, the results showed that intercalation of EGCG into LDH can improve the anti- tumor activity of EGCG over 5-fold dose advantages in in-vitro system. Subsequently, the in-vitro release data showed that EGCG-loaded LDH had longer release duration compared to physical mixture, and the mechanism of diffusion through the particle was rate-limiting step. Acidic attack was responsible for faster release of EGCG molecules from LDH at pH of 4.25 compared to pH of 7.4. The results showed that Ca/Al-LDH nanoparticles could be considered as an effective inorganic host matrix for the delivery of EGCG to PC3 cells with controlled release properties.  相似文献   

4.
New biodegradable polyhydroxybutyrate/layered silicate nanocomposites   总被引:1,自引:0,他引:1  
Poly(hydroxybutyrate) (PHB)/layered silicate nanocomposites were prepared via melt extrusion. The nanostructure, as observed from wide-angle X-ray diffraction and transmission electron microscopy, indicates intercalated hybrids. The extent of intercalation depends on the amount of silicate and the nature of organic modifier present in the layered silicate. The nanohybrids show significant improvement in thermal and mechanical properties of the matrix as compared to the neat polymer. The silicate particles act as a strong nucleating agent for the crystallization of PHB. The biodegradability of pure PHB and its nanocomposites was studied at two different temperatures under controlled conditions in compost media. The rate of biodegradation of PHB is enhanced dramatically in the nanohybrids. The change in biodegradation is rationalized in terms of the crystallization behavior of the nanohybrids as compared to that of the neat polymer.  相似文献   

5.
Nanosized montmorillonite clay dispersed in small amounts in polymer results in polymer nanocomposites having superior engineering properties compared to those of the native polymer. These nanoinclusions are created by treating clay with an organic modifier which makes clay organophilic and results in intercalation or exfoliation of the montmorillonite. The modifiers used are usually long carbon chains with alkylammonium or alkylphosphonium cations. In this work, we have investigated the use of some alternative molecules which can act as modifiers for clay composites using clay for reinforcing a matrix of biopeptides or proteins. Such composites have potential applications in the fields of biomedical engineering and pharmaceutical science. In this work, the amino acids arginine and lysine are used as modifiers. The intercalation and mechanical behavior of the interlayer spacing with these amino acids as inclusions under compression and tension are studied using molecular dynamics simulations. Significant differences in the responses are observed. This work also provides an insight into the orientation and interaction of amino acids in the interlayer under different stress paths.  相似文献   

6.
Clay wall (tsuchikabe in Japanese) material for Japanese traditional buildings is manufactured by fermenting a mixture of clay, sand, and rice straw. The aim of this study was to understand the fermentation process in order to gain insight into the ways waste biomass can be used to produce useful materials. In this study, in addition to Clostridium, we suggested that the family Nectriaceae and the Scutellinia sp. of fungi were important in degrading cell wall materials of rice straw, such as cellulose and/or lignin. The microorganisms in the clay wall material produced sulfur-containing inorganic compounds that may sulfurate minerals in clay particles, and polysaccharides that give viscosity to clay wall material, thus increasing workability for plastering, and possibly giving water-resistance to the dried clay wall.  相似文献   

7.
8.
The development of multilayered thin film assemblies containing (bio)molecules is driven by the need to miniaturize sensors, reactors, and biochips. Viral nanoparticles (VNPs) have become popular nanobuilding blocks for material fabrication, and our research has focused on the well-characterized plant virus Cowpea mosaic virus (CPMV). In a previous study, we have reported the construction of multilayer VNP assemblies. Here we extend these studies by providing further details on the formation and properties of arrays that are made by the alternating deposition of biotinylated CPMV particles and streptavidin molecules. Array formation was followed in real time by a quartz crystal microbalance with dissipation monitoring. Our data provide indications that multiple interactions between biotin and streptavidin not only promote the assembly of a multilayered structure but also generate cross-links within each layer of CPMV particles. The degree of intralayer and interlayer cross-linking and hence the mechanical properties and order of the array can be modulated by the grafting density and spacer length of the biotin moieties on the CPMV particles.  相似文献   

9.
The surface properties of high-density lipoproteins (HDLs) are important because different enzymes bind and carry out their functions at the surface of HDL particles during metabolic processes. However, the surface properties of HDL and other lipoproteins are poorly known because they cannot be directly measured for nanoscale particles with contemporary experimental methods. In this work, we carried out coarse-grained molecular dynamics simulations to study the concentration of core lipids in the surface monolayer and the interfacial tension of droplets resembling HDL particles. We simulated lipid droplets composed of different amounts of phospholipids, cholesterol esters (CEs), triglycerides (TGs), and apolipoprotein A-Is. Our results reveal that the amount of TGs in the vicinity of water molecules in the phospholipid monolayer is 25–50% higher compared to the amount of CEs in a lipid droplet with a mixed core of an equal amount of TG and CE. In addition, the correlation time for the exchange of molecules between the core and the monolayer is significantly longer for TGs compared to CEs. This suggests that the chemical potential of TG is lower in the vicinity of aqueous phase but the free-energy barrier for the translocation between the monolayer and the core is higher compared to CEs. From the point of view of enzymatic modification, this indicates that TG molecules are more accessible from the aqueous phase. Further, our results point out that CE molecules decrease the interfacial tension of HDL-like lipid droplets whereas TG keeps it constant while the amount of phospholipids varies.  相似文献   

10.
Isothermal-isobaric (NPT) molecular dynamics simulations have been performed to investigate the structure, morphology, and energetics of polymer organoclay nanocomposites based on seven nonsteroidal antiinflammatory drugs (NSAIDs), two biocompatible polymers, and hydrotalcite as the clay mineral, both in an anhydrous and in a solvated environment. The results of our theoretical computations show that nanoconfined conformations of smaller NSAIDs are more affected by the presence of water molecules in the clay gallery with respect to their larger counterparts. Moreover, the presence of water in the mineral interlayer space decreases the interaction energy between the NSAID molecules and the clay, and this detrimental effect is further enhanced by the presence of polar moieties onto the NSAIDs. Finally, from the thermodynamics standpoint, the best intercalation results in a solvated environment could be obtained with PVA in the case of less polar drugs, while PHB could be the polymer of choice in the case of highly polar NSAIDs.  相似文献   

11.
Gamper HB  Hou YM  Kmiec EB 《Biochemistry》2000,39(49):15272-15281
Strand exchange between two duplexes is usually initiated as a three-strand event that requires the presence of a single-stranded overhang or gap in one of the two molecules. Here we show that the RecA protein can catalyze a four-strand exchange. Specifically, it can recombine short hairpin substrates with homologous stems provided that one of the hairpins possesses a chimeric DNA/RNA backbone. This four-strand exchange reaction goes to completion in the presence of ATPgammaS and releases a stable heteroduplex upon removal of the RecA protein. Under identical conditions, strand exchange between two DNA hairpins is incomplete and generates a nascent heteroduplex that rapidly dissociates when the RecA protein is denatured. Since presynaptic filament formation does not appear to melt either type of hairpin, we propose that exchange occurs between homologously aligned duplexes that are extended and unwound within a RecA filament. The first reaction provides a mechanism for gene targeting by chimeric double-hairpin oligonucleotides while the second reaction explains the ability of the RecA protein to transiently align double-stranded DNA molecules.  相似文献   

12.
Prokaryotes can exchange chromosomal and plasmid genes via extracellular DNA in a process termed genetic transformation. This process has been observed in the test tube for several bacterial species living in the environment but it is not clear whether transformation occurs in natural bacterial habitats. A major constituent of terrestrial environments are solid particles such as quartz, silt and clay, which have considerable surface areas and which make up the solid-liquid interfaces of the habitat. In previous experiments the adsorption of DNA to chemically purified quartz and clay minerals was shown and the partial protection of adsorbed DNA against DNAase I. In a microcosm consisting of natural groundwater aquifer material (GWA) sampled directly from the environment and groundwater (GW) both linear duplex and supercoiled plasmid DNA molecules bound rapidly and quantitatively to the minerals. The divalent cations required to form the association were those present in the GWA/GW microcosm. The association was stable to extended elution over one week at 23°C. Upon adsorption, the DNA became highly resistant against enzymatic degradation. About 1000 times higher DNAase I concentrations were needed to degrade bound DNA to the same extent as DNA dissolved in GW. Furthermore, chromosomal and plasmid DNA bound on GWA transformed competent cells of Bacillus subtilis. However, in contrast to DNA in solution, on GWA the chromosomal DNA was more active in transformation than the plasmid DNA. The studies also revealed that in the transformation of B. subtilis Mg2+ can be replaced by Na+, K+ or NH4 The observations suggest that in soil and sediment environments, mineral material with inorganic precipitates and organic matter can harbour extracellular DNA leaving it available for genetic transformation.  相似文献   

13.
考古样品中蛋白质残留物的保存状态能否应用质谱技术成功分析,取决于其特定埋藏环境微生物条件和埋藏年代两个主要因素。目前国际上的最新进展,是成功分析距今大约800~600年之间陶器碎片上附着的粘土状残留物,测定出其中的蛋白质成分来源于灰海狮,该样品来自邻近北冰洋的极寒地区。尝试分析距今2000年左右,出土于云南黑玛井遗址两件青铜容器内的内容物样品,其中一件的内容物外观性状为颗粒状,另外一件则为膏状。分析结果发现,颗粒状样品未能测出蛋白质残留成分,而膏状样品则保留了大量蛋白质残留的信息。这一结果表明,基于生物质谱技术的蛋白质组学方法有可能应用于温带埋藏环境以及年代更为古老的考古样品。  相似文献   

14.
Anti F1 antibodies that react with the alpha and beta subunits of the mitochondrial F0-F1 ATPase complex do not interfere with the natural inhibitor protein-ATPase interaction as revealed by inhibitor peptide titration curves. Submitochondrial particles with endogenous or added bound inhibitor protein show differences in immunoprecipitation. Submitochondrial particles which are partially depleted of inhibitor protein gave the same immunoprecipitation curve as the Mg-ATP particle. Anti F1 antibodies induce differential effects in ATP hydrolysis and ATP-Pi exchange. ATP hydrolysis is stimulated in Mg-ATP particles to 200%, while inhibitor depleted and inhibitor reconstituted particles are inhibited by the presence of the antibodies. ATP-Pi exchange is stimulated in inhibitor reconstituted particles and inhibited in Mg-ATP and inhibitor depleted particles. These results suggest that the inhibitor protein when endogenously bound confers a different conformation to the F1-ATPase than that of the F1 ATPase with added bound inhibitor protein.  相似文献   

15.
1. Beef heart mitochondrial ATPase, in both the membrane-bound and isolated form, contains tightly bound ATP and ADP. Each mol of ATPase contains about 2.2 mol ATP and 1.3 mol ADP.2. In the absence of ATPase activity, these nucleotides exchange only slowly with nucleotides in solution. The exchange rate is increased during coupled ATPase activity, but not when the ATPase is uncoupled.3. Oligomycin and dicyclohexylcarbodiimide inhibit exchange of the bound nucleotides, as does the ATPase inhibitor protein, although in each case some residual exchange occurs. Aurovertin, although inhibiting phosphorylation, does not inhibit the exchange. This is discussed in terms of the reversibility of these inhibitors.4. The stimulation of exchange seen during coupled ATPase activity requires energisation of the ATPase molecule. Using the exchange reaction as a probe of energisation, it is deduced that energy can be transferred between different ATPase molecules.5. It is proposed that coupled ATPase activity and phosphorylation in submitochondrial particles involve the tight nucleotide binding sites and the (weak) ATPase site, while uncoupled ATPase activity involves only the weak site.  相似文献   

16.
1. Beef heart mitochondrial ATPase, in both the membrane-bound and isolated form, contains tightly bound ATP and ADP. Each mol of ATPase contains about 2.2 mol ATP and 1.3 mol ADP. 2. In the absence of ATPase activity, these nucleotides exchange only slowly with nucleotides in solution. The exchange rate is increased during coupled ATPase activity, but not when the ATPase is uncoupled. 3. Oligomycin and dicyclohexylcarbodiimide inhibit exchange of the bound nucleotides, as does the ATPase inhibitor protein, although in each case some residual exchange occurs. Aurovertin, although inhibiting phosphorylation, does not inhibit the exchange. This is discussed in terms of the reversibility of these inhibitors. 4. The stimulation of exchange seen during coupled ATPase activity requires energisation of the ATPase molecule. Using the exchange reaction as a probe of energisation, it is deduced that energy can be transferred between different ATPase molecules. 5. It is proposed that coupled ATPase activity and phosphorylation in submitochondrial particles involve the tight nucleotide binding sites and the (weak) ATPase site, while uncoupled ATPase activity involves only the weak site.  相似文献   

17.
The major apoproteins of human high density lipoproteins (HDL) labeled with 125I have been shown to exchange between the two major HDL subclasses HDL2 and HDL3 in vitro. This bidirectional exchange process is inhibited by cross-linking with bifunctional reagents and is apparently dependent upon the formation of collision complexes. This exchange has been demonstrated both when the subclasses of HDL are free in solution and also when one of them is covalently bound to Sepharose. Using system involving Sepharose-bound HDL, it could be shown that not only free apoprotein molecules but subunits consisting of lipid-apoprotein combinations were exchanged between HDL2 and HDL3. The rate of exchange in these processes is significant in the lifetime of the protein particles in vivo equalling approximately 2.5% per h for apoprotein exchange. These experiments suggest that there is a dynamic relationship between HDL2 and HDL3 even though each of them exists alone in vitro as stable separate entities; when they are placed together in solution significant interaction occurs between the particles. Apoprotein exchange occurs between HDL2:HDL2 and HDL3:HDL3 as well as between HDL2 and HDL3 molecules. These data also suggest that the interconversion of HDL2 and HDL3 may be affected by the availability of lipids.  相似文献   

18.
Coronavirus-like particles morphologically similar to normal virions are assembled when genes encoding the viral membrane proteins M and E are coexpressed in eukaryotic cells. Using this envelope assembly assay, we have studied the primary sequence requirements for particle formation of the mouse hepatitis virus (MHV) M protein, the major protein of the coronavirion membrane. Our results show that each of the different domains of the protein is important. Mutations (deletions, insertions, point mutations) in the luminal domain, the transmembrane domains, the amphiphilic domain, or the carboxy-terminal domain had effects on the assembly of M into enveloped particles. Strikingly, the extreme carboxy-terminal residue is crucial. Deletion of this single residue abolished particle assembly almost completely; most substitutions were strongly inhibitory. Site-directed mutations in the carboxy terminus of M were also incorporated into the MHV genome by targeted recombination. The results supported a critical role for this domain of M in viral assembly, although the M carboxy terminus was more tolerant of alteration in the complete virion than in virus-like particles, likely because of the stabilization of virions by additional intermolecular interactions. Interestingly, glycosylation of M appeared not essential for assembly. Mutations in the luminal domain that abolished the normal O glycosylation of the protein or created an N-glycosylated form had no effect. Mutant M proteins unable to form virus-like particles were found to inhibit the budding of assembly-competent M in a concentration-dependent manner. However, assembly-competent M was able to rescue assembly-incompetent M when the latter was present in low amounts. These observations support the existence of interactions between M molecules that are thought to be the driving force in coronavirus envelope assembly.  相似文献   

19.
20.
Cell intercalation is a key cell behaviour of morphogenesis and wound healing, where local cell neighbour exchanges can cause dramatic tissue deformations such as body axis extension. Substantial experimental work has identified the key molecular players facilitating intercalation, but there remains a lack of consensus and understanding of their physical roles. Existing biophysical models that represent cell-cell contacts with single edges cannot study cell neighbour exchange as a continuous process, where neighbouring cell cortices must uncouple. Here, we develop an Apposed-Cortex Adhesion Model (ACAM) to understand active cell intercalation behaviours in the context of a 2D epithelial tissue. The junctional actomyosin cortex of every cell is modelled as a continuous viscoelastic rope-loop, explicitly representing cortices facing each other at bicellular junctions and the adhesion molecules that couple them. The model parameters relate directly to the properties of the key subcellular players that drive dynamics, providing a multi-scale understanding of cell behaviours. We show that active cell neighbour exchanges can be driven by purely junctional mechanisms. Active contractility and cortical turnover in a single bicellular junction are sufficient to shrink and remove a junction. Next, a new, orthogonal junction extends passively. The ACAM reveals how the turnover of adhesion molecules regulates tension transmission and junction deformation rates by controlling slippage between apposed cell cortices. The model additionally predicts that rosettes, which form when a vertex becomes common to many cells, are more likely to occur in actively intercalating tissues with strong friction from adhesion molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号